
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [University of Montana]
On: 4 September 2009
Access details: Access Details: [subscription number 791401756]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Dynamical Systems
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713414890

Delay induced canards in a model of high speed machining
Sue Ann Campbell a; Emily Stone b; Thomas Erneux c

a Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada b

Department of Mathematical Sciences, The University of Montana, Missoula, MT 59812, USA c Université
Libre de Bruxelles, 1050 Bruxelles, Belgium

First Published:September2009

To cite this Article Campbell, Sue Ann, Stone, Emily and Erneux, Thomas(2009)'Delay induced canards in a model of high speed
machining',Dynamical Systems,24:3,373 — 392

To link to this Article: DOI: 10.1080/14689360902852547

URL: http://dx.doi.org/10.1080/14689360902852547

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713414890
http://dx.doi.org/10.1080/14689360902852547
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Dynamical Systems
Vol. 24, No. 3, September 2009, 373–392

Delay induced canards in a model of high speed machining

Sue Ann Campbella, Emily Stoneb* and Thomas Erneuxc

aDepartment of Applied Mathematics, University of Waterloo, Waterloo, Ontario,
N2L 3G1 Canada; bDepartment of Mathematical Sciences, The University of Montana,
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We consider here a model from Stone and Askari [Nonlinear models of chatter
in drilling process, Dyn. Syst. 17 (2002), pp. 65–85] for regenerative chatter in
a drilling process. The model is a nonlinear delay differential equation where the
delay arises from the fact that the cutting tool passes over the metal surface
repeatedly. For any fixed value of the delay, a large enough increase in the width
of the chip being cut results in a Hopf bifurcation from the steady state, which
is the origin of the chatter vibration. We show that for zero delay the Hopf
bifurcation is degenerate and that for a small delay this leads to a canard
explosion. That is, as the chip width is increased beyond the Hopf bifurcation
value, there is a rapid transition from a small amplitude limit cycle to a large
relaxation cycle. Our analysis relies on perturbation techniques and a small delay
approximation of the DDE model due to Chicone [Inertial and slow manifolds for
delay differential equations, J. Diff. Eqs 190 (2003), pp. 364–406]. We use
numerical simulations and numerical continuation to support and verify our
analysis.

1. Introduction

In this article we document the occurrence of canards in a constant delay system developed
for modelling metal cutting processes such as drilling. Canards were first studied by
a group of French mathematicians (E. Benoı̂t, J.-L. Callot, F. Diener and M. Diener)
in the context of relaxation oscillations of the Van der Pol equation with a constant forcing
term [1,2]. Close to a Hopf bifurcation in this system, a small change of the control
parameter leads to a fast transition from a small amplitude limit cycle to a large amplitude
relaxation cycle. The fast transition is called a canard explosion and happens within an
exponentially small range of the control parameter. Because this phenomenon is hard
to detect it was nicknamed a canard, after the French newspaper slang word for hoax.
Furthermore, the shape of the limit cycle immediately following the transition has a knob-
like corner reminiscent of a duck’s beak. So the notion of a canard cycle/explosion
was born and the chase after these creatures began following either non-standard [2]
or standard [3] methods.

The study of canard cycles has recently been aided by new computational methods
for the systematic simulation of bifurcation of solutions in the phase plane. Similarly,
the study of delay differential equations (DDEs) has received increased interest in part
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due to innovations in computational methods. Previously studied equations have been
re-investigated allowing for a better physical understanding of old problems, and new
areas of research have appeared. Of particular interest are dynamical phenomena that are
directly generated by the delayed variable. These include, for example, the stabilization
of unstable steady states [4], the emergence of square-wave oscillations for first order
DDEs [5], or the secondary bifurcation to quasi-periodic oscillations for second order
DDEs [6]. In this article, we concentrate on a mechanical model for high-speed machining
and investigate the limit of small delays. This limit is singular and we construct and analyse
the emergence of canard transitions and relaxation oscillations by both numerical and
asymptotic techniques.

The plan of this article is as follows. In Section 2, we formulate the evolution equation
for a machine-tool system subject to a delayed feedback. In Section 3, we investigate the
small delay limit corresponding to the high speed revolution of the spindle of the cutting
machine. We note that the equation of motion for zero delay can be reformulated as
a weakly perturbed conservative problem and anticipate a non-trivial effect of the delayed
feedback. In Section 4, we construct the limit-cycle solution that emerges from the
Hopf bifurcation using an averaging technique appropriate for weakly perturbed but
strongly non-linear conservative oscillators. We determine the critical value of the control
parameter where the amplitude of the oscillations suddenly increase (canard explosion).
The validity of our asymptotic analysis is then evaluated in Section 5 by systematic
comparisons between the numerical bifurcation diagram of the original DDE, its ODE
approximation for small delay, and the analytical predictions. Finally, we discuss in
Section 6 the impact of our results for the original mechanical system and, more generally,
DDEs that exhibit similar bifurcation properties. In particular, we explain how dramatic
changes of the amplitude and waveform of the oscillations are possible near a Hopf
bifurcation even if the delay is small.

