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Abstract Over the last fifteen years, a series of theoretical and
experimental investigations have demonstrated the usefulness
of circular geometries to tailor second-order nonlinear optical ef-
fects. However, until recently, such effects have remained rather
weak, calling for their enhancement. In parallel, developments
in the field of high quality factor spherical or ring resonators
have shown that many different types of light-matter interac-
tions can be dramatically amplified when light is coupled in the
whispering gallery modes of such resonators. In high-quality
spherical micro-resonators, close to one million interactions can
occur between a nonlinear molecule and a circulating light pulse.
Recent research on nonlinear optics in spherical geometry is
reviewed, from micrometer-size spheres to whispering gallery
mode resonators.

Nonlinear optics in spheres: from second harmonic
scattering to quasi-phase matched generation in whispering
gallery modes
Gregory Kozyreff1,*, Jorge Luis Dominguez-Juarez2, and Jordi Martorell2,3,*

1. Introduction

In nonlinear optics, quadratic effects require the inversion
symmetry to be broken. This can happen either in the bulk
of crystals lacking that symmetry or at the interface be-
tween two media. In the latter configuration, any molecule,
fluorescent or non-fluorescent, can in principle exhibit a
second-order nonlinear response to an optical signal. Such a
response, however, is usually extremely weak and requires
one to match the phase velocities of the interacting waves.
Traditionally, birefringent non-centrosymmetric inorganic
crystals have been used to efficiently up- or down-convert
the frequency of an incoming laser beam. To match the
phase velocities, an alternative route to birefringence is to
introduce a periodic modulation of the index of refraction
in the same direction as the beam propagation leading to
what is known as quasi-phase matching [1]. Birefringence
and quasi-phase matching have been effectively used to ob-
tain laser light at almost any frequency within the ultraviolet
(UV), visible, and infrared ranges. There are, however, many
other applications that would benefit from a mechanism ca-
pable of generating light from a non-fluorescent source, but
cannot afford to be implemented in dense matter, birefrin-
gent, or non-centrosymmetric configurations. Over the last
fifteen years, a large body of research conducted involving

circular geometries has completely renewed the perspective
on tailoring second-order nonlinear light generation.

1.1. Second harmonic scattering from small
spheres

In 1995, it was proposed and experimentally demonstrated
that the use of dielectric spheres with diameters close to
one wavelength of the generated wave and coated with
a nonlinear material could obviate the need to use non-
centrosymmetric materials at a macroscopic scale [2, 3].
The electric field vector at the entrance side of the sphere
would interact with molecules that point at a given direction.
At the exit of the sphere, both field and molecules would
have changed orientation, making the second harmonic (SH)
signal on both sides add constructively. Such a, to a certain
extent, naive picture of the nonlinear interaction on a sphere
surface was confirmed by the results of a model that con-
sidered SH scattering in the Rayleigh-Gans-Debye approx-
imation (see below) from single spheres whose diameter
was close to the wavelength of light [4]. Second harmonic
generation (SHG) was configured in two large lobes on
the scattering plane symmetrically located relative to the
forward direction. Such characteristic features of the SH
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Figure 1 Experimental SH scattering intensity (counts/10s) as
a function of scattering angle (in degrees) for a suspension of
polystyrene spheres with adsorbed malachite green on their sur-
faces. (Reprinted with permission from [7]. © 2001 American Phys-
ical Society.)

scattering from small spheres could not be made apparent in
the first experimental observation because it considered an
ordered three-dimensional array of many spheres, otherwise
known as a colloidal or photonic crystal [2–5]. Surprisingly,
although generation from disordered distributions of spheres
was already considered late in 1996 [6], it was not until
2001 when vanishing SH scattering in the direction of the
incoming field, together with the lobe structure predicted by
the modified Rayleigh-Gans-Debye model, were observed
experimentally [7]. The experimentally recorded radiation
diagram is shown Fig. 1.

