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Two edge-emitting lasers mutually coupled through orthogonal optical injection exhibit square-wave oscil-
lations in their polarization modes. The TE and TM modes within each individual laser are always in antiphase,
but the TE mode of one laser leads the TM of the other by the one-way time of flight between lasers. The duty
cycle of the square waves is tunable with pump current and coupling strength, while the total period remains
close to the roundtrip time. Numerical simulations give similar results and reveal the role of noise in stabilizing
the oscillations.
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Delay-differential systems are of great importance in most
fields of basic and applied sciences. They appear readily in
control systems in which feedback is reinjected after a time
delay, with examples that abound in biology, chemistry, me-
chanical systems, traffic flow, and others �1�. Nonlinear op-
tical systems in particular, with feedback that is nonlocal in
space and time, are subjects of continuous interest in several
applications, including phase distortion suppression and sta-
bilization, optical beam shaping, pattern formation, and all-
optical image processing.

A fundamental property of many nonlinear dynamical
systems is bistability as typified by double-well systems and
those displaying hysteresis. Two-state solutions form the ba-
sis of all binary logic applications, and examples are plenti-
ful in electronics, beginning with the most common multivi-
brator circuits used for logic, clocks, and gates. Optical
digital logic is an area of rapidly increasing importance, with
optical data storage and telecommunications as primary ap-
plications, as well as resurgent interest in optical computing.
Therefore, two-state laser systems are of critical importance.
There are a variety of useful applications stemming from the
all-optical production of high-frequency optical pulses �2�.

Recent work has emphasized semiconductor laser systems
�edge-emittings lasers spectroscopy �EELs� and vertical-
cavity surface-emitting lasers �VCSELs�� with polarization-
rotated feedback �3–7� as a source of optical square pulses
generated through polarization self-modulation �8–12�.
These solutions are of fundamental interest in part because
their dynamic properties can be examined in more detail than
for conventional �nonrotated� optical feedback and because
they relate to optoelectronic systems �13,14�. Pulse trains
generated in all such single-laser systems are symmetric
square waves with duty cycles of 0.5.

This paper describes optical generation of pulse trains in a
system of two mutually coupled semiconductor lasers. Ex-
perimentally, we observe solutions of square pulse trains
with duty cycles that are tunable as functions of the coupling

strength and pump current. Self-consistent timing relation-
ships between polarization modes are observed, and similar
solutions are obtained through numerical simulations.

For an overview, the dynamical system consists of two
EELs, mutually coupled through optical injection, where the
linear polarization state of each injected beam is rotated or-
thogonal to its initial orientation. The EELs exhibit a domi-
nant linear polarization mode and are mounted such that their
TE modes are oriented horizontally. Rotators in the injection
path accomplish a net 90° rotation of both beams, so the TE
mode of each laser is injected into the TM mode of the other.
This is the only coupling between the lasers; TM outputs of
the lasers are extinguished in the cavity.

The apparatus is shown schematically in Fig. 1. The two
diode lasers �LD1 and LD2� are model SDL-5401 index
guided Fabry-Perot MQW devices stabilized in temperature
to �0.01 °C. The lasers have nominal wavelengths of �
=818 nm and solitary current thresholds of 18.5 mA. Their
beams encounter identical collimating lenses �CL� with nu-
merical apertures of 0.47. The injection path is shown as the
U-shaped heavy line in the diagram and the two beams coun-
terpropagate along it, encountering the same sequence of op-
tical components. Each beam is sampled by a 5% reflective
beamsampler �BS� and then is directed through a Faraday
rotator �ROT� with its input polarizer removed. Upon pass-
ing through the rotator, each beam rotates 45° from the hori-
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FIG. 1. Schematic diagram of experimental apparatus. Defini-
tions of abbreviations are in the text.