2. Chatter in machining models

In a previous paper [7] the development of a model for a certain type of regenerative
chatter in drilling processes was documented. This model incorporated non-linear friction
on the tool face interacting with fundamental axial-torsional vibrations found in some
twist drills. Metal cutting processes such as turning, milling and drilling, are plagued with
an instability to self-sustained vibrations that can ruin both the tool and the work piece,
due to the fact that the tool cuts over a surface repeatedly at a constant frequency. This
phenomenon is called regenerative chatter, and is modelled by fixed delay differential
equations, since the force on the cutting tool depends on the thickness of chip being
removed, and this depends on the position of the tool one revolution prior to the current
position.

In engineering applications an operation such as metal cutting is modelled by
considering distinct vibrational modes of the apparatus and their interaction with external
forces (see Figure 1). The vibrations are assumed to be linear, with large inertia and
stiffness, and small damping. Thus the equation of motion of a machine tool vibration
mode excited by a cutting force is

€xþ c _xþ !0x ¼ Fðx; _xÞ

where x(t) is the amplitude of the vibration, c is the effective damping, and !0 is the natural
frequency of the mode. The forcing function, Fðx; _xÞ, is the projection of the cutting force
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onto the vibration direction, which occurs at an angle � with respect to the vertical from

the tool path. The cutting force has the general form

Fðx; _xÞ ¼ FððxðtÞ � xðt� �ÞÞ; _xðtÞÞ;

where � is the period of revolution of the spindle of the cutting machine. This means it is

proportional to the chip thickness (i.e. ðxðtÞ � xðt� �Þ, the difference between the position

at the time t, and the time one revolution ago), and the penetration rate _xðtÞ. Thus � is

the delay parameter in the delay differential equation.
The specific form of the cutting force was determined from the Merchant–Oxley model

of steady orthogonal cutting [8,9] and is

Fðx; _xÞ ¼ wTðt1 � ðx� xðt� �ÞÞ cos �Þðp0 þ p1 _xþ p2 _x2Þ: ð1Þ

It depends on the instantaneous chip thickness, given by the expression (t1 � ðxðtÞ

�xðt� �ÞÞ cos �), where t1 is the nominal chip thickness set by the machine feed.

The polynomial in _x is a truncation of an asymptotic expansion for a non-linear stick-slip

type friction force. The expansion coefficients p0, p1 and p2, depend on cutting speed, rake

angle of the tool and vibration angle. For the conditions considered in [7] both p1 and p2
are quite small for all vibration angles, two to four orders of magnitude smaller than p0 in

most cases. The other parameters are w, the chip width, and T, the strength of the material.

In [7] these parameters were set at values typical for machining aluminium, namely

w ¼ 6:35� 10�3m; T ¼ 276 MPa, t1 ¼ 7:6� 10�5m.
Two modes of vibration were considered in our earlier work. A traditional milling

mode where the vibration occurs perpendicular to the workpiece, and an axial-torsional

y

x

θ 

workpiece

cutter
t1

Vη

α

Figure 1. Diagram of cutting tool and workpiece in an orthogonal cutting operation. t1 is the chip
thickness, V is the cutting speed, � is the rake angle of the tool, � is the vibration angle and � is the
vibration amplitude.
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mode where vibrations occur across the first and third quadrants, corresponding to

a motion where the drill lengthens when it ‘unwinds’. A three dimensional vibration

analysis revealed that this vibration angle is (approximately) � ¼ 1:38 ¼ 79�. In this

case both p0 and p1 are less than zero. For a vertical vibration � is zero, and p0 and p1 are

positive for the rake angles of the tool that we considered.
After a non-dimensionalization we arrive at the following equation of motion for the

new amplitude variable, �,

�00 þ ��0 þ �� � 1� ð�� �ðt� �ÞÞ cosð�Þ½ �ðp0 þ �p1�
0 þ �p2�

02Þ ¼ 0: ð2Þ

In this equation, prime means differentiation with respect to the dimensionless time
�t � !0t, where !0 is the vibrational frequency of the mode. The dimensionless amplitude �
is the vibration amplitude normalized by the nominal chip thickness t1: Our objective

here is to investigate the limit of small delays (small �), that is, the high-speed cutting limit.

As we shall demonstrate, this limit is singular and requires careful study. In what follows

we drop the bar on the rescaled t variable.
Introducing the deviation from the steady state, y � �� �p0, Equation (2) can be

rewritten as

y00 þ �y0 þ y ¼ �ð �p1y
0 þ �p2y

02Þ � �p0 cosð�Þðy� yðt� �ÞÞ

� � �p1 cosð�Þy
0ðy� yðt� �ÞÞ

� � �p2 cosð�Þy
02ðy� yðt� �ÞÞ: ð3Þ

This is the form of the model we will study in this article. We will refer to it as the DDE

model.
From the linearization of this equation, we can determine the characteristic equation

for the growth rate, and from this the conditions for a purely imaginary eigenvalue. To do

so we substitute z ¼ ei!t (the neutrally stable solution) into the Equation (3) and set the

coefficients of the real and imaginary parts equal to zero. These two equations can be

solved for � and � as a functions of !, namely

�ð!Þ ¼
2

!

