
On the Computation of the Empirical
Attainment Function?

Carlos M. Fonseca1,2,3, Andreia P. Guerreiro4,
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Abstract. The attainment function provides a description of the loca-
tion of the distribution of a random non-dominated point set. This func-
tion can be estimated from experimental data via its empirical counter-
part, the empirical attainment function (EAF). However, computation
of the EAF in more than two dimensions is a non-trivial task. In this
article, the problem of computing the empirical attainment function is
formalised, and upper and lower bounds on the corresponding number of
output points are presented. In addition, efficient algorithms for the two
and three-dimensional cases are proposed, and their time complexities
are related to lower bounds derived for each case.

Keywords: Empirical attainment function, algorithms, multiobjective
optimiser performance, estimation.

1 Introduction

The development of new stochastic optimisers, and comparison thereof, depends
on the ability to assess their performance in some way. However, assessing the
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performance of stochastic multiobjective optimisers, such as multiobjective evo-
lutionary algorithms, is considered difficult for two main reasons. On the one
hand, theoretical convergence results are often unavailable for such optimisers,
or are too weak to be indicative of their performance in practice. On the other
hand, the analysis of experimental data is more challenging than in the single-
objective case, due to the set nature of multiobjective optimisation outcomes.

Initial ideas on the performance assessment of stochastic multiobjective op-
timisers were put forward early in Evolutionary Multiobjective Optimisation
history, based on the notion of attainment surfaces [2]. Those ideas were sub-
sequently formalised in terms of the so-called attainment function, and links to
existing results in random set theory were established [5]. As a mean-like, first-
order moment measure of the statistical distribution of multiobjective optimisa-
tion outcomes, the attainment function provides a description of their location
in objective space. More importantly, the attainment function may be estimated
from experimental data using its empirical counterpart, the empirical attainment
function (EAF). Thus, the performance of a stochastic multiobjective optimiser
on a given optimisation problem, understood in terms of location of the corre-
sponding outcome distribution, may be assessed by observing the outcomes of
several independent optimisation runs and computing the corresponding EAF.
Empirical comparisons may then be performed either visually or by formulating
and testing appropriate statistical hypotheses.

Despite initial interest in the attainment function, much greater attention
has been devoted in the literature to performance indicators, especially the hy-
pervolume indicator [10], for which a body of theoretical and experimental re-
sults is currently available. In the meantime, the development of the attainment
function approach has advanced slowly, and has focused mainly on theoretical
aspects [4]. Due to computational difficulties, the EAF has been used mostly for
visualisation purposes, in two dimensions [8].

In this article, the computation of the empirical attainment function is con-
sidered. The empirical attainment function and related concepts are introduced
in Section 2, and the EAF computation problem is formalised in Section 3. In
Section 4, bounds on the number of points to be computed are derived for two,
three, and more dimensions. Efficient algorithms to compute the EAF in two
and three dimensions are presented in Section 5, together with their computa-
tional complexities and some lower bounds on the complexity of the problem.
The paper concludes with a discussion of the main contributions presented and
directions for further work.

2 Background

When applied to an optimisation problem involving d ≥ 2 objectives, stochastic
multiobjective optimisers such as multiobjective evolutionary algorithms pro-
duce sets of solutions whose images in the d-dimensional objective space ap-
proximate the Pareto-optimal front of the problem in some sense. The quality
of this approximation is usually considered to depend solely on the images in
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objective space, so that the outcome of an optimisation run may be seen as a
set of points in Rd. Typically, this is a subset of the non-dominated, or minimal,
objective vectors evaluated during the run, since only such points effectively
contribute to the quality of the approximation.

Definition 1 (Minima). Given a set of points X = {x1, . . . , xm ∈ Rd}, the set
of minima of X under the component-wise order is the set

min X = {x ∈ X : ∀y ∈ X, y ≤ x⇒ y = x} (1)

Definition 2 (Non-dominated point set). A set of points X such that min X =
X is called a set of minima, or a non-dominated point set.