PHYSICAL REVIEW E 81, 025206�R� �2010�

RAPID COMMUNICATIONS

1539-3755/2010/81�2�/025206�4� ©2010 The American Physical Society025206-1

http://dx.doi.org/10.1103/PhysRevE.81.025206


zontal and emerges from the output polarizer of the rotator.
They then reflect from two steering mirrors with a rotatable
linear polarizer �POL� between them, which is used for in-
jection strength control. All unlabeled components in Fig. 1
are high-reflectivity mirrors. Each beam then enters the sec-
ond Faraday rotator through its 45° output polarizer, passes
through, and rotates to a vertical linear polarization state. In
this form, it is injected into the other laser, coupled to its TM
mode which is normally suppressed. Note that any TM emis-
sion from either laser does not take part in the mutual cou-
pling since any vertically oriented light that enters the Fara-
day rotator will strike the output polarizer orthogonal to its
transmission axis and will therefore be extinguished. This
applies to TM light emitted via lasing action or reflected
from the laser’s front facet.

The dynamics of this system are detected using the beams
deflected from the BSs placed in each line immediately after
they emerge from the collimating lenses. The beams strike
the samplers at near-normal incidence to minimize
polarization-dependent effects in the Fresnel reflections. We
separate each of the two sampled beams into TE and TM
components using a polarizing beamsplitter �PBS� cube for
polarization-resolved detection. We attenuate the beams us-
ing neutral density �ND� filters before they strike the photo-
detectors �PDs�. The ac signals from these 8.75 GHz detec-
tors �Hamamatsu C4258–01� are amplified by 23 dB using
wideband �10 kHz–12 GHz� amplifiers and are captured and
analyzed by a digital storage oscilloscope �LeCroy 8600, 5
GHz analog bandwidth, 10 GS/s sampling rate�.

Using this experimental setup, we observe a variety of
dynamical effects in the time domain, including square
waveforms as shown in Fig. 2. In this case, the pump cur-
rents I1 and I2 both are 38.88 mA. Laser LD1 is stabilized at
a temperature of 20.02 °C and LD2 at 19.01 °C. The delay
�=5.57 ns, and the coupling strength is quantified as a one-
way fractional transmission of 48.7% through the cavity. Fig-
ures 2�a� and 2�b� show the TM and TE modes of LD1,
respectively, and Figs. 2�c� and 2�d� show the same for LD2.
These operational conditions yield square waves with a duty
cycle of 0.5 in all polarization modes, and several features

are evident. First, for each individual laser, the TE and TM
modes are in antiphase. This demonstrates how the lasers
switch between TE and TM operation, thus generating
polarization-modulated square waves. A second observation
is that the TE modes for both lasers are on simultaneously,
followed by an equal duration when both TM modes are
active. Third, the period of the square waveform is 11.9 ns,
which is close to but slightly greater than the cavity
roundtrip time, 2�. Since the period is governed by �, it is
adjustable as has been verified using several cavity lengths.
Finally, on a faster time scale, high-frequency relaxation os-
cillations appear at the onset of each switching event.

This can be interpreted physically as follows. If LD1 and
LD2 turn on simultaneously from off states, with no optical
power present in the cavity, each laser acts at first as a soli-
tary laser, emitting in its natural TE mode which propagates
into the injection path. This represents the stage when the TE
mode is on in both lasers. After a duration �, the beams from
each laser will have propagated through the entire injection
path, having been rotated 90° in polarization in the process,
and reach the other laser. Upon injection, the TM mode
lases dominantly, shutting off the TE mode. The TM modes
operate as long as the injection drives them, which will also
be equal to �, since the TE source has been shut off after that
time. This is the stage when both TM modes are on. After
this second interval of � has elapsed, there is no longer any
injection due to TE emission and TM emission ends. Thus
the lasers return to a solitary state with no power in the
cavity, and the process repeats. A very similar process takes
place in single-laser systems with orthogonal optical feed-
back, which can also produce square waves �8–12�.

