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Abstract

In their paper on price comovements of paintings, Ginsburgh and
Jeanfils show that in three important markets (London, Paris and New
York), prices of well-known and lesser known painters “move together”
(are cointegrated). They conclude that therefore, an investor may be
indifferent between the two groups of painters. We show that this is
not the case, since well-known painters are less risky, and that though
returns may be comparable, the share of well-known painters in a
portfolio of paintings might be as high as 90%. We also construct
long-run and short-run portfolios and show that these may be very
different. These short-term portfolios give interesting insights which
help in characterizing each of the three markets.

Published Journal of Cultural Economics 23 (1999), 193-210.

1A previous version of this paper was presented at the Ninth International Conference
on Cultural Economics, Boston, 1996. We are grateful to two anonymous referees for
comments. Financial support from the Begian Government under contract PAI P4/01 is
gratefully acknowledged.
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1 Introduction

In a recent paper, Ginsburgh and Jeanfils (1995) (G&J) study the comove-
ments between semestrial price indices of paintings by “Great Masters,”
“Other Painters” and “US Painters” auctioned in three key art markets:
London, Paris and New York. These price indices are constructed on the
basis of hedonic regressions using prices obtained at auction between 1963
and 1992.2

G&J start with an error-correction model linking the returns of two price
series in each market (GMs and OPs in London and Paris, GMs and USPs in
New York3), and conclude that there is cointegration in all three cases. This
means that, in each market, prices for both groups of artists “move together.”
They could only find very weak evidence for short-run relationss between
stock and art markets, and no such link at all in the long-run. Furthermore,
contemporaneous correlations between excess returns on paintings (measured
as the difference between returns on paintings and the three months euro-rate
on each country’s currency) and growth rates of the G7 countries are also
very weak (0.14 for France, 0.31 for the UK and 0.13 for the US). Given these
weak links, we have taken the shortcut to analyze portfolios for paintings in
isolation from the rest of the economy.

Three additional insights are worth mentioning:

(a) Returns on paintings are stationary.
(b) GMs account, in all markets, for the common (non-stationary) trend.
Intuitively, this implies that GMs are setting the (non-stationary) evolution
of the market, which is then “followed” by OPs in London and Paris and by
USPs in New York.
(c) In each market, the difference between (the logarithms of) prices of GMs
and OPs (or USPs) will, on average, remain constant in the long run.

The combined result of these findings is that, irrespectively of the market
in which an investor wants to operate, “a portfolio of Van Gogh’s would do
as well as a portfolio of Ginsburgh’s, if these appeared more or less regu-
larly at auction” as suggested by G&J. Though true in terms of returns, this

2See the Appendix for details on the construction of these price indices.
3USPs appear quite seldom at auction in Paris and in London, while sales of OPs are

infrequent in New York.
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statement oversees the fact that identical long-run returns may have different
variances and therefore, as taught by classical portfolio theory,4 an optimal
portfolio will consist of GMs and OPs (or USPs) in different proportions.

However, another issue is also at stake. An optimal portfolio based on the
findings obtained by G&J has a long-run connotation, since the cointegration
relationship describes long-run behaviour. It might be that the portfolio has
to be frequently reshuffled if one is interested in short-run operations.

In this paper we suggest a method to tackle this issue. The stationary
structure linking the expected returns and their variances is combined with
portfolio theory to produce dynamic estimates of the optimal portfolios.

The basic finding that the long-run portfolios are significantly different
from the short-run ones may be the consequence of several facts, the volatility
of returns being only one of them. The results also suggest a characterization
of the three markets in terms of stability and of the role played by the group
of Great Masters.

Of course, and as is the case in all our previous work in this field,5 the
conclusions must be taken in due perspective. The data on art markets
considered here are subject to many shortcomings. First, price series are
based on auction data only, and miss other transactions which may turn out
to be important.6 Secondly, transaction costs (which are neglected here and
which are much higher than in the case of financial markets) will obviously
prevent investors from reshuffling their portfolios very often.

The structure of the paper is as follows. In Section 2, we discuss some
theoretical aspects and briefly sketch how to combine the classical, static opti-
mal portfolio theory with cointegration results, in order to construct dynamic
portfolios. Section 3 discusses the empirical results. Section 4 concludes with
possible theoretical and empirical extensions.