�
arctan

�
1� !2

�!

�
þ n�

�
; �ð!Þ ¼

1

2p0 cos �

�
ð�!Þ2

!2 � 1
þ ð!2 � 1Þ

�
: ð4Þ

We have set � ¼ � � �p1, and assume that �4 0, to guarantee stability in the unforced

case. Note that n ¼ 0; 1; 2; . . . determines the branch of the arctangent function. For fixed

values of the physical parameters, Equation (4) yields the parametric equations,

� ¼ �ð!Þ and � ¼ �ð!Þ, describing curves in the � and � parameter space. The n¼ 0

branch is plotted in Figure 2, which ranges over small values of �.
In [10] we compute the Hopf stability coefficient along this boundary via a centre

manifold approximation [11–13]. In the case of the traditional vibration mode the Hopf

bifurcation is supercritical for values of � below 0.5. In this study we will limit ourselves

to this case and to small � values, so the Hopf bifurcation will always be supercritical

in what follows.
As observed in [10], the system exhibits interesting behaviour for small values of �.

In particular, as � is increased from the bifurcation value, there is a rapid transition from

small amplitude to large amplitude limit cycles. It is the purpose of this article to show that

this transition is caused by a canard explosion. In particular, we shall show that the canard

transition is induced by perturbing in the delay term from a singular limit.
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3. The high speed/small delay limit (s!0)

We begin by considering the case �¼ 0. In this situation, Equation (3) reduces to

y00 þ ð� � � �p1Þy
0 þ y ¼ � �p2y

02: ð5Þ

The characteristic equation of the linearization (5) about the trivial solution has a pair

of pure imaginary eigenvalues, �i, if � ¼ �= �p1¼
def
�0. It was noted in [10] that the Hopf

bifurcation in this model is degenerate, since the cubic coefficient of the normal form is

zero. In fact, more can be said.
Consider Equation (5) with � ¼ �0

y00 þ y� �0 �p2y
02 ¼ 0: ð6Þ

It is easily shown that this equation is conservative with a one parameter family of

solutions given by

e�2�0 �p2y y02 �
1

�0 �p2
yþ

1

2�0 �p2

� �� �
¼ C:

Now C ¼ �1=2�20 �p22 ¼ Cmin corresponds to the equilibrium point at the origin, while

Cmin 5C5 0 corresponds to periodic orbits surrounding this equilibrium point. For

C4 0 the solutions are unbounded. The separatrix between the two solution types is given

by the invariant curve defined by C¼ 0, which is

y ¼ �0 �p2y
02 �

1

2�0 �p2
: ð7Þ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

30

35

40

τ

β

Figure 2. Hopf bifurcation boundary for the DDE model (3) for small values of � (n¼ 0 branch)
and p0 ¼ 0:8, �p1 ¼ 0:2, � ¼ 0.5 and �¼ 0. Refer to Equations (4).
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Some representative solution curves are shown in bold in Figure 3. Other equivalent forms

of Equation (6) and its first integral are possible, see [14,15].
For � sufficiently small it can be shown, using the results of Chicone [16], that the DDE

model (3) has a two dimensional inertial manifold. Restricted to this manifold, the term

yðtÞ � yðt� �Þ in the vector field is approximated by �y0ðtÞ. That is, the long term

behaviour of solutions of (3) is well approximated by the behaviour of the solutions of the

following ordinary differential equation

y00 þ ð� � � �p1Þy
0 þ y ¼ � �p2y

02 þ � �� cosð�Þðp0y
0 þ �p1y

02 þ �p2y
03Þ

� �
: ð8Þ

This equation is central to the analysis of the rest of the article and will be referred to as the

inertial manifold ODE. In particular, we investigate Equation (8) in the limit of small �
and compare our asymptotic approximation with the numerical solution of the DDE

model (3) in Section 4.
We begin with some basic results. Standard calculations [17] show that (8) has

a supercritical Hopf bifurcation of the trivial solution at � ¼ �=ð �p1 � �p0 cosð�ÞÞ ¼ �H.
Since � is close to zero, we may write

�H ¼
�

�p1
þ
�p0 cosð�Þ

�p21
� þOð�2Þ: ð9Þ

This shows how the bifurcation parameter �H depends on the small parameter �. More

terms in the expansion can be obtained by returning to the characteristic equation of the

0 5 10 15 20
−10

−8

−6

−4

−2

0

2

4

6

8

10

y

y’

Figure 3. Closed orbit solutions to the conservative system (6). The values of the parameters
are � ¼ 0:5; �p1 ¼ 0:2; �p2 ¼ 0:1; and � ¼ �0 ¼ �= �p1 ¼ 2:5. The outer dashed curve is the separatrix,
given by Equation (7), which separates the closed orbit solutions from the unbounded solutions.
The inner dashed curve is the y0 ¼ 0 nullcline.
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DDE model (3) and expanding � and ! in �. In this case one finds

�H ¼
�

�p1
1þ

p0
�p1
cosð�Þ� þOð�2Þ

� 	
; ð10Þ

!H ¼ 1þ
�

4 �p1
p0 cosð�Þ�

2 þOð�3Þ; ð11Þ

which motivates an asymptotic analysis valid for small �.