This scenario is intuitively logical but does not fully ex-
plain all observations in this system. For example, Fig. 3
demonstrates another self-consistent solution: square waves
with duty cycles other than 0.5. The ordering of the graphs is
the same as before: Figs. 3�a� and 3�b� show the TM and TE
modes of LD1, respectively, and Figs. 3�c� and 3�d� show the
same for LD2. Many of the key elements are the same as
before. The period of the waves is still 11.9 ns. In addition,
the TE and TM modes remain in antiphase within each indi-

FIG. 2. Time series of experimentally observed square waves
showing TM and TE modes of ��a� and �b�� laser 1 and ��c� and �d��
laser 2.

FIG. 3. Time series of experimentally observed asymmetric
square waves, showing TM and TE modes of ��a� and �b�� laser 1
and ��c� and �d�� laser 2.
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vidual laser. However, the TE and TM on phases are no
longer equal in duration. For example, the TM wave in Fig.
3�a� is on for only 4.3 ns and thus has a duty cycle of 0.36,
whereas the accompanying TE mode in Fig. 3�b� lasts 7.6 ns
�duty cycle 0.64�. Furthermore, the situation is reversed for
Figs. 3�c� and 3�d�, so unlike the nearly identical TM square
waves in Figs. 2�a� and 2�c�, Figs. 3�a� and 3�c� are now
dissimilar. For these data, the coupling is reduced to 46.6 %,
but other experimental conditions remain the same.

The self-consistency of this asymmetric solution requires
that the TE and TM modes of each individual laser be in
antiphase, and any TE pulse in one laser must induce a simi-
lar TM pulse in the other laser a time � later. The waves in
Fig. 3 display these characteristics. The two pairs of signals
�Figs. 3�a� and 3�b�; Figs. 3�c� and 3�d�� are in antiphase. In
addition, the TE wave in Fig. 3�b� is reproduced with a delay
of � in the TM wave in Fig. 3�c�, and the same applies to
waves in Figs. 3�d� and 3�a�.

The duty cycle can be changed continuously via experi-
mentally accessible controls: coupling strength and pump
currents. If the coupling is too weak or the pump currents too
dissimilar, the system cannot maintain square-wave opera-
tion. To illustrate this effect, Fig. 4 shows five time series at
different values of I2 while I1 is fixed at 34.5 mA. Rather
than showing all four polarization modes as in the two pre-
vious figures, Fig. 4 presents only the TE mode of LD2 for
visual clarity. The coupling strength is 62.8%. The currents
for Figs. 4�a�–4�e� have values of 33.5, 33.8, 34.1, 34.5, and
34.8 mA, respectively. The lowest and highest duty cycles
shown are 0.18 and 0.84, respectively. All of these wave-
forms have stable duty cycles over several minutes in the
absence of external perturbations. Outside of this range of
currents the duty cycle approaches 0 or 1.

We use a set of six rate equations to model the system of
two EELs crosscoupled by TE to TM injection. The equa-
tions for each individual laser are similar to those used by
Heil et al. �15� but are expressed in dimensionless form �16�
for the complex TE and TM fields Eh and Ev, respectively,

and the carrier density Z. The two different lasers are de-
noted by subscripts 1 and 2. The coupling of each laser’s TE
mode into the other’s TM mode is described with time-
delayed terms in the equation for E1

v and E2
v. The coupled

laser equations then are

dEn
h

dt
= �1 + i��ZnEn

h + �n
h, �1�

dEn
v

dt
= �1 + i��k�Zn − ��En

v + �E3−n
h �t − �� + �n

v, �2�

T
dZn

dt
= Pn − Zn − �1 + 2Zn���En

h�2 + �En
v�2� , �3�

where n=1 or 2. The rapidly varying random forcing terms
�n

h�t� and �n
v�t� have zero mean and an autocorrelation func-

tion given by ��n
k�t��m

l �t���=2D�nm�kl��t− t��, where k , l=h
or v and n ,m=1 or 2. The dimensionless time t= t� /�h is
normalized by the cavity lifetime �h of the horizontal mode.
The gain parameter k=gh /gv is the ratio of the two gains, �

is the normalized feedback strength, and �= 1
2 �

gh�h

gv�v
−1�	0

represents the differential losses where �h and �v are the cav-
ity lifetimes of the horizontal and vertical modes, respec-
tively. The parameter � depends on both gains and losses but
is positive so that Eh is the fundamental lasing mode of both
lasers in the absence of feedback. The parameter � is the
linewidth enhancement factor and T=�s /�h is the ratio of the
carrier to cavity lifetimes. We assume that both lasers admit
the same values of the fixed parameters � and T but the
pump parameters P1 and P2 can be controlled independently.