In practice, the actual outcome sets produced for the same problem vary from
optimisation run to optimisation run, due to the stochastic nature of the opti-
misers, and may be seen as realisations of a random non-dominated point set,
or RNP set [3]. Optimiser performance may then be studied through the dis-
tribution of such a random set. In particular, the attainment function provides
information about this distribution with respect to location [5,4], and is defined
as the probability of an outcome set X attaining an arbitrary point z ∈ Rd, i.e.,
the probability of ∃x ∈ X : x ≤ z. The symbol E is used to denote attainment
of a point by a set, e.g., X E z.

The attainment function may be estimated from experimental data through
its empirical version:

Definition 3 (Empirical attainment function). Let I{·} : Rd 7−→ {0, 1} de-
note the indicator function, and let X1,X2, . . . ,Xn be non-dominated point set
realisations drawn independently from some RNP set distribution. The empirical
attainment function (EAF) is the discrete function αn : Rd 7−→ [0, 1], where

αn(z) = αn(X1, . . . ,Xn; z) =
1

n

n∑
i=1

I{Xi E z} (2)

This definition clearly describes how to evaluate the EAF at a given point z ∈ Rd,
but, in practice, it is also necessary to decide at which points the EAF should
be evaluated. For visualisation purposes [8], for example, the boundaries of the
regions of the objective space where the EAF takes a constant value are usu-
ally of interest. These boundaries were originally referred to as %-attainment
surfaces [2], and may be understood as the family of tightest goal vectors in-
dividually attained by a given percentage of the optimisation runs considered.
They have also been described as summary attainment surfaces [6]. Visualisation
of the EAF, and of differences between EAFs associated to different optimisers,
is often used as an exploratory data analysis tool to obtain additional insight
into optimiser performance [6,8].

To produce a graphical representation of the EAF, the desired summary
attainment surfaces must be computed in some way. The above description sug-
gests that a summary attainment surface may be represented by a set of minima,
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and this set can be easily computed in two dimensions as discussed later in Sec-
tion 5. Yet, no formal definition of the corresponding computation problem, or
algorithm to solve it in more than two dimensions, have been presented to date.
To overcome this difficulty, Knowles [6] proposed a plotting method based on the
computation of the intersections between a number of axis-aligned sampling lines
and the summary attainment surface of interest. These intersections provide a
grid-like sampling of the surface which is fast to compute, and leads to plots
that are easy to interpret, at least in three dimensions. However, this sampling
provides only an approximate description of the desired attainment surface while
potentially involving a much larger number of points than the exact description
adopted in this work.

3 The EAF computation problem

Summary attainment surfaces, as described in the previous section, may be
understood as the lower boundary of the corresponding EAF superlevel sets.
Formally, denote the t/n-superlevel set of αn(z), t = 1, . . . , n, by:

Vt/n = {z ∈ Rd : αn(z) ≥ t/n} (3)

and the corresponding set of minima, which Proposition 1 will show to be finite
although Vt/n is infinite, by Lt = min Vt/n. Since αn(z) is a coordinate-wise
non-decreasing function, Vt/n is equal to the upper set of Lt, i.e.:

Vt/n = {z ∈ Rd : Lt E z} (4)

Thus, the EAF computation problem may be defined as:

Problem 1 (EAF computation). Given an input sequence of non-empty non-
dominated point sets:

S = (X1,X2, . . . ,Xn) (5)

containing

m =

n∑
i=1

mi, mi = |Xi| (6)

input points, find the output sequence

R = (L1,L2, . . . ,Ln) (7)

where Lt, t = 1, . . . , n, denotes the set of minima of the t/n-superlevel set, Vt/n,
of αn(X1, . . . ,Xn; z). The total number of output points is

` =

n∑
t=1

`t, `t = |Lt| (8)
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It remains to show how the output sets L1, . . . ,Ln relate to the input se-
quence, S. For each t = 1, . . . , n, the auxiliary set

Jt =

{
t∨

i=1

zi : (z1, . . . , zt) ∈
t∏

i=1

Xji , ji ∈ {1, . . . , n} ∧ (a < b⇔ ja < jb)

}
(9)

is defined, where
∨t

i=1 zi denotes the join (component-wise maximum, or least

upper bound) of points z1, . . . , zt ∈ Rd,
∏t

i=1 Xji denotes the Cartesian product
of sets Xj1 , . . . ,Xjt , and (Xj1 , . . . ,Xjt) is any length-t subsequence of S. Then,
the following holds true:

Proposition 1. Lt is finite and equal to the set of minima of Jt, t = 1, . . . , n.