4. Perturbing from the singular Hopf

The limit �! 0 is singular if � � � �p1 ¼ Oð�Þ because Equation (8) reduces to Equation (6),
a conservative problem admitting a family of periodic solutions. To determine how these
periodic solutions persist for small �, we must investigate the higher order problem in �.
Assuming

� ¼ �0 þ ��1 þ � � � ð12Þ

with �0 ¼
�
�p1
as previously defined, Equation (8) simplifies to

y00 þ y� �0 �p2y
02 ¼ �gðy0Þ þOð�2Þ ð13Þ

where

gðy0Þ ¼ �1ð �p1y
0 þ �p2y

02Þ � �0 cosð�Þðp0y
0 þ �p1y

02 þ �p2y
03Þ,

and �1 is the bifurcation parameter.
The Hopf bifurcation point now corresponds to �1 ¼ �1H where

�1H ¼ �0 cosð�Þ
p0
�p1
: ð14Þ

Close to the Hopf bifurcation point, the orbits remain bounded by the separatrix of the
conservative system. At a critical value of �1 the limit-cycle changes dramatically from
a small to a large amplitude orbit. We note that the y0 ¼ 0 nullcline for (13) at the Hopf
bifurcation value lies close to the critical manifold that determines the shape of the orbit.

4.1. Limit cycles from the Hopf bifurcation

We now determine how the periodic solutions arising from the Hopf bifurcation of
Equation (13) depends on the bifurcation parameter �1. To begin, we rewrite the Equation
(13) as a system and rescale the variables via v1 ¼ �0 �p2y and v2 ¼ �0 �p2y

0 to obtain

v01 ¼ v2,

v02 ¼ �v1 þ v22 þ �Gðv2Þ þOð�2Þ,
ð15Þ

where

Gðv2Þ ¼ ð�1 �p1 � �0p0 cosð�ÞÞ v2 þ
�1
�0
�

�p1
�p2
cosð�Þ

� �
v22 �

cosð�Þ

�0 �p2
v32

¼ G1v2 þ G2v
2
2 � G3v

3
2:
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We next seek solutions of Equations (15) of the form

v1ðt; �Þ ¼ v10ðtÞ þ �v11ðtÞ þ � � �

v2ðt; �Þ ¼ v20ðtÞ þ �v21ðtÞ þ � � �

Substituting this into (15) we find (as expected) that the system for the leading order terms

is conservative, with a one parameter family of solutions given by

e�2v10 v220 � v10 �
1

2

� �
¼ L; ð16Þ

where L is a constant. For �1=25L5 0 the solutions are periodic with period P(L).

Setting L¼ 0 gives the separatrix between the periodic solutions and unbounded solutions:

v10 ¼ v220 � 1=2.
We wish to find the periodic solutions which persist for �4 0. To do this we follow

the averaging technique of Baer and Erneux [14,15]. Consider the variable corresponding

to the conserved quantity for the �¼ 0 system

Nðt; �Þ ¼ e�2v1ðt;�Þ v2ðt; �Þ
2
� v1ðt; �Þ �

1

2

� �
: ð17Þ

If v1 and v2 are P(L) periodic in t, then N will also be periodic. Thus, a condition for

existence of a periodic solution is given by

ðPðLÞ
0

dN

dt
dt ¼ 0:

Using Equations (15) and (17) the solvability condition to Oð�2Þ becomes

0 ¼

ðPðLÞ
0

2e�2v10ðG1v
2
20 þ G2v

3
20 � G3v

4
20Þ dt: ð18Þ

Noting that v10ðPðLÞ � tÞ ¼ v10ðtÞ and v20ðPðLÞ � tÞ ¼ �v20ðtÞ for any t 2 ½0;PðLÞ�, this
further simplifies to

0 ¼

ðPðLÞ=2
0

e�2v10ðG1v
2
20 � G3v

4
20Þ dt:

Rewriting this in terms of the original parameters gives

ð�1 �p1 � �0p0 cosð�ÞÞ

ðPðLÞ=2
0

e�2v10v220 dt�
cosð�Þ

�0 �p2

ðPðLÞ=2
0

e�2v10v420 dt ¼ 0

or

�1 ¼
�0 p0

�p1
þ

1

�0 �p1 �p2
HðLÞ

� 	
cosð�Þ; ð19Þ

where

HðLÞ ¼

Ð PðLÞ=2
0 e�2v10v420 dtÐ PðLÞ=2
0 e�2v10v220 dt

¼
def I1ðLÞ

I2ðLÞ
:

380 S.A. Campbell et al.
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Using Equations (15) and (16), the integrals may be expressed in terms of v10:

I1ðLÞ ¼

ðvrðLÞ
vlðLÞ

e�2v10
�
e2v10Lþ v10 þ

1

2

�3=2

dv10; I2ðLÞ ¼

ðvrðLÞ
vlðLÞ

e�2v10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2v10Lþ v10 þ

1

2

r
dv10;

where vl5 vr are the two v10 intercepts of the limit cycle, i.e. the roots of e�2v10ðv10þ