4See e.g. Markowitz (1959).
5See for instance, Buelens and Ginsburgh (1993), and Czujack et al. (1996).
6See e.g. Guerzoni’s (1995) interesting remarks on Reitlinger.
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2 Long and Short-run Optimal Portfolios

2.1 Markowitz Long-run Optimal Portfolios

A Markowitz optimal portfolio is obtained as a combination of the available
assets that maximizes the expected return of the portfolio, subject to the
constraint that its variance should not exceed some bound (or that minimizes
variance, subject to a constraint on the expected return).

Let π1 ≥ 0 and π2 ≥ 0 represent the weights of the two assets, with
π1 + π2 = 1; r1 and r2 are their expected returns (first moments), σ2

1, σ2
2 and

σ12 represent their variances and covariance (second moments). Then, the
expected return of the portfolio is given by

π1r1 + π2r2, (1)

while the combined variance can be written

π2
1σ

2
1 + π2

2σ
2
2 + 2π1π2σ12. (2)

The optimal portfolio is obtained by choosing the weights that either
maximize (1) subject to a constraint in which (2) is bounded from above,
or that minimize (2) subject to a constraint in which (1) is bounded from
below. By varying the bound in one or in the other problem, one obtains
the efficient frontier which describes the best choices of π1 and π2 for given
maximal variance, or for given minimal return.

In the case of two risky assets (GMs and OPs or USPs) and no riskless
asset, it is easy to see that once the variance (or the expected return) is
fixed, the problem is trivial, since weights have to be nonnegative and add
up to one. Therefore, we have chosen to determine the portfolio with smallest
variance, that is, the most conservative choice for an investor. It is easy to
see that the solution to the problem

minπ1,π2π
2
1σ

2
1 + π2

2σ
2
2 + 2π1π2σ12 (3a)

subject to
π1, π2 ≥ 0, π1 + π2 = 1 (3b)

is

π1 =
σ2

2 − σ12

σ2
1 + σ2

2 − 2σ12

, if σ2
1, σ

2
2 ≥ σ12; (4a)
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π1 = 1, if σ2
2 > σ12 ≥ σ2

1; (4b)

π1 = 0, otherwise. (4c)

.
Of course, in all three cases,

π2 = 1 − π1. (5)

Markowitz’s optimal portfolio approach–and all the developments that
followed–assumes that the first two moments of the distributions of returns
are constant. This condition is satisfied for the series studied by G&J;7 the
moments of the observed returns series can thus be used to calculate (4) and
(5) in London, Paris and New York.

Note that since we use minimum variance portfolios, the values of the
expected returns do not play any role in the calculations–see equations (4)-
(5). The investor is concerned with risk only.

2.2 Short-run Optimal Portfolios

If the expected moments of the distributions change over time, one should
correct the long-run choice and design instantaneous optimal portfolios, which
would, at every instant, take into account the best prediction of the values
of these moments, given the past. This would show by how much the short-
term optimal combination deviates from the static long-run portfolio, which
befits a long-term investor. If the differences are small, holding the long-
term portfolio would not be very risky. However, the dynamic portfolios are
expected to vary considerably in unstable or highly volatile markets, adding
insecurity to the long-term portfolio.8 Examining the series of optimal asset
proportions can then help in characterizing the underlying markets. In the
special case of the market for paintings–where, to the best of our knowledge
no quantitative study of this kind has ever been performed–this can provide

7This is tested by Ginsburgh and Jeanfils (1995) using unit root tests on the logarithms
of the price series.

8The whole discussion in this section is informal. The “insecurity” referred to has to
do with the possibility for the long-term investor to liquidate his position at any moment.
Actually, if one assumes that the investment period coincides with that of the observations–
half-years–, dynamic portfolios would be the best choice if there were no transaction costs.
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a further insight on the behaviour of agents, especially if wild movements are
followed by reasonably stable periods.

Many possibilities exist for the updating of the variances and covariances.
Since, as shown by G&J, the original price series are cointegrated, we will
work with the related error-correction model, the residuals of which being
used to update the second-order moments, through a GARCH formulation.

Cointegration and the Error-Correction Model

Cointegration9 studies the relation between 2 (or more generally, m) time se-
ries yi,t, i = 1, 2; t = 1, 2, ..., T–in our case, prices of GMs and OPs or USPs–
and combines both the long-run and the short-run within the framework of
a unique model.