Proof.

1. Jt ⊆ Vt/n, since all elements of Jt are attained by at least t distinct input
sets by construction.

2. Each minimum of Vt/n must be the least upper bound (join) of t points from
distinct input sets, which is in Jt by construction. Therefore, min Vt/n ⊆ Jt.

3. Together, 1. and 2. imply that min Vt/n ⊆ min Jt.
4. min Jt ⊆ min Vt/n. Assume that a minimum of Jt is not a minimum of Vt/n.

Then, there must be a minimum of Vt/n which dominates it. Given 3., this
minimum of Vt/n must be in Jt as well, which gives rise to a contradiction.

5. Together, 3. and 4. imply that min Vt/n = min Jt. Since Jt is finite, so is Lt.

4 The size of the output sets

As the complexity of any algorithm for the EAF computation problem will neces-
sarily be bounded below by the size of the output sets L1, . . . ,Ln, the maximum
size of these sets is of interest.

4.1 The two-objective case

When d = 2, an upper bound for the total number of output points, `, can be
easily obtained by noting that all output sets Lt, t = 1, . . . , n, are non-dominated
point sets, which implies that all points in Lt must have distinct coordinates.
Therefore, the cardinality `t = |Lt| is bounded above by the total number of
input points, m. In other words, `t ∈ O(m), which leads to ` ∈ O(nm).

Furthermore, the above bound can be shown to be tight by means of an
example. Given two positive integers n and m such that m ≥ n, consider the
input sequence:

S = (X1,X2, . . . ,Xn) (10)

with
Xi =

{
(j,m− j + 1) : (j − i) mod n = 0, j ∈ {1, . . . ,m}

}
(11)

for all i = 1, . . . , n. Then, `t = m− t+ 1 and ` = n(2m−n+ 1)/2. Since m ≥ n,
` ∈ Ω(nm), and the following proposition holds true:

Proposition 2. In the 2-dimensional EAF computation problem, ` ∈ Θ(nm).
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4.2 The three-objective case

To establish an upper bound on the maximum total number of output points
when d = 3, assume, without loss of generality, that all input points have distinct
coordinates.7 Recall that output points are the join of points from different input
sets, and that all output sets Lt, t = 1, . . . , n, are non-dominated point sets by
definition. In particular, L1 is the set of minima of J1 =

⋃n
i=1 Xi, which implies

that `1 ∈ O(m).
Since the number of objectives is d = 3, points in each output set Lt must

differ from each other in at least two coordinates, or one would dominate the
other. Thus, for each input point p = (px, py, pz) ∈ J1, there may be at most two
distinct points q = (qx, qy, qz) in each output set Lt such that (qx, qz) = (px, pz)
and qy ≥ py, or (qy, qz) = (py, pz) and qx ≥ px. Note that this does not exclude
the case where q = p, nor does it imply that such a point q ∈ Lt exists.

Moreover, for each point q = (px, qy, pz) ∈ Lt considered above, there may
be at most one point r = (rx, ry, rz) in each Lj , t < j ≤ n, such that (rx, ry) =
(px, qy) and rz > pz, and similarly for each q = (qx, py, pz) ∈ Lt. Thus, each
input point p may be associated with O(n) output points of the form q above
and with O(n2) output points of the form r.

Finally, every output point must be of one of these two types, q or r. This
is clearly true for every output point that is either an input point as well, or
is dominated by some input point while differing from it only in the value of a
single, x or y, coordinate, which corresponds to type q. In all other cases, the
join of the input point(s) defining the x and y coordinates of a given output
point will differ from that output point in the z coordinate value only, which
must now be equal to that of (one of) the other input point(s) considered. This
join must be a minimum of Jj for some j < t, or the original output point would
not be a minimum of Jt, either. Therefore, type r applies.

Since there are m input points in total, the following holds true:

Proposition 3. In the 3-dimensional EAF computation problem, ` ∈ O
(
n2m

)
.