1=2Þ þ L ¼ 0. Equation (19) relates the bifurcation parameter �1 to L, the constant

of the conservative system and hence to the amplitude of the corresponding solution of the

unperturbed equation, ðv10; v20Þ. For particular parameter values the integrals can be

computed numerically. A bifurcation diagram can be obtained in this way and is shown

in Figure 4.
To find the critical value of �1 where the amplitude of the periodic solution becomes

unbounded, we take the limit of H(L) in (19) as L approaches 0 (the value corresponding

to the separatrix). Let

lim
L!0

HðLÞ ¼ lim
L!0

I1ðLÞ

I2ðLÞ
:

Note that the limits of both the integrals exist and are given by:

I10 ¼ lim
L!0

I1ðLÞ ¼

ð1
�1=2

e�2v10
�
v10 þ

1

2

�3=2

dv10; I20 ¼ lim
L!0

I2ðLÞ

ð1
�1=2

e�2v10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v10 þ

1

2

r
dv10:

39.5 40 40.5 41 41.5 42 42.5 43 43.5 44
0

1

2

3
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β1

M
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 v
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Figure 4. Bifurcation diagram for the amplitude of periodic solutions as �! 0 (i.e. for the small �
limit of the inertial manifold ODE (13), computing by using Equation (19). The x-axis is the
bifurcation parameter �1, and the y-axis is the first component of the expansion for the position
variable v1 in system (15). The values of the parameters are �0 ¼ 10, p0 ¼ 0:8, �p1 ¼ 0:2 and �p2 ¼ 0:1.
The Hopf bifurcation is located at �1 ¼ 40 and the amplitude becomes unbounded at
�1 ¼ �c ¼ 43:75, marking the transition to the large amplitude cycle.
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Applying integration by parts to I10 yields I10 ¼ 3=4I20, which gives the critical value of �1:

�1 ¼
�0 p0

�p1
þ
3

4

1

�0 �p1 �p2

� 	
cosð�Þ ¼

def
�c: ð20Þ

4.2. Trajectories

In the previous section, we showed that for �1 close enough to �1H one periodic solution

exists for each value of �1. In addition, numerical simulations such as that in Figure 6 show

that for �1 large enough the system exhibits large amplitude relaxation oscillations. In this

section, we shall show that the limit cycles arising from the Hopf bifurcation connect

to the relaxation oscillations at a critical value �1 ¼ �c, following the approach of Baer and

Erneux [14].
To begin, we rewrite Equation (13) as first order system:

y01 ¼ y2

y02 ¼ �y1 þ �0 �p2y
2
2 þ �gðy2Þ:

ð21Þ

Recall from Equation (7) that the �=0 separatrix is given by

y1 ¼ �0 �p2y
2
2 �

1

2�0 �p2
:

We look for solutions close to this separatrix via an expansion in �:

y1ðy2Þ ¼ �0 �p2y
2
2 �

1

2�0 �p2
þ �hðy2Þ þOð�2Þ:

Differentiating this expression with respect to y2 and using Equation (21) gives the

following equation for h( y2)

dh

dy2
� 4�20 �p22y2h ¼ �4�

2
0 �p22y2gðy2Þ:

Solving this ODE with initial condition hðy20Þ ¼ h0 gives

hðy2Þ ¼ h0e
2�2

0
�p2
2
ðy2

2
�y2

20
Þ � e2�

2
0

�p2
2
y2
2

ðy2
y20

4�20 �p22e
�2�2

0
�p2
2
u2ugðuÞdu:

Next, we rescale by v ¼
ffiffiffi
2
p
�0 �p2y2, w ¼

ffiffiffi
2
p
�0 �p2u to arrive at

hðvÞ ¼ h0e
ðv2�v2

0
Þ � 2ev

2

ðv
v0

e�w
2

wg

�
wffiffiffi
2
p
�0 �p2

�
dw

¼ h0e
ðv2�v2

0
Þ � 2ev

2

ðv
v0

e�w
2

½Aw2 þ Bw3 þ Cw4� dw

where

A ¼
�1 �p1 � �0 p0, cosð�Þffiffiffi

2
p
�0 �p2

, B ¼
�1 �p2 � �0 �p1 cosð�Þ

2�20 �p22
; C ¼ �

cosð�Þ

2
ffiffiffi
2
p

�20 �p22
:

382 S.A. Campbell et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
o
n
t
a
n
a
]
 
A
t
:
 
1
9
:
5
0
 
4
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



Assume that v05 0 and define 	 ¼ � 1
v0
and v ¼ z

	. When 		 1, i.e. jv0j 
; 1, we can

derive the following asymptotic expression for h(v), now in terms of z:

hðzÞ � ðh0 � BÞe	
�2ðz2�1Þ �

�
Aþ

3

2
C

� ffiffiffi
�
p

e	
�2z2 :

In terms of the original parameters, this can be written as

hðzÞ � ðh0 � BÞe	
�2ðz2�1Þ þ ðM2 �M1�1Þ

ffiffiffi
�
p

e	
�2z2 ; ð22Þ

where

M1 ¼
�p1ffiffiffi

2
p

�0 �p2
, M2 ¼

p0 cosð�Þffiffiffi
2
p

�p2
þ

3

4
ffiffiffi
2
p

cosð�Þ

�20 �p22
:

For the second term in Equation (22) to remain bounded, we require

ðM2 �M1�1Þ
ffiffiffi
�
p
¼ 
e�	

�2k2 ð23Þ

for some positive O(1) constant k, where 
 ¼ �1 is determined by the sign of M2 �M1�1.
This gives

hðzÞ ¼ ðh0 � BÞe	
�2ðz2�1Þ þ 
e	

�2ðz2�k2Þ:

The analysis after this point again is similar to that in [14], and we refer the reader there

for more details. The expression for h(z) will be dominated by the second term if jv0j is

sufficiently large. It follows that the trajectory of the perturbed system will lie outside

(inside) the separatrix of the unperturbed system if 
 ¼ 1 ð�1Þ. Since M14 0 (in both the

traditional and axial-torsional cases), 
 ¼ �1 if

�1 4
5 M2

M1
¼ �c;

where �c is defined by Equation (20).
So the trajectory ultimately lies inside the separatrix (and is attracted to the limit cycles

born from the Hopf bifurcation) if �1 5�c. If �1 4�c it lies outside the separatrix and

is attracted to the relaxation limit cycles. So the switch from small amplitude limit cycles

to large amplitude limit cycles occurs at

�1 ¼ �c ¼
�0 p0

�p1
þ
3

4

1

�0 �p1 �p2

� 	
cosð�Þ ¼ �H þ��:

This is the critical value of �1 where the amplitude of the limit cycle produced by the

Hopf bifurcation grows without bound. Thus, it marks the point where the canard

transition to relaxation oscillations takes place, and coincides with the value computed

in the previous section from the limit of the periodic solution criterion as the separatrix

is approached. For instance, for the parameter values p0 ¼ 0:8; �p1 ¼ 0:2; �p2 ¼ 0:1; � ¼ 0,

we have �0 ¼ 10 and the switch point becomes �c ¼ 43:75. This is confirmed by the

calculation of the bifurcation diagram shown in Figure 4, where it is the value of �1 at

which the amplitude of the cycle increases very rapidly.
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5. Numerical investigations

In order to investigate the range of validity of our various approximations we turn now

to computational techniques. In particular, we simulate the DDE model (3) and its inertial

manifold ODE (8) and use branch following methods to trace bifurcation curves.
Numerical simulations were carried out with MATLAB’s ode45 for the ordinary

differential equation approximation to the DDE, and MATLAB’s dde23. Relative error

tolerances ranged from the default 10�3, to as little as 10�7, for runs with parameter values

near the transition to the canard cycle.
Numerical continuation of periodic solutions of the delay differential equation was

performed using the package DDEBIFTOOL [18]. For the inertial manifold ordinary

differential equation approximation to the DDE, the AUTO package contained in the

program XPPAUT [19] was used. Both the packages use collocation methods to

approximate the periodic orbits and can thus approximate both stable and unstable

solutions. For both packages we used 400 mesh intervals and degree 4 polynomials

for approximation of the periodic orbits.
Numerical computation of canards is not easy, due to the sensitivity of the system

to round-off error in both the phase space and parameter space. We refer the reader to [20]

for a treatment of these issues. Collocation methods employed by the branch following

routines perform better, but the results must be carefully examined near the transition

from the small to the large orbit. We are confident of the validity of the bifurcation curves

showing amplitude of solution versus � because these remain unchanged as we increase the

accuracy of the computations. However, we do not trust the computations by AUTO and

DDEBIFTOOL of the Floquet multipliers for the canard periodic orbits for the following

reasons. The method used by both the programs to compute Floquet multipliers is known

to be inaccurate when the system has Floquet multipliers which are very large or close to

zero [21] and we observed that the computed values were indeed very large on some parts

of the computed branches. Further, Krupa and Szmolyan [22] have shown analytically

that the non-trivial Floquet multiplier of a canard periodic orbit in a class of two

dimensional ODE systems similar to Equation (8) is either close to zero or very large.
To begin we compare the Hopf bifurcation � values for varying � for the DDE model

(3), the inertial manifold ODE (8) and the first order perturbation approximation to

bifurcation value. In Figure 5 the � vs. � curves are plotted that mark the Hopf bifurcation.

The dark hatched line denotes the boundary for the inertial manifold ODE (8) (�H vs. �),
the dotted line the linear approximation to �H and the dark line is the analytic expression

for the Hopf stability boundary for the DDE model (3). The bifurcation curve for the

inertial manifold ODE lies above the linear approximation, with the difference growing

larger with larger �. We expect that the linear approximation to the boundary to be

valid only in the small � limit, since the true boundary is a curve. The inertial manifold

ODE captures the stability boundary for the DDE model up to the value where the

DDE boundary turns downward, at which point the ODE cannot capture the more

complex behaviour of the DDE. For both, the bifurcation has been shown to be

supercritical.
In Figure 6 the transition from limit cycle to canard-type cycle to relaxation oscillation

for the inertial manifold ODE (8) with �¼ 0.1 is demonstrated in the phase plane. We also

plot the y0 ¼ 0 nullcline for (8) with � set to the Hopf bifurcation value, for illustration

purposes. We note that these numerical simulations are sensitive to round-off error,

especially for smaller values of �. This can create a ‘banding’ effect in the orbit, making
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it appear to be thickened, and/or cause it to cycle around both the large and small orbit.
The vanishingly small region of parameter space over which the transition occurs also
makes it difficult to find a sequence of orbits that smoothly transitions from small to large
amplitude.