Parallel to the experimental work, an increasing inter-
est developed in the theoretical study of the second-order
nonlinear interaction in circular geometries. Early work on
the subject was limited to the study of small spheres, i.e.
limited to ka� 1, where k and a are the fundamental wave
number and sphere radius, respectively. In this Rayleigh
limit, the dipole and quadrupole radiations are of the same
strength for the SH, and the SH intensity was predicted to
scale as �ka�6 [8–10]. This suggested that a very effective
conversion could be obtained if large spheres were to be con-
sidered. Unfortunately, calculations for arbitrary sizes (Mie
scattering) reported in 2004 indicated that when the size
parameter ka� 1, the scattering efficiency begins to deviate
from the Rayleigh-based theory [11]. Past this value, the
scattering efficiency grows slowly with the size parameter
and exhibits several resonances somehow similar to those
found in the linear Mie scattering theory. Theoretical studies
of two-dimensional circular geometries that considered a
Mie-type solution arrived at similar conclusions [12, 13]. A
simpler approach than the full Mie scattering theory, the non-
linear Rayleigh-Gans-Debye theory assumes that the index
contrast between the sphere and the surrounding medium
is sufficiently small such that the fundamental field inside
the sphere is an unperturbed plane wave [4, 7]. This yields
manageable expressions for the SH power for spheres with
ka� 1, which are consistent with the Rayleigh theory of [8]
when ka � 1 and agree well with experiments [7]. The
approach was recently applied to finite cylindrical parti-
cles [14]. The nonlinear Wentzel-Kramers-Brillouin theory
is the first-order correction of the Rayleigh-Gans-Debye
theory in the index contrast. It still assumes that the funda-
mental field inside the sphere is a plane wave of constant

amplitude, but undergoes a phase shift as it goes through
the second half of the sphere [15]. Recently, a systematic
experimental investigation of SH scattering as a function of
size parameter was conducted with polystyrene spheres [16].
The trend observed experimentally agreed well with the pre-
dictions of the nonlinear Mie scattering theory and, also,
with the nonlinear Wentzel-Kramers-Brillouin model. On
the contrary, the Rayleigh-Gans-Debye theory was found
to be strongly inaccurate for ka larger than 1. The study
also showed that, for a given solid angle detection window,
generation was maximized when the size parameter was be-
tween 3 and 5; beyond 5, it gradually decreased with some
more or less pronounced oscillations.

1.2. Photonic crystal strategy to enhance
scattered SHG

To enhance the signal from a single sphere, one of the strate-
gies is to add coherently the SH light scattered from more
than one sphere. In this respect, it is a fortunate fact that
large concentrations of nanometer-size polystyrene spheres
in water self-organize in an fcc crystalline lattice forming a
colloidal or photonic crystal. From such an ordered struc-
ture, it is possible to take advantage of the refractive index
dispersion at the edges of the photonic band gap. Indeed,
if the SH frequency is tuned close to the low-frequency
edge of the band, the effective index decreases. On the other
hand, the fundamental frequency usually lies far from any
photonic band and, therefore, propagates as if traversing a
homogeneous medium (an exception to this rule is found
in Ref. [17]). In 1970, Bloembergen and Sievers proposed
this effect as a way to achieve phase matching, and indeed
a peak of SHG could be clearly identified when measured
from an ordered distribution of coated spheres [5]. Such
a structural phase matching mechanism was also used for
SHG using opals made of silicon spheres [17] or to en-
hance third harmonic generation from opals of polystyrene
spheres [18].