4.3 More than three objectives

As shown above, the maximum number of output points, `, grows at most linearly
with the total number of input points, m, when the number of objectives is two
or three, and the number of input sets, n, is constant. Unfortunately, this result
does not carry over to more than three objectives. As an example, consider, for
given positive integers m1 and m2, that:

S = (X1,X2) (12)

X1 = {(j1,m1 − j1 + 1, 0, 0) : j1 = 1, . . . ,m1} (13)

X2 = {(0, 0, j2,m2 − j2 + 1) : j2 = 1, . . . ,m2} (14)

7 If this is not the case, add sufficiently small perturbations to the common coordinate
values in the input so that all coordinates become distinct. Note that the number of
minimal elements of Jt, t = 1, . . . , n, may increase as a result, but cannot decrease.
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Then,

J1 = X1 ∪X2 (15)

J2 = {(j1,m1 − j1 + 1, j2,m2 − j2 + 1) : j1 = 1, . . . ,m1, j2 = 1, . . . ,m2} (16)

Since, in this case, both J1 and J2 are non-dominated point sets, (L1,L2) =
(J1, J2), and

|L1| = m1 +m2 = m (17)

|L2| = m1m2 (18)

Setting m1 = m2 = m/2, the total number of output points is ` = m + m2/4,
which establishes a lower bound of Ω(m2) in the four-objective case.

The above lower bound can be shown to apply also to higher numbers of
objectives (through dimension embedding), but tighter bounds for increasing
values of d can be achieved by extending the proposed construction. Assuming
that d is constant and even, consider n = d/2 input sets:

X1 = {(j1,m1 − j1 + 1, 0, 0, . . . , 0, 0) ∈ Rd : j1 = 1, . . . ,m1} (19)

X2 = {(0, 0, j2,m2 − j2 + 1, 0, 0, . . . , 0, 0) ∈ Rd : j2 = 1, . . . ,m2} (20)

...

Xi = {(0, 0, . . . , 0, 0, ji,mi − ji + 1, 0, 0, . . . , 0, 0) ∈ Rd : ji = 1, . . . ,mi} (21)

...

Xn = {(0, 0, . . . , 0, 0, jn,mn − jn + 1) ∈ Rd : jn = 1, . . . ,mn} (22)

of equal size m1 = · · · = mn = m/n, and focus on the cardinality of |Ln| =
|Jn| = (m/n)n = (m/n)d/2. Then, the following general result may be stated:

Proposition 4. In the d-dimensional EAF computation problem, the maximum
total number of output points is Ω

(
mbd/2c

)
.

5 Time complexity and algorithms

The cardinality lower bounds derived in the previous section provide trivial lower
bounds on the time complexity of the EAF computation problem. Additionally,
the known lower bound of O(n log n) on the complexity of finding the minima
(or, alternatively, the maxima) of a point set [9, Theorem 4.8] applies to EAF
computation as well, since L1 = min J1. Formally:

Proposition 5. In the comparison-tree model, any algorithm that solves the
EAF computation problem in d dimensions requires time Ω

(
m logm+mbd/2c

)
.

The time required when d = 2 is Ω (m logm+ nm).

The design of algorithms for the EAF computation problem is approached
here by noting that Lt = min Jt, as stated in Proposition 1, which immediately
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Algorithm 1 EAF computation

1: for t = 1 to n do
2: compute Jt from X1, . . . ,Xn

3: Lt ← minima(Jt)

Algorithm 2 Minima of a set of points

Input: X // a set of points in Rd

Output: L1 // the set of minima of X
1: m← |X|
2: Q is a queue containing X sorted in ascending order of coordinate d
3: L1 ← ∅
4: L∗

1 ← ∅
5: while Q 6= ∅ do
6: p← pop(Q)
7: p∗ is the projection of p onto the first d− 1 dimensions
8: if L∗

1 5 p∗ then
9: L∗

1 ← minima(L∗
1 ∪ {p∗})

10: L1 ← L1 ∪ {p}
11: return L1

suggests dividing the problem into two main computation steps, as outlined in
Algorithm 1. The disadvantage of such a brute-force approach is that |Jt| grows
exponentially in t, leading to overall exponential runtime growth in n, even in
two or three dimensions.