An example of such a model is:

∆y1,t = α1(y1,t−1 − βy2,t−1) + γ1,1∆y1,t−1 + γ1,2∆y2,t−1 + e1,t. (6)

In (6) first-order differences of the first series, ∆y1,t are regressed on lagged
first-order differences of both series,10 ∆y1,t−1 and ∆y2,t−1, and on lagged val-
ues of the levels of both series y1,t−1 and y2,t−1, which, however, appear under
the form of (y1,t−1 − βy2,t−1), assumed to represent the long-run equilibrium
relation between the two variables, the so-called cointegrating relationship.

Along an equilibrium path, ∆y1,t−1 = ∆y2,t−1 = ∆y1,t = 0, so that y1,t−1−
βy2,t−1 = −e1,t/α1. Taking expectations in this last expression, one gets
Ey1,t−1−βEy2,t−1 = 0, which is the formal version of the long-run equilibrium
relationship. In the short-run, variations in ∆y1,t can be due to variations
in ∆y1,t−1, or ∆y2,t−1 or to a disequilibrium in period t − 1, i.e., to the fact
that (y1,t−1 − βy2,t−1) �= 0, even if ∆y1,t−1 = ∆y2,t−1 = 0. If α1 < 0, this
will imply that any overshooting or undershooting of y1,t−1 with respect to
its equilibrium value βy2,t−1 will be (partially) corrected in period t, so that
the two series will not move too far apart from each other, for too long. This
is the essence of the error-correction mechanism, as introduced by Davidson
et al. (1978).

The full model will include a second equation which explains, in the same

9See Hamilton (1994), chapter 19 for a recent overview.
10In (6), there is only one lag, but in general, there may be more.
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way, the short-run behaviour of y2,t

∆y2,t = α2(y1,t−1 − βy2,t−1) + γ2,1∆y1,t−1 + γ2,2∆y2,t−1 + e2,t. (7)

Observe that in equations (6) and (7), all the parameters, including the
error-correction coefficients α1 and α2 can differ, but that the long-run equi-
librium relation between y1 and y2 (y1,t−1 − βy2,t−1) is the same in both (6)
and (7).

In our case, yit, i = 1, 2 are logarithms of prices; therefore, their first dif-
ferences rit = ∆yit represent returns. If model (6)-(7) is the best forecasting
system for the returns, then, given the information It−1 available at time
t − 1, the anticipated part of rit is given by

E(∆yit | It−1) = αi(y1,t−1 − βy2,t−1) + γi,1∆y1,t−1 + γi,2∆y2,t−1, (8)

while
∆yit − E(∆yit | It−1) = eit (9)

is the unanticipated part of the return. But this implies that in period t− 1,
the best forecast for the variance of the return in period t will be

E((∆yi,t − E(∆yi,t | It−1))
2 | It−1) = E(e2

i,t | It−1),

so that the use of a GARCH model on the errors of the error-correction
equation is a natural way of forecasting the second-order moments needed in
the determination of the short-term optimal portfolios.

GARCH processes and the updating of second-order moments

In principle, the two variances and the covariance should be updated. How-
ever, as explained below, a shortcut will be used for the covariance.

We start with the dynamic variances, which will be defined by

h2
it = E(e2

it | It−1), i = 1, 2, (10)

and taken as the volatility of the unanticipated part of the returns that can
be predicted with the information It−1 available in t − 1. Equation (10) is
made operational through a GARCH(p, q) formulation.11 According to this

11See e.g. Hamilton (1994), chapter 21.
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methodology, the conditional expectation E(e2
it | It−1) is written as a linear

combination of the p past squares of the errors eit and the q past expectations

h2
it = constant+ a1e

2
i,t−1 + ...+ ape

2
i,t−p + b1h

2
i,t−1 + ...+ bqh

2
i,t−q, i = 1, 2 (11)

Estimating models incorporating systems of equations such as (6), (7) and
(11) is quite straightforward nowadays.

As for the covariance, we note that equation (4a) can be rewritten as

π1 = (1 − (σ2
1 − σ2

2)/v)/2, (12)

where v = σ2
1 + σ2

2 − 2σ12, is also the variance of (∆y1,t −∆y2,t) which, given
the results by G&J, who find that in (6)-(7), β is not significantly different
from 1, is also the variance of the first differences of the cointegrated process.
This implies that v is a function of second-order moments of the cointegrated
process so that, as a shortcut to a multivariate GARCH we decided to keep
v constant in (12), and update only the two variances σ2

1 and σ2
2, using the

GARCH processes defined in (11).