Figure 5 shows numerical time series of the amplitude of
the fields A1

v,h= �E1
v,h� and A2

v,h= �E2
v,h�. Parameters used in

these simulations are T=100, �=3000, �h=2.5 ps, �=2,
�=0.03, k=1, P1= P2=1.0, and noise correlation 3.0
10−9.
For initial conditions we also use noise of the same correla-

FIG. 4. Experimental square waves with variable duty cycle as a
function of pump current. Only the TE mode of LD2 is illustrated
for clarity.

FIG. 5. Numerical solutions showing �An
v ,An

h� for ��a� and �b��
laser 1 and ��c� and �d�� laser 2 with �=0.31; A2

h with �=0.21
changes duty cycle �e�.
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tion over the interval −�� t�0. Graphs �a�–�d� are displayed
in the same order as in Fig. 3 and have �=0.31. The wave
forms are rectangular with asymmetry, as found experimen-
tally, and the period is equal to twice the time separation
between the lasers. Graph �e� shows A2

h for �=0.21 and re-
produces the effect of changing the asymmetry of the wave.
This is easily seen by comparing graphs �d� and �e�, guided
by the dashed vertical lines. In other simulations, increasing
Pn increases the on duration of En

h; the specific effect of
varying � depends on other system parameters.

Within each laser the TE and TM waves oscillate in an-
tiphase �An

h�0, An
v=0 and then An

h=0, An
v�0�, but between

lasers a timing relation exists for the TE and the injected TM
modes �An

v versus A3−n
h � as observed experimentally. This can

be understood by eliminating adiabatically En
v from Eq. �2�

and using the fact that Zn /���1 as in �17�. We find

En
v 	

�

�1 + i��k�
E3−n

h �t − �� , �4�

where n=1,2.
The square waves switch between two pure mode steady-

state solutions of Eqs. �1�–�3�, namely, �1� A1
h�0, A2

v�0,
A1

v=A2
h=0 and �2� A1

v�0, A2
h�0, A1

h=A2
v=0. This switching

is delayed between lasers by � due to the lag inherent in the
delayed driving terms. The square waveforms appear not to
be asymptotic states but are long transients that decay to
either of these steady states by slowly reducing the on dura-
tion of one of them. This essentially is the physical mecha-
nism responsible for the asymmetry in the on durations.
However, we have found that an appropriate amount of noise

contributes to the stabilization of these square-wave tran-
sients as observed in other laser systems �18�. In our simu-
lations, the duration of the square waves may persist �in real
time� from a few microseconds to milliseconds depending on
the initial conditions and the level of noise. Metastable re-
sponses where fast transition layers between plateaus are
slowly moving are known for delay differential equations
and have been studied in �19�. The stabilizing effects of noise
have also been analyzed in �20�.

In summary, we have experimentally observed
polarization-modulated rectangular pulse trains with variable
duty cycle in a system of two EELs, mutually coupled
through orthogonal optical injection of each laser’s TE mode
into the other’s TM mode. The TE and TM waves within
each individual laser are in antiphase, and the TE mode of
one laser leads the TM mode of the other by a time delay �
equal to the one-way photon time of flight in the external
cavity. Numerical simulations reproduce the polarization
modulated square waves and highlight the role of noise in
stabilizing the waves. Both experiments and numerical simu-
lations indicate variable duty cycles as a function of the cou-
pling strength and pump current and the details will be docu-
mented elsewhere.
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