A better alternative consists of alternating between Jt computation steps and
Lt computation steps, while avoiding generating points in Jt which would be
dominated by those already in Lt. Such an approach is consistent with the well-
known dimension-sweep paradigm [9, p. 10f] of computational geometry, and the
EAF algorithms developed in this work are based on existing dimension-sweep
algorithms for minima [7].

Consider the computation of L1, which, as pointed out earlier, consists of
determining the minima of all input points, regardless of the input set to which
each point actually belongs. A general solution to this problem [9, p. 160] is
outlined in Algorithm 2, under the common assumption that all input points are
distinct, and have distinct coordinate values. The algorithm starts from an empty
output set L1, and visits input points in ascending order of their last coordinate,
i.e., it sweeps X along the last dimension. Clearly, a newly visited point cannot
dominate previously visited points, but it will be dominated by earlier points
whenever this is true with respect to the first d − 1 coordinates. Therefore, it
suffices to check the projected point p∗ against a set, L∗1, of minimal projections in
order to decide whether or not p itself is a minimum. Due to this dimensionality
reduction, efficient dimension-sweep algorithms can be obtained for the minima
problem in two and three dimensions by specialising the dominance check and
update steps (lines 8–9) in each case.
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In practice, input coordinate values may not be all distinct, and adjustments
to dimension-sweep algorithms in their basic form may be required, which can
often be made without compromising the worst-case complexity of the origi-
nal versions of the algorithms. In the following, no distinct-coordinate assump-
tions are made, and repeated coordinate values and/or non-disjoint input sets,
X1, . . . ,Xn, are explicitly allowed in the input to the EAF algorithms presented.

5.1 The two-objective case

The general approach of Algorithm 2 becomes particularly simple when d = 2.
In that case, p∗ is a scalar, and L∗1 may contain at most one element. Therefore,
each iteration of the while loop can be performed in O(1) time, and the algorithm
runs in asymptotically optimal, O(m logm) time due to sorting in line 2.

Extending this approach to the full EAF computation problem in two di-
mensions is not only possible, but a C implementation of such an algorithm
was contributed by the first author to the PISA platform [1] in 2005. A some-
what simpler, but functionally-equivalent, algorithm to compute the EAF in two
dimensions is presented as Algorithm 3.

Input sets are merged, pre-sorted according to each coordinate, and stored
into two queues, Qx and Qy. The following operations can be performed in
constant time: top(Q) returns the element at the top of a queue Q; pop(Q)
retrieves the element at the top and removes it from Q; input set(p) returns the
index of the input set containing p.

Each output set Lt is computed independently from the others. For each
t = 1, . . . , n, and starting from an empty Lt, input points are visited in ascending
order of their y coordinates until points from at least t different input sets have
been visited (lines 13–19). The last point visited, q, establishes the smallest value
of the y coordinate of any point in Jt and, thus, of any of its minima. A second
sweep is then made in descending order of x-coordinate values (lines 21–27). For
each point p thus visited, if it is such that py ≤ qy, then (px, qy) must be an
element of Jt. The number of points from each input set which dominate (px, qy)
is tracked using multiset A and the variable level.

Note that, as long as the second repeat-until loop has not exited, the number
of input sets that attain (px, qy) must be at least t. Also, p and q must be either
the same point or belong to distinct input sets. Otherwise, the first repeat-until
loop would have exited before q was reached. In addition, if the current point p
is the only one from its input set to dominate (px, qy), then (px, qy) is actually
a minimum of Jt and, consequently, an element of Lt.