To increase the surface nonlinearity, crystal violet (CV)
molecules were chemically bound to carboxylic groups on
sphere surfaces [19]. The negatively charged surface sul-
fate groups were not screened by the positively charged
nonlinear molecules and very good quality nonlinear col-
loidal crystals could be formed. CV exhibits a relatively
large nonlinearity when deposited on a glass substrate. Each
CV molecule contains three aromatic rings that, when the
molecule is at an interface, bend to form a tetrahedron [20]
that occupies a volume of approximately 0.02 nm3. This
tetrahedron could be linked to the second-order nonlinear
response of the molecule. A weak, but visible to the naked
eye, SH beam was generated from a 200 μm thick macro-
scopically centrosymmetric material [21]. Yet, molecular
absorption, sphere size dispersion, and structural defects in
the crystalline lattice proved to be limiting factors to reach
quadratic growth of the SHG versus the colloidal crystal
path length [22]. To achieve the goal of light generation from
a small number of non-fluorescent molecules, an alternative
configuration that would take advantage of the symmetry
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breaking at the surface but that would not be limited by
strong absorption or scattering was needed.

1.3. SHG in whispering gallery modes

Parallel to the study of the nonlinear interaction in small
spheres, there has been an increasing interest in enhancing
such nonlinear interaction by taking advantage of the high
quality factors of spherical micro-resonators when light is
coupled into the whispering gallery modes (WGMs). Pio-
neering work in the field considered, first, discs instead of
spheres [23–25]. In such a geometry, a quasi-phase match-
ing mechanism could be implemented by periodically poling
a lithium niobate slab, which was polished down to a 3 mm
diameter disc [26]. An alternative to quasi-phase match-
ing is a modal phase matching that was implemented in a
silica toroidal ring micro-resonator for third harmonic gen-
eration [27]. These configurations are interesting in terms
of the fabrication of micrometer-size solid-state devices
for light generation, but they would present similar handi-
caps as the photonic crystal mentioned above if one were
to consider them for the detection of molecules that could
be highly absorptive at the wavelength of interest. Coating
microsphere surfaces with nonlinear molecules is a more
versatile alternative [28, 29]. In such a configuration, only
the evanescent tail of the electromagnetic field coupled into
a WGM would interact with the nonlinear absorptive mole-
cule. The rest of the field would travel within a highly trans-
parent medium, such as fused quartz. Such a configuration
poses many challenges, an important one being the ability to
implement a phase matching or quasi-phase matching mech-
anism in order that the contribution from each round trip of
the light beam would add coherently with the contribution
from the previous one. As opposed to a small sphere, where
phase matching within the sphere plays a little or no role
at all [16], a high-Q cavity-enhanced interaction demands a
phase matching or quasi-phase matching mechanism. Fur-
ther challenges arise if a pulsed operation is considered,
such as a group velocity dispersion that would quickly lead
to a walk-off between the fundamental and SH waves. An-
other important question associated with micro-resonators
is how to efficiently couple light into them. Most often, an
eroded or tapered fiber is used, which must be carefully
designed and positioned to inject a maximum amount of
light into the micro-cavity [30–38]. For a recent and general
review on the physics and applications of WGM resonators,
we refer readers to the authoritative papers by Matsko and
Ilchenko [39, 40].

This review continues with two sections that discuss
the theory and experimental issues related to second-order
effects with WGMs. Section 2 presents a heuristic approach
to account for the nonlinear interaction when the fields are
coupled in WGMs. The various options for phase matching
are discussed and predictions useful for implementing an
adequate configuration to obtain an effective quasi-phase
matching are proposed. In Sect. 3, we discuss practical ex-
perimental issues related to the generation and observation
of SH waves with WGMs, eventually leading to a detectable

change in SHG by less than 100 molecules attached to the
surface of a microsphere. Finally in Sect. 4, we discuss some
opportunities of applications afforded by the latest advances
in second-order effects with WGMs.

2. Theory for SHG with WGMs

As depicted schematically in Fig. 2, light in a WGM is
concentrated near the equator of a spherical cavity. A fully
vectorial theory of the nonlinear interaction of WGMs based
on Maxwell’s equations is given in [28]. In this section, we
provide a shorter, plausible theoretical treatment by per-
forming slight readjustments of the usual textbook theory
of nonlinear wave mixing. A similar approach is followed
in [41] to describe SHG in micro-ring AlGaAs resonators.