Computing short-run portfolios

Equations (6), (7) and (11) are estimated for each couple of return series
in each of the three cities: (GMs, OPs) in London and in Paris (GMs, USPs)
in New York. Then, the h2

1t and h2
2t forecasts given by (11) are used to

implicitly update the covariance through

h12,t = (h2
1,t + h2

2,t − v)/2. (13)

Depending on the relative values of h2
1,t, h

2
2,t and h12,t, one of the three for-

mulas (4a) to (4c) is used for each semester, generating the time series of
dynamic portfolios (π1t, π2t) in each market.

3 Empirical Results

Table 1 displays the first two moments of the GM, OP and USP returns in
the three markets. One can easily compute the long-term minimum variance
portfolios, using equations (4) and (5).
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As can be seen, and though returns of GMs and OPs (or USPs) are not
very different, the optimal porfolios contain very large shares of GMs. This
is so because in all three markets, GMs have a much smaller variance than
other painters. London and New York are the two places where Christie’s
and Sotheby’s are present and where the best paintings produced by GMs
are sold. Paris often sells less prestigious works, which are closer to those
produced by OPs, so that the proportion of OPs is larger in a portfolio bought
in Paris (15%) than in London (9%). Indeed, the GM/OP return-variance
ratio is more than two times lower in London than in Paris. The situation
is somewhat different in New York, the largest market for contemporary
American painters: returns on both categories of artists (GMs and USPs)
are almost identical, and the variance of USPs is much smaller than that
of OPs in London and in Paris. As a result, the proportion of USPs in a
portfolio bought in New York is relatively large (27%).

Figures 1 to 3 illustrate the series of returns for each class of painters
in each market. All three series are very volatile, both for Great Masters
and Other (or American painters), and one might expect that the GARCH-
predicted variances, displayed in the upper and middle parts of Figures 4 to
6, will be highly fluctuating. Indeed, though the error-correcting filter atten-
uates this situation, the conditional variances do have significants peaks.12

As expected, these are more dramatic for OPs, especially in Paris and for
USPs.

This pattern generates the unstable dynamic portfolios represented in
the lower part of Figures 4 to 6, where the continuous horizontal lines de-
scribe the proportions of GMs to hold in the long-term portfolios (see Table
1 and equation (4)), while the oscillating curves describe the correspond-
ing sequences of short-term optimal proportions, computed on the basis of
equations (6)-(12).

To interpret correctly these optimal short-run proportions, the reader
should remember that, in the updating scheme we suggest to follow, the only
parameters which are changing explicitly, are the variances of the returns.
Let us briefly discuss the London market (Figure 4) as an example. Given
the situation prevailing in the long-run, Markowitz’s logic implies that larger
deviations from the long-run share of GMs will take place when the condi-

12The reader should note the change in the vertical scale between Figures 1 to 3 and
Figures 4 to 6.
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Table 1
Return Statistics and the Long-Run Optimal Portfolios

Characteristics of the Returns
Means Variances Covariances LR portfolios

London
Great Masters 0.052 0.044 0.916
Other Painters 0.033 0.412 0.007 0.084

Paris
Great Masters 0.058 0.043 0.854
Other Painters 0.034 0.188 0.013 0.146

New York
Great Masters 0.046 0.052 0.727
US Painters 0.047 0.115 0.014 0.273

Returns, variances and covariances are for semesters.

tional variances of GMs and OPs show sharply opposing trends. This means
that the lower part of Figure 4 should be analyzed with the pair of GARCH
results diplayed in the upper part of Figure 4. The important drops in the
share of GMs in 1972-2 and 1984-2 reflect the fact that the expected value of
the GM/OP returns-variance ratio was much larger than the long-run ratio.
The other decrease in 1988-1 comes one year after the global peak in the
share, a movement which is the result of the large variations in the condi-
tional variance of OPs in 1987-88.13

The analysis of the results shown in Figures 4 to 6 leads to the following
observations.

(i) In all three markets, the dynamic short-run proportions can be quite far
from the long-run ones. This is somewhat less pronounced in New York.