This process is iterated by alternating between sweeps along the y and x
dimensions until either queue is exhausted. A new minimum of Jt is obtained
after each iteration of the outer while loop (line 12–28), with the possible excep-
tion of the last one. As a result, the exponential growth associated with the full
enumeration of Jt is avoided because, once a minimum of Jt is found, no fur-
ther elements of Jt dominated by that minimum are ever generated. Repeated
coordinate values are handled by the conditions underlined in lines 19 and 27.
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Algorithm 3 EAF computation in two dimensions

Input: S = (X1, . . . ,Xn) // a sequence of non-dominated point sets
Output: R = (L1, . . . ,Ln) // a sequence of non-dominated point sets
1: X←

⊎n
i=1 Xi // multiset sum, duplicate points are allowed

2: m←
∑n

i=1 |Xi|
3: Xx is X sorted in descending order of the x coordinate
4: Xy is X sorted in ascending order of the y coordinate
5: for t = 1 to n do
6: Lt ← ∅
7: Qx ← Xx // initialise queue
8: Qy ← Xy // initialise queue
9: A← ∅

10: level← 0
11: p← (∞,−∞)
12: while Qx 6= ∅ and Qy 6= ∅ do
13: repeat
14: q ← pop(Qy)
15: if qx < px then
16: if input set(q) 6∈ A then
17: level← level + 1
18: A← A ] {input set(q)} // multiset sum
19: until Qy = ∅ or (level ≥ t and qy 6= top(Qy)y)
20: if level ≥ t then
21: repeat
22: p← pop(Qx)
23: if py ≤ qy then // (px, qy) ∈ Jt

24: A← A \ {input set(p)} // multiset difference
25: if input set(p) 6∈ A then
26: level← level− 1
27: until level < t and (Qx = ∅ or px 6= top(Qx)x)
28: Lt ← Lt ∪ {(px, qy)}
29: return (L1, . . . ,Ln)

Regarding algorithmic complexity, sorting the input requires O(m logm)
time, and each output set Lt is generated in O(m) time. Since the number of out-
put sets is n, the overall time complexity of the algorithm is O(m logm+ nm),
which matches the corresponding lower bound stated in Proposition 5. Algo-
rithm 3 is, therefore, asymptotically optimal.

5.2 The three-objective case

Asymptotically optimal algorithms for minima in three dimensions can also be
obtained from Algorithm 2. Since L∗1 is now a set of minima in two dimensions,
it admits a total order, and may be organised as a height-balanced binary search
tree on either of the first two coordinates. This allows the dominance check
in line 8 to be performed in O(logm) time and the L∗1 update in line 9 to be
performed in amortised O(logm) time. Indeed, each update consists of a search



On the Computation of the Empirical Attainment Function 11

operation and at most one insertion, both of which have complexity O(logm)
time, plus a variable number of removals8 which, in total, cannot exceed m. Since
each removal can also be performed in O(logm) time, the overall complexity is
O(m logm), and the algorithm is asymptotically optimal [7].

Extending this approach to the EAF computation problem in three dimen-
sions is much less straightforward than it was in the two-dimensional case. A
discussion of the main aspects of the solution proposed as Algorithm 4 follows.

Data structures Since all input sets X1, . . . ,Xn and output sets L1, . . . ,Ln are
non-dominated point sets, 2n data structures based on a height-balanced binary
search tree, as in the minima algorithm described above, are used to manage
them. Points from each set are organised in the corresponding data structure
with respect to their projection onto the xy-plane, which conveniently allows
both x and y coordinates to be used as search key as long as the projections of
all points stored are non-dominated. Insertion, removal and the following search
operations can be performed in logarithmic time on such a data structure, X∗:

floorx(p,X∗) The point q ∈ X∗ with the greatest qx ≤ px
lowerx(p,X∗) The point q ∈ X∗ with the greatest qx < px

ceilingx(p,X∗) The point q ∈ X∗ with the least qx ≥ px
higherx(p,X∗) The point q ∈ X∗ with the least qx > px

The corresponding operations with respect to the y coordinate are available as
well, and have the same complexity.

Algorithm description Output sets are computed by sweeping along the z
dimension and searching for the different types of output points identified in
Section 4. As a consequence, all output sets are computed concurrently, instead
of independently from each other.

For simplicity, begin by assuming that no repeated z-coordinate values ap-
pear in the input, a restriction which will be lifted later. Before entering the
main loop in line 13, the input data is queued in ascending order of the z coordi-
nate, and individual data structures X∗i and L∗t , i, t = 1, . . . , n, are created and
initialised with sentinels (lines 1–6), so that all search operations are guaranteed
to return a point. Then, the first point retrieved from the queue is inserted into
the corresponding X∗j and into L∗1 (lines 7–10), as it must be a minimal element
of J1. Set A is used to track which input sets have been visited so far.