Figure 2 (online color at: www.lpr-journal.org) Sketch of WGM
intensity distribution within a sphere. WGMs are characterized
by orbital numbers l � 1 and l��m� � O�1�, p � O�1�, where
m and p are the azimuthal and radial numbers, respectively. The
number of intensity maxima in the radial direction is given by p;
likewise, l��m��1 is the number of intensity maxima in the polar
direction near the equator. (a) Radial number p � 1, m � l; (b)
p � 1, m � l�1; (c) p � 2, m � l; (d) p � 2, m � l�1.

In view of Fig. 2a, let us first assume that the electric
field can locally be written as

E � α1�s� t�eik1s�iω1t �α2�s� t�eik2s�iω2t � c.c. � (1)

where αi are slowly varying amplitudes and s is a tangent
coordinate. With this ansatz, and for a suitable normalization
of αi, one easily arrives at the coupled wave equations [42]�

∂
∂ t

� v1
∂
∂ s

�Γ1

�
α1 � iχ�2�α2α�

1 e�iΔk s�iΔωt (2)

�
∂
∂ t

� v2
∂
∂ s

�Γ2

�
α2 � iχ�2�α2

1 eiΔk s�iΔωt
� (3)

where vi are group velocities, Γi are loss coefficients, and

χ�2� is the appropriate component of the nonlinear suscepti-
bility tensor. Furthermore,

Δk � 2k1� k2 � Δω � 2ω1�ω2 � (4)
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Hence, phase matching is locally achieved by making Δk �
0, which, for plane waves, means conservation of linear
momentum.

Next, let us express the fact that waves follow closed
trajectories along a sphere of radius a and that the frequen-
cies ωi are resonant. We do this by imposing the periodic
boundary conditions

αi�2πa� t� � αi�0� t� � (5)

Integrating (2) and (3) with respect to s over the sphere
circumference then yields

∂α1

∂ t
�Γ1α1 �

i

2πa

� 2πa

0
χ�2�α2α�

1 e�iΔk s�iΔωtds (6)

∂α2

∂ t
�Γ2α2 �

i

2πa

� 2πa

0
χ�2�α2

1 eiΔk s�iΔωtds � (7)

Finally, if the nonlinear interaction is sufficiently weak, the
amplitudes αi vary only little over the distance 2πa. Hence,

to first order in χ�2�, we may neglect spatial variation of αi
in the integrals above and, eventually, we obtain

dα1

dt
�Γ1α1 � iκ�α2α�

1 eiΔωt (8)

dα2

dt
�Γ2α2 � iκα2

1 e�iΔωt � (9)

where

κ �
1

2πa

� 2πa

0
χ�2�eiΔk sds (10)

is the coupling constant between the fundamental and SH
modes.

Equations (8) and (9) form a typical model for nonlin-
ear wave mixing in microspheres and other circular res-
onators [23, 43–46], which can easily be generalized to

larger sets of modes. Four-wave mixing mediated by χ�3�

can obviously be treated along the same lines. From the
above discussion, the natural description of SHG in spheres
is in terms of coupled modes, rather than free-propagating
waves. To obtain an efficient energy conversion between the
modes, the resonance condition Δω � Γ1�Γ2 should be met.
On the other hand, phase matching now arises through an
integral expression of the type given in (10) for the nonlin-
ear coupling constant κ between modes. A lack of phase
matching would result in a vanishing κ . Finally, if Δk �� 0,

Eq. (10) also suggests ways to engineer a space-varying χ�2�

to obtain a non-zero κ .
However, the above expression for the coupling con-

stant is clearly overly simplified. Indeed the plane waves
ansatz exp�ikis� in (1) can at most be a locally valid rep-
resentation of the modes circulating in the sphere. In the
course of propagation, wave vectors necessarily change di-
rection, eventually performing a complete rotation over a
round trip. Moreover, (1) cannot describe more complex
field distributions such as in Figs. 2b–d.