In Figure 7 we plot the curves marking the transition to the large canard cycle in the �
vs. � plane for all three cases. Note that the � value is not determined exactly, but
is representative of a vanishingly small range of � over which the transition occurs.
We compare the perturbation approximation to the canard transition line, � ¼ �0 þ ��1c
(where �1c is determined by Equation (20)), with a curve generated from numerically
solving the inertial manifold ODE (8). Again this value lies above the linear
approximation, and is concave up over the range examined, so that the difference grows
with increasing � (as would be expected from an asymptotic approximation in �).
The transition curve for the DDE model (3) was also estimated numerically. Somewhat
surprisingly, the ODE and DDE behaviour are still quantitatively quite close, even though
the size of the orbit in the phase plane is growing large. The range in � is smaller in the
Figure 7 than in Figure 5, due to the difficulty in resolving a single clean transition
value for the DDE. For � larger than about 0.1 there is a more complicated transition
to the large orbit in the DDE model, a matter we take up in Section 6.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

10

20

30

40

50

60

70

80

90

τ

β H

IM ODE

full DDE model

pert. approx. to IM ODE

Figure 5. Comparison of Hopf bifurcation curves for the two systems for varying �: The values
of the parameters are p0 ¼ 0:8, �p1 ¼ 0:2 and �p2 ¼ 0:1. The Hopf bifurcation curve for the inertial
manifold ODE (8) is denoted by the dark hatched line and is given by � ¼ �

�p1��p0 cosð�Þ
. In the limit

of small �, this reduces to a bifurcation line (light hatched) which is given by �H ¼ �0 þ ��1H, where

�0 ¼
�
�p1
¼ 10:0 and �1H ¼

�p0 cosð�Þ
�p2
1

¼ 40:0 for these parameter values. The bifurcation curve for the

DDE model (3) is found from the Hopf bifurcation conditions for a purely imaginary eigenvalue (4)
and is denoted by the solid line.
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0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
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β c

full DDE model

IM ODE

pert. approx. to IM ODE

Figure 7. Comparison of transition curves from small to large limit cycles for the inertial manifold
ODE and the DDE model for varying �: The values of the parameters are p0 ¼ 0:8, �p1 ¼ 0:2 and
�p2 ¼ 0:1. The linear approximation to the transition for the inertial manifold ODE (8) is given by
�c ¼ �0 þ ��1c, where �0 ¼ 10:0 and �1c ¼ 43:75. The transition curve for the inertial manifold
ODE (8) (dashed line) and the DDE model (3) (solid line) were computed numerically.
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−4

−2

0

2
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y’

Figure 6. Phase plane of the solution to the inertial manifold ODE (8) for varying values of �.
The transition to the canard cycle is shown, to be compared with the y0 ¼ 0 isocline for the system
at the Hopf bifurcation value of �. The values of the parameters are p0 ¼ 0:8, �p1 ¼ 0:2, �p2 ¼ 0:1 and
�¼ 0.1, � ranging from 17.25 to 20.0.
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To further investigate the Hopf bifurcation and the growth of the large orbit in both
the DDE model and its inertial manifold ODE approximation, branch following routines
were employed (XPPAUT and DDEBIFTOOL respectively). We present in Figure 8(a)
a numerical continuation of the Hopf bifurcation curve for the inertial manifold ODE (8)
with �¼ 0.05. The periodic orbits corresponding to increasing � values are shown in
Figure 8(b). These orbits, computed via collocation, give a more complete representation

11.5 12 12.5 13 13.5 14 14.5 15
0

20

40

60

80

(a)

(b)

100

β

M
ax

(y
)+

m
ax

(y
’)

−20 0 20 40 60 80
−10

−5

0

5

10

15

20

y

y’

Figure 8. (a) Numerical bifurcation diagram for the inertial manifold ODE (8) with �¼ 0.05,
showing canard transition at � � 12:73. The value predicted by the perturbation theory analysis
is �¼ 12.1875. The points marked with a ‘�’ correspond to the periodic solutions shown in (b).
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of the canard transition than can be found by numerical simulation of the ODE, due to the
vanishingly small range of � over which it occurs. The orbit starts small, grows to an
amplitude where it reaches the knee of the critical manifold, at which point the orbit turns
up instead of down before it completes the cycle. At larger � values it leaves the vicinity
of the critical manifold for smaller and smaller y values, until it becomes the large cycle.
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Figure 9. (a) Numerical bifurcation diagram for full DDE model (3) with �¼ 0.05, showing
canard transition at � � 12:75. The points marked with a ‘�’ correspond to the periodic solutions
shown in (b).
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This occurs over a very small range of �, as indicated by the almost vertical transition in
the numerical bifurcation diagram. AUTO calculates that the branch of periodic orbits
is stable, except for a section of the vertical part of the branch. As mentioned above,
the computation of Floquet multipliers along this part of the branch cannot be trusted.
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(a)