In the main loop, each new input point dequeued is checked to ascertain that
it is not dominated by other points in its input set (lines 14–17). Then, for each
non-empty Ln−1,Ln−2, . . . ,L1, new output points are generated as follows:

1. For each input point p ∈ X, element of some input set Xj , j ∈ {1, . . . , n},
an output point r = (rx, ry, rz) ∈ Lt is sought, such that Xj 5 r, (px, pz) ≥
(rx, rz) and py < ry. This is depicted as point 1 in Fig. 1. Then, s =

8 Each point to be removed may be found in constant time if the tree is threaded.
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Algorithm 4 EAF computation in three dimensions

Input: S = (X1, . . . ,Xn) // a sequence of non-dominated point sets
Output: R = (L1, . . . ,Ln) // a sequence of non-dominated point sets
1: X =

⊎n
i=1 Xi // multiset sum, duplicate points are allowed

2: m←
∑n

i=1 |Xi|
3: Q is X sorted in ascending order of the z coordinate
4: Lt ← ∅, t = 1, . . . , n
5: L∗

t ← {(−∞,∞,−∞), (∞,−∞,−∞)}, t = 1, . . . , n // Sentinels
6: X∗

i ← {(−∞,∞,−∞), (∞,−∞,−∞)}, i = 1, . . . , n // Sentinels
7: p← pop(Q)
8: j ← input set(p)
9: insert(p,X∗

j )
10: insert(p,L∗

1)
11: A← {j}
12: tmax ← 1
13: while Q 6= ∅ do
14: p← pop(Q)
15: j ← input set(p)
16: q ← floorx(p,X∗

j )
17: if py < qy then // always true if Xj is indeed a non-dominated point set
18: t← tmax

19: tmin ← 1
20: while t ≥ tmin do
21: r ← floorx(p,L∗

t )
22: if ry ≤ py then
23: tmin ← t + 1
24: else if ry < qy then
25: st ← (px, ry, pz)
26: else
27: st ← lowery(q,L∗

t )
28: t← t− 1
29: repeat
30: q ← higherx(q,X∗

j )
31: b← max(py, qy)
32: for t = tmax down to tmin do
33: while syt ≥ b and (syt > b or b > py) do
34: if sxt ≥ qx then
35: st ← lowery(q,L∗

t )
36: else
37: submit (sxt , s

y
t , p

z) to L∗
t+1

38: st ← higherx(st,L
∗
t )

39: until qy ≤ py

40: for t = tmax down to tmin do
41: if sxt < qx then
42: submit (sxt , p

y, pz) to L∗
t+1

43: submit p to X∗
j

44: submit p to L∗
tmin

45: if j 6∈ A then
46: A← A ∪ {j}
47: tmax ← min(tmax + 1, n− 1)
48: Lt ← Lt ∪ (L∗

t \ {(−∞,∞,−∞), (∞,−∞,−∞)}), t = 1, . . . , n
49: return (L1, . . . ,Ln)
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Fig. 1. Example, where L∗
t = {1, ..., 7}, X∗

j = {a, b, c, d}, and p is the new point in Xj .

(px, ry, pz) must be an element of Jt+1, as it is attained by one more input
set than r. In addition, if sy is required to be minimal, s will be an element
of Lt+1. Such points, r, if they exist, are identified in the first inner loop of
the algorithm (lines 20–28), and the corresponding output point, s, depicted
as point A in the figure, is generated in line 25. For convenience, it is output
only later, in line 37.

2. For each input point p ∈ X, element of some input set Xj , j ∈ {1, . . . , n},
all output points s = (sx, sy, sz) ∈ Lt such that Xj 5 s, (px, py) < (sx, sy)
and pz ≥ sz are sought. Then, (sx, sy, pz) must also be an element of Jt+1.
Since input points are processed in ascending order of z-coordinate values,
(sx, sy, pz) will be an element of Lt+1. Such points, if they exist, are deter-
mined in the second inner-loop (lines 29–39) and, eventually, also as the last
point found in the first inner loop, in line 27. They are depicted as points 2,
3 and 6 in Fig. 1.