A more natural representation of the field on a sphere
than plane waves [47], the spherical harmonics Ylm�θ �ϕ� are

the functions that subtend WGMs. In analogy with the quan-
tum states of hydrogenoid atoms, l and m are referred to as
the orbital and azimuthal numbers, respectively, of an elec-
tromagnetic mode. Among the Ylm’s, those that correspond
to intensity distribution as in Fig. 2 are such that l� �m� � 1,
l��m�� O�1� [32, 48]. In that limit, all components of the
electric field tend to be proportional to Ylm [28, 32]. Hence,
if �lm� and �LM� correspond to the fundamental and SH,
respectively, the correct expression for the coupling con-
stant is

κ �

��
χ�2�Y �

LMY 2
lm sinθdθdϕ � (11)

Above, χ�2� is an appropriate combination of the compo-
nents of the nonlinear susceptibility tensor, which depends
on the precise vectorial structure of the electric field [28]. In
the case where two fundamental modes �l1m1� and �l2m2�
are excited and the sum-frequency is generated, (11) be-
comes

κ �

��
χ�2�Y �

LMYl1m1
Yl2m2

sinθdθdϕ � (12)

Hence, if χ�2� is uniform,

κ ∝
��

Y �

LMYl1m1
Yl2m2

sinθdθdϕ � (13)

and it vanishes unless the quantum rules for angular momen-
tum composition are satisfied [28, 29, 45, 49]:

M � m1�m2 � �l1� l2� � L� l1� l2 � (14)

In addition, conservation of parity with respect to the equator
θ � π�2 requires that L� l1� l2 be even.

Aside from the angular dependence given by Ylm�θ �ϕ�,
WGMs also have a specific radial dependence, given by
jl�nωr�c� inside the sphere, where jl�x� is a spherical
Bessel function [47], c is the speed of light in vacuum,
and n is the index of refraction. The conditions of continuity
of the tangent electric and magnetic fields at r � a yield
the characteristic equations for transverse electric (TE) and
transverse magnetic (TM) modes. A number of theoreti-
cal works have been devoted to solving these characteristic
equations in the large-l limit [50–53]. Especially useful is
the formula derived in [50, 51]:

ωl�p �
c

na

�
ν �αp

�ν
2

�1�3

�
B

�n2�1�
1�2

�
� (15)

where ν � l�1�2, αp is the pth root of the Airy function
Ai��z�, and

B �

�
n for TE modes,

1�n for TM modes.

The index p constitutes a third, ‘radial’, number for the
sphere resonances, and effectively counts the number of
maxima in the intensity distribution along the radial direc-
tion (see Fig. 2). Equation (15) can also be used for discs
and toroidal cavities when m � l [26, 46]. Once a set of
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Figure 3 (online color at: www.lpr-journal.org) Quasi-phase
matching patterns proposed for (a,b) a disc and (c,d) a spherical
resonator [23,28]. For technical convenience, the poling patterns
(b) and (d) have been applied rather than (a) and (c) for the disc
and sphere, respectively. Note in (c) that the coherence length is
maximum at the equator and zero at the poles.

WGMs are found that satisfy the phase matching conditions
(14), one must ensure that the resonance condition

ωL�P � ωl1�p1
�ωl2�p2

(16)

is also met. For isotropic spheres, this generally requires the
radial number P of the SH to be larger than p1 and p2, to the
detriment of good radial overlap between the modes [28,29].
Such a difficulty was also reported with third harmonic
generation [27].

Quasi-phase matching can be achieved through periodic
modulation of the nonlinear susceptibility, as sketched in
Fig. 3. To find the coherence length along the equator, let
us restrict the integration in (11) to an angular sector of the
sphere with arc length � along the equator. For SHG with
l1� l2�m1�m2 � l and M � L, one easily finds

�κ �2 ∝ sin2

�
L�2l

2a
�

�
� (17)

Hence, the coherence length along the equator is

�c �
πa

L�2l
� (18)

and along a parallel of polar angle θ , it is given by

�c�θ� �
πa

L�2l
sinθ � (19)

In these expressions, both L and l are functions of the fun-
damental and SH frequencies through (15). Given a modu-
lation half-period � of the nonlinear susceptibility, optimal