(b)

Figure 10. (a) Numerical bifurcation diagram for full DDE model (3) with �¼ 0.2, showing
a complicated transition to the large orbit at �1 � 49:5. The points marked with a ‘�’ correspond to
the periodic solutions shown in (b).
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Other studies of canard explosions in ODE systems similar to Equation (8) have shown

numerically in [14] and analytically in [22] that if the canard explosion originates in

a supercritical Hopf bifurcation then the entire branch of periodic orbits is stable.

Therefore, we expect the same is true for the inertial manifold ODE (8).
A similar diagram following the branch of periodic solutions from the Hopf

bifurcation for the DDE model is shown in Figure 9(a). This was created with the

branch following routine in DDEBIFTOOL [18]. The bifurcation parameter in the graph

is �, and the delay is fixed at �¼ 0.05. The other parameters are as in the previous section.

We note that shortly after the Hopf bifurcation at �¼ 12.5, the rapid transition to large

amplitude cycles is seen (� � 12:75). In Figure 9(b) representative orbits from the

transition are plotted. These were determined by collocation and the canard cycle is found

in the progression from small to large periodic orbits. DDEBIFTOOL indicates that

the branch of periodic orbits is stable, except for a section of the vertical part of the

branch. As mentioned earlier, the computation of Floquet mulipliers along this part

of the branch cannot be trusted. Numerical simulations of the DDE (3) (Figure 6) indicate

stability everywhere along the branch.
We close this section by reporting that the approximation to this order fails when �

grows larger than about 0.1. A complicated transition to the large orbit involving period

doubling is observed, see Figure 10(a), which was also computed using DDEBIFTOOL

for �¼ 0.2. Example of orbits from this sequence are shown in Figure 10(b). This

behaviour will be the subject of future investigations.

6. Discussion

Although we have focussed on a particular DDE due to our interest in the physical system

it models, the canard transition we observe should occur in other systems with time delays.

The basic ingredient is simple: for zero delay the system has a ‘degenerate’ Hopf

bifurcation, i.e. at a particular value of the bifurcation parameter the system is

conservative and has an equilibrium point which is a non-linear centre. Baer and

Erneux [14,15] showed that perturbing an ODE with such point can lead to the canard

transition. We have extended this to show that the perturbation may be the introduction of

a time delay. We expect that one could ‘design’ a system with a canard transition by the

appropriate introduction of a time delay into an ODE with a non-linear centre.
Specifically, for our machining model in the high speed limit, �! 0, we found a centre

manifold approximation to the delay differential equation that is conservative if the

viscous damping term is removed. This ODE can be solved exactly, and solutions to it

form the backbone of the analysis for small �. In particular, the separatrix between

unbounded and bounded solutions found in the singular limit (both delay and damping

vanish) determines the form of the oscillation for small delay and damping.
The small � approximation to the DDE possesses a supercritical Hopf bifurcation

for the drilling model parameters, and perturbations of the Hopf bifurcation parameter �
for fixed � allow us to compute the behaviour of the branch of limit cycle solutions that

emerge at �H. We see that this branch diverges at a critical � value (�c) where the small

periodic orbit jumps to the large cycle in a canard explosion. Following the analysis in [14]

we find solutions close to the separatrix from the conservative system to show the

large cycle exists and arises smoothly from the small orbit as the bifurcation parameter

is increased.
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In the last section we used numerical methods to evaluate the validity of the asymptotic
approximation to solutions found in Section 4. Numerical simulation of both the ODE
and the DDE demonstrated the Hopf bifurcation and the transition to the large orbit.
Numerical branch following/continuation methods were used to construct bifurcation
diagrams for the period orbits. We also used these programs to compute limit cycle
solutions along the branch via collocation methods. The smaller the value of � used, the
more singular the transition to the large orbit becomes. This is typical of canard type
transitions, which are notoriously difficult to find as the region of parameter space
in which they occur becomes exponentially small. We also observed the numerical
instability demonstrated in [20], where orbits close to the transition are sensitive to
round-off error and can switch erratically between large and small orbits.

While the high speed limit is not physical, and would not be attainable in real life
machining processes, the solutions obtained using it shed light on the behaviour for
more realistic values of the delay. In particular, the existence of a rapid transition to large
amplitude oscillations from small orbits, is important to identify. This jump to a large
orbit is a concern, since it implies a dramatic loss of stability in the process. This recalls
the instability found in machining systems with a subcritical Hopf, where a small unstable
limit cycle keeps solutions bounded near the steady cutting state, so long as they are
initiated inside that orbit. Here, the initial Hopf bifurcation is supercritical, and the
perturbations responsible are in parameter space rather than in phase space.

Finally, we note that increasing � away from the singular limit results in some
very complicated dynamics (period doubling and mixed mode oscillations) that we will
discuss in a future paper.
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