(ii) The percentage of GMs in the dynamic portfolios is reasonably higher

13The GARCH technique unfortunately emphasizes such variations.
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than 50%, but usually lower than the share predicted on the basis of the
long-run portfolio. Actually, in New York, and because they compete with
American painters, Great Masters do not enjoy the same position as in the
two European capitals, where they compete with lesser known painters.14

The result is that the short-run proportions of GMs in New York is clearly
decreasing: American painters are gaining more and more popularity and
importance. This point qualifies considerably the finding by G&J that GMs
“lead” in all three markets. They do, indeed, in terms of price levels; how-
ever, in terms of risk, they are safer in London than in New York, for instance.

(iii) The lower quality of works sold in Paris, both for GMs and OPs, make
it a more speculative market than London or New York. Investors deviating
from the long-run portfolio may reap there the highest short-run profits as
well as experience the largest losses.

Summing up, we could say that there is more speculation in Paris than in
London and certainly in New York, where there is more “action,” since Great
Masters are forced to compete on almost identical grounds with Amercian
painters. London seems to be a more solid market, though it can be seriously
affected by sudden changes as in 1987-88.

4 Final remarks

The approach proposed can be extended in many ways. Estimation of the
conditional volatility, for instance, can also be performed via the Kalman
filter or via multivariate GARCH procedures, which would then encompass
the prediction of the covariances between the series. However, as our purpose
is not technical, we prefer to insist on the economic implications.

We have concentrated our discussion on minimum variance portfolios.
This implies that the investor is blind to the levels of expected returns,
provided that the variances do not change. This is of little importance in our
special case, since, as can be seen from Table 1, returns on the two assets are
roughly of the same size.

However, as is well-known, Markowitz’s theory produces a whole set of
efficient portfolios, the “optimal” one being chosen according to the investor’s

14Note that in New York, returns for GMs and USPs are of the same order of magnitude.
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preferences. An extension of the calculations in this direction is interesting,
since we believe that it is important to describe the behaviour of agents on art
markets. Of course this may open different possibilities of optimal portfolios
whose dynamic characteristics should be interpreted in a proper context.

A simpler, though maybe also insightful development, would be to rerun
the methodology including stocks or bonds as additional assets, though G&J
have not found much evidence that stock and art markets are cointegrated.
The oscillations of the optimal short-term proportions of GMs in a port-
folio including art and financial assets could then be compared with some
indicator of the business cycle, for instance. Finally, once optimal portfolios
are calculated, further modelling along the lines of the Capital Asset Pricing
Model (CAPM) is usually pursued.15 Such a study, which would include data
on art markets, could perhaps add an interesting element to the debate on
the testing of CAPM models.

5 Appendix on the construction of price in-

dices

The return indices used in our calculations have been computed through
hedonic regressions, as suggested in Chanel et al. (1996); one estimates the
following equation:

pit =
m∑

k=1

αkxik +
τT∑

t=τ0

γtzt + εit, (∗)

wherepit is the (logarithm of the) price of a collectible i sold at time t, xik

is a time-invariant idiosyncratic attribute of i; [τ0, τT ] is the time interval
over which observations are available; zt is a dummy variable which takes
the value one if the work is sold in period t ∈ [τ0, τT ], and zero otherwise;
the γt are parameters to be estimated, and finally εit is an error term. The
sequence γτO

, γτ1 , ..., γτT
is used to construct the price or value index.

The data used to calculate value indices come from Mayer’s (1963-1992)
compendia Annuaire des Ventes. These yearbooks of public auctions are
available since 1963 (sales of 1962); we thus cover the years 1962 to 1991.
Three databases were compiled. Two of them concern European painters

15For a classical reference on this subject, see e. g. Huang and Litzenberger (1988).
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born after 1830, thus excluding Old Masters; the third one is devoted to
20th century American painters.

The first contains some 25,000 sales of 82 well-known Impressionist, Mod-
ern and Contemporary European painters, selected in a fairly subjective way:
we chose painters who lived (or at least spent part of their lifetime) in Paris,
were frequently sold in public auctions (Dufy, Marquet, Van Dongen) and/or
are well known (Cézanne, Gauguin, Seurat). For each of them, all sales col-
lected by Mayer during the period 1962-1991 are included. We refer to those
painters as ‘Great Masters.’ This database includes well-known painters only
and can hardly be thought of as representing European painters in general.
Therefore, we constructed a second database of European painters (‘Other
Painters’) as follows. For each year (1962 to 1991), we draw 82 random num-
bers (within the set corresponding to the pages in each volume of Mayer’s
compendia). The first painter appearing on each such randomly chosen page
is selected and all his paintings sold during that year are included. The
database contains over 6,000 sales, and hence approximately 200 paintings
per year. A notable difference between the two databases is that each Great
Master is followed over the 30 years time-span, while Other painters are not
(except by chance). See de la Barre et al. (1994) for more details.