Figure 4 (online color at: www.lpr-journal.org) Coupling effi-
ciency as a function of sphere radius a and fundamental vacuum
wave number k from (17) for �� 8�8 μm.

sphere size and optical frequency can be chosen by plot-
ting (17), as in Fig. 4. With this method, fundamental radial
numbers P� p � 1 can be selected, and optimal mode over-
lap can be achieved. As seen in Fig. 4, when the radius
of the sphere changes, the locus of optimal conditions for
SHG bends. This bending, which is more apparent when
the sphere radius is small, is a consequence of the modal
effective index dispersion. A periodic pattern based on this
length would compensate both the material index dispersion
and the modal effective index. Note from (19) that, away
from the equator, the coherence length decreases, being
maximum at the equator and zero at the poles. The periods
of the optimal quasi-phase matching pattern thus resemble
the curved surface of an orange slice, as shown schemati-
cally in Fig. 3. Recently, more complicated poling patterns
were considered in relation to a toroidal cavity both theoreti-
cally [54] and experimentally [55] with the aim of a broader
tunability.

Finally, in [24] and [41], it was recognized that the effec-
tive nonlinear susceptibility could vary along the azimuthal
coordinate for an AlGaAs crystal. Indeed, the polarization
of the electric field varies with the position along the equa-

tor, while the crystal axes do not. This modulates χ�2� by
a factor cos�2ϕ� � cos�2s�a� in (12), which can be made
to yield phase matching if the radius a is suitably chosen.
More recently, the same approach was used for difference-
frequency generation [56].

3. Experiments

3.1. Fabrication of nonlinear WGM resonators

To fabricate a nonlinear micro-resonator having a ring or
spherical shape is not a straightforward task. Such a task
is less demanding if third-order instead of second-order
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nonlinearity is considered. In the former case a lack of
inversion symmetry is not required and there are several
examples where this has been achieved successfully [57].
One may use very isotropic material configurations such as
micrometer-size liquid droplets [58]. However, to efficiently
couple to WGMs it is more appropriate to use a solid-state-
based technology. Visible third-harmonic generation has
been achieved using toroidal micro-ring resonators [27].
Those rings were fabricated on oxidized silicon wafers in
a four-step procedure that included photolithography per-
formed to create disc-shaped photoresist pads, immersion
in buffered HF solution at room temperature to etch a sil-
ica disc, exposure to XeF2 gas for the purpose of isotropic
selective removal of silicon and to obtain the silica disc on
a pillar, and irradiation with a CO2 laser to melt the pe-
riphery of the silica disc to turn the edges of the disc into
a toroid [59]. If such wafer-based processing were to be
applied to a non-centrosymmetric crystal, the stoichiome-
try and lack of inversion symmetry would most likely be
lost in the last step where melting of the material is re-
quired. Ilchenko et al. proposed the fabrication of toroidal
ring micro-resonators by diamond polishing of the rims of
flat LiNbO3 discs less than 1 mm thick. The mechanical
polishing applied was such to allow one to reach quality
factors as high as 2�108 [23, 26], and even higher quality
factors were reported with more transparent materials, such
as Al2O3 and CaF2 [60]. With diamond polishing, surface
roughness below 0.2 nm can now be obtained [61].