3. In the third inner loop (lines 40–42), output points analogous to those de-
termined in the first loop, but with the roles of the x and y coordinates
reversed, are computed (point B in the figure).

4. Finally, each input point p will itself be a member of the output set Ltmin ,
where tmin is the lowest index t such that L∗t does not attain p in the current
iteration of the outer loop. The value of tmin is determined in lines 22–23,
and Lt is updated in line 44.

The L∗t data structures are updated as detailed in Algorithm 5. Provided that
the new point u is not dominated by the points currently in L∗t (line 2), points
w in L∗t whose projections are dominated by u are removed (lines 3–6), and the
new point u is inserted (line 7). Otherwise, u is simply discarded.

Repeated z-coordinate values in the input sets are handled by delaying the
addition of points to Lt until they are removed from L∗t as a result of the insertion
of a new point (lines 4–5). This guarantees that output points generated in one
iteration of the outer loop which become dominated in a subsequent iteration
due to the processing of a second input point with the same z coordinate are
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Algorithm 5 Submit u to L∗t
1: v ← floorx(u,L∗

t )
2: if uy < vy then
3: for all w ∈ L∗

t : (ux, uy) ≤ (wx, wy) do
4: if uz > wz then
5: Lt ← Lt ∪ {w}
6: remove(w,L∗

t )
7: insert(u,L∗

t )

not actually added to the output. Lines 4–5 do not apply to the updating of the
X∗j data structures, which is otherwise identical.

Complexity A complete run of the algorithm involves m searches and (up to)
m insertions into the X∗j data structures, plus up to m search-removal pairs, to
maintain the input data structures. Since the total number of input points is m,
the cost of these operations is bounded by O(logm), and the complexity due to
them is O(m logm).

Maintaining the output data structures, L∗t , requires O(n2m log(n2m)) =
O(n2m logm) time,9 since there are O(n2m) output points. In addition, O(m)
searches in the X∗j data structures and O(n2m) searches in the L∗t data structures
are performed in the body of the algorithm, including O(nm) searches in L∗t that
may not lead to the generation of new output points. As this extra work is also
done in O(n2m logm) time, the time complexity of Algorithm 4 is O(n2m logm),
and the algorithm is asymptotically optimal as long as the number of input sets,
n, is assumed to be constant (compare with Proposition 5). When m ∈ O(n),
the time complexity of the algorithm is only a logarithmic factor worse than the
cardinality upper bound derived in Section 4, Proposition 3.

6 Concluding remarks

In this work, the EAF computation problem has been formalised as the problem
of computing a finite description of all of its superlevel sets (or the corresponding
summary attainment surfaces) from experimental data. After proving that each
component of the solution of this problem consists of the set of minima of a
suitable auxiliary set constructed based on the input data, the size of the output
sets which describe the EAF was shown to grow linearly with the number of input
points only when d = 2, 3. Finally, efficient algorithms for the EAF in two and
three dimensions were developed based on existing dimension-sweep algorithms
for minima. The algorithm for d = 3 is asymptotically optimal when the number
of input sets is fixed, whereas the algorithm for d = 2 is asymptotically optimal
in the general case.

Extending the algorithms proposed here to more than three dimensions is
the subject of further work, although quadratic complexity with respect to the

9 Note that n ≤ m.
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number of input points will be unavoidable in the worst case. This is a direct con-
sequence of the lower bound stated in Proposition 5, but it may still be possible
to seek improved performance in non-worst-case scenarios, e.g., by developing
output-sensitive EAF algorithms.

A C-language implementation of Algorithms 3 and 4 is available from the au-
thors on http://eden.dei.uc.pt/~cmfonsec/software.html. As an example
of practical runtime performance, computing the EAF of a set of 50 spherical,
three-objective fronts with 240 points each took only 6 seconds on a single core
of an AMD Opteron 2216 HE 2.4GHz processor. It is expected that these results
will contribute to a more widespread use of the empirical attainment function
as a performance assessment tool in Evolutionary Multiobjective Optimisation.
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