The third database (‘US Painters’), compiled by Demortier (1992) is con-
cerned with the works of 139 American painters who were born after 1900
and/or died after 1965. This includes painters belonging to all “contempo-
rary” currents (action painting, hard edge, minimal art, colorfield, hyperre-
alism and realism, pop art, bad painting, neo-geo, symbolism, naturalism,
conceptual art, abstract expressionism, and precursors), and makes for over
6,000 paintings sold between 1962 and 1991.

In Mayer’s compendia, each sale is decribed by a certain number of char-
acteristics (see below) and by a sale number, corresponding to a specific
auction describing the location and the date of sale. It is therefore possible
to construct monthly or quarterly indices. There are two reasons for having
chosen to work with half-yearly indices. First, to compute monthly indices,
more sales would be needed16 in order to obtain reliable indices and second,
there are almost no auctions in July, August and September; this reason also

16For the ‘Other painters’ database, there are 6,000 observations over 30 years, i.e. an
average of 17 observations per month or 50 per quarter; these are numbers which we
thought of being too small to construct indices with higher than half-yearly frequency.
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makes it clear why it would make little sense to construct quarterly indices.17

Though like financial markets, the art market is international (a Japanese
collector can easily buy in London, Paris or New York), we consider three
different geographical markets: the United States, the United Kingdom and
France. Prices in the US and the UK are computed from all auctions at
Christie’s and Sotheby’s New York (Parke Bernett until it was bought by
Sotheby’s) and London respectively; for France, all auctions collected by
Mayer are included.

The characteristics we use to describe each work are limited by the fact
that, beside the name of the artist and of the painting, the yearbooks give
only a very rough description of the painting: the size of the work (height
and width), the year in which it was painted (though not in all cases), the
medium used, the place of the sale (saleroom, country) and the time of sale.

The model is estimated on the full sample of sales and resales. The xki

variables describing characteristics are the following: dimensions (3 variables:
height, width and surface); dummy variables for painters (82 for ‘Great Mas-
ters’, 139 for ‘US painters’) or for nationalities (25 for ‘Other painters’);
dummy variables for type of painting and/or medium (2 for ‘Great Masters’:
painting or collage, 4 for ‘Other painters’: canvas, wood, cardboard, other;
15 for ‘US painters’); 60 dummy variables zt describing the dependence of
prices over the sixty half-years 1962-1991.

Such regressions were thus run for ‘Great Masters’ in New York, London
and France (3 indices), ‘Other painters’ in London and France (2 indices)
and ‘US painters’ in New York (1 index). ‘Other painters’ hardly sell in the
United States, while ‘US painters’ seldom appear at auctions in Europe.18

For further details see Ginsburgh and Jeanfils (1995).

17A year is divided into two “semesters” of unequal lenght: a seven months period
(January-July) and a five months period (August-December); these are the two ”seasons”
usually taken into consideration by salerooms also, since, for calendar reasons, the last
important sales before the summer holidays may take place either end of June or beginning
of July: they should both be considered as belonging to the same “season.”

18Prices are expressed in local currencies (dollars, pounds and FF for sales in New York,
London and France respectively. We did not correct these data for inflation: since we have
no information on who buys the paintings, it is not clear which inflation rate should be
used to deflate the data.
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Figure 1
Returns of Great Masters (upper part)

and Other Painters (lower part) in London

Figure 2
Returns of Great Masters (upper part)

and Other Painters (lower part) in Paris

Figure 3
Returns of Great Masters (upper part)

and US Painters (lower part) in New York

Figure 4
Conditional variances of GMs (top), OPs (middle) and

Markowitz optimal proportions of GMs in London (bottom)

Figure 5
Conditional variances of GMs (top), OPs (middle) and

Markowitz optimal proportions of GMs (bottom) in Paris

Figure 6
Conditional variances of GMs (top), USPs (middle) and

Markowitz optimal proportions of GMs (bottom) in New York
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