An alternative option for the fabrication of nonlinear
circular micro-resonators is to combine melting-based fab-
rication for the resonator with subsequent deposition of a
nonlinear material in such a way that non-centrosymmetry
is preserved. It is possible to obtain a nearly perfect mi-
crosphere attached to a thin stem by melting the end of a
commercial optical fiber [62]. The nonlinear material can
then be deposited by simply dip-coating the surface of the
sphere with a mono-molecular layer of nonlinear molecules.
In the work reported in [63], an entire sphere together with
its holding stem were immersed in a 1-propanol solution in
which CV molecules were dissolved. Removing the stem
and sphere from the solution at a constant speed of 1 mm/s
produced a very homogeneous, one-molecule-thick, layer
coating with a surface density that was proportional to the
concentration of CV in the 1-propanol solution. This pro-
portionality was confirmed by coating a set of flat substrates
using the same technique with CV concentrations varying
between 10�5 and 8� 10�5 M. Measuring the absorption
peak at 597 nm of these samples and using the estimated
CV cross-section of �11�5�0�3��10�16 cm2 at this wave-
length, the number of molecules per unit surface could be
determined. Fig. 5 illustrates the linear dependence of the
surface concentration on the molarity of the dip-coating
solution. This linear law can safely be extrapolated to con-
centrations below 10�4 M. This procedure offers a simple
and effective way to tune the surface nonlinearity of nonlin-
ear micro-resonators.

Finally, high-Q silicon [64] and AlGaAs [65] micro-disc
resonators have been fabricated. These have the advantage
of being suitable for telecommunications wavelengths and,

Figure 5 (online color at: www.lpr-journal.org) The number of
CV molecules per unit surface times the cross-section of CV as
a function of the molar concentration of the solution used for a
coating layer. Inset: absorbance spectra for three monolayers
representative of the eight monolayers prepared.

in the case of AlGaAs, of displaying particularly large non-
linear coefficients. The cavities envisaged in [24, 41, 56]
have a relatively small radius of 3.5 μm. This is necessary
to achieve a sufficiently fast modulation of the effective
nonlinear coefficient.

More details on the fabrication of WGM resonators can
be found in [39].

3.2. Phase matching and quasi-phase matching
of WGMs

For isotropic spheres, the frequency dispersion relation (15)
of WGMs only allows phase matching between modes hav-
ing different radial numbers [27–29]. On the other hand, for
birefringent materials, type-I phase matching is possible,
as was demonstrated by Fürst et al. with a LiNbO3 disc
resonator. They managed to achieve both (14) and (16) ex-
perimentally with P� p1� p2 � 1 for SHG [49] and optical
parametric oscillation [66]. In their setup, the pump wave
was a TM mode; it was thus polarized in the equatorial
plane, with ordinary index of refraction. In contrast, the SH
signal was a TE mode, polarized in the polar direction and
subjected to extraordinary index of refraction. Because of
the differential response of the two indices, phase matched
WGMs could be brought into resonance by either applying
a bias voltage to the cavity or controlling the temperature.
Another approach was followed by Savchenkov et al., who
tuned the frequency dispersion of WGMs through the thick-
ness of a disc-shaped LiNbO3 resonator [46]. With an appro-
priate thickness, a given set of phase matched modes could
again be made resonant. On the other hand, with four-wave
mixing, mediated by a third-order nonlinearity, it is possible

© 2011 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.lpr-journal.org
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to parametrically generate a signal and idler waves with
frequencies very close to those of the pump waves. The bulk
index of refraction thus varies sufficiently little between
the various frequencies that the frequency mismatch can be
compensated by the Kerr effect [67, 68].

Quasi-phase matching consists of periodically distribut-
ing the nonlinear material. Such a periodic pattern must be
composed of alternated domains, the arc length of which
being exactly one coherence length of the corresponding
nonlinear interaction. This coherence length is given for the
case of spherical resonators in Eq. (19) as a function of the
polar angle.

The first domain configuration to achieve quasi-phase
matching in a disc-type cavity was proposed by Ilchenko et
al. [23]. In the optimal configuration such a flat disc would
have to be poled with domains distributed symmetrically
with respect to the center of the disc, as shown in Fig. 3a. In
other words, the arc length of each domain at a distance a
from the center would be equivalent to πa�Δm, where Δm is
the azimuthal number mismatch. A more practical, if less ef-
ficient, solution proposed in the same paper is to have poled
stripes as in Fig. 3b. This can be obtained with commercially
available periodically poled nonlinear crystals. With such a
poling geometry, a WGM experiences a nonlinear grating
with varying period. This configuration was implemented
successfully to achieve parametric frequency doubling in a
millimeter-size toroidal cavity made of periodically poled
LiNbO3 [26] (see Fig. 6). Later on, the poling technique
was improved by maneuvering a micrometer-size electrode
along the crystal surface, making it possible to inscribe
almost any desired poling pattern in that material [69].

Figure 6 (online color at: www.lpr-journal.org) Fundamental
transmission spectrum of a LiNbO3 cavity (top) and SH emission
spectrum (bottom). (Reprinted with permission from [26]. © 2004
American Physical Society.)

When the nonlinear material is only covering the surface
of the resonator it is, in principle, possible to achieve a peri-
odic grating with the correct pitch. Recently, it was shown
that the nonlinearity of molecular layers deposited on a flat
surface could be quenched at will using an electron beam

gun [70]. Exploiting this effect, periodic χ�2� patterns were

inscribed on flat molecular films by means of a scanning
electron microscope. From such gratings it was possible
to measure SH diffraction patterns where the relative in-
tensity of the diffraction orders observed agreed with the
expectations for a sheet of nonlinear dipoles with a periodic
modulation. However, no linear diffraction was seen, indi-
cating that the procedure followed did not induce a periodic
modulation in the real part of the refractive index. This tech-
nique was applied to obtain a nonlinear periodic grating on
a portion of the surface of a microsphere [63]. The pattern
inscribed was designed from the domain distribution that
was determined from the phase matching condition obtained
from an equation similar to Eq. (19). In general, patterning a
non-flat surface would require xyz scanning in additional to
rotational motion of the sphere. Indeed, to achieve a domain
distribution covering the entire sphere, as the one shown
in Fig. 3, would require a rotation of the sphere along the
stem that holds it. In [63], the problem was circumvented
by pattering only one-quarter of the sphere. This limited
the conversion efficiency, but allowed one to demonstrate
that the curved pattern designed yielded a SH peak at the
spectral position predicted by the phase matching condition.
The role played by phase matching for surface SHG in the
WGMs was demonstrated by tuning the fundamental wave-
length in a 100 nm spectral range. As shown in [63] and
in Fig. 7, the SH signal peaks at the predicted wavelength
of phase matching with a narrow bandwidth of just a few
nanometers. The phase matching wavelength could be de-
termined from Eq. (18) where the parameters used were the
actual experimentally measured ones. As reported in [63],
the sphere radius was accurately measured from a scanning

Figure 7 (online color at: www.lpr-journal.org) SHG as a function
of half the wavelength of the fundamental wave when the pump
wavelength is centered at 800 nm (blue spheres) and when cen-
tered at 900 nm (red spheres). The vertical dotted lines indicate
the wavelength for the quasi-phase matching condition calculated
using Eq. (18) and the experimentally measured values for the
corresponding grating half-periods �c and sphere diameter. Lines
between experimental points are guides for the eye.
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electron microscopy image taken before writing the grating
on the sphere. While in [63] the fundamental wavelength
was close to 800 nm, we have used for the purpose of this
review an optical parametric oscillator (OPO) to shift the
fundamental wavelength to around 900 nm. In that case, the
radius of the sphere was 124 μm and the grating pitch close
to 10.2 μm. The phase matching peak obtained was broader
than with the original laser-pumped sphere. This is due to
the OPO output, which is broadened by 27 nm relative to
the original laser pulse.

3.3. Pulse walk-off compensation

To reach measurable SH power levels when the nonlinear
material is confined to an ultrathin surface layer or film, a
pulsed generation is preferable to a continuous wave (CW)
one. Indeed, while intensities of the order of 107 W/cm2

can be reached inside a micro-resonator with a CW pump,
peak values up to 1010 W/cm2 can be attained with pulses.
An additional advantage when using pulses stems from the
broader bandwidth of them, which enables light coupling
into several ‘l’ modes of the sphere, making phase matching
more easily compatible with energy conservation. On the
other hand, different group velocities for the fundamental
and SH waves result in a temporal walk-off, meaning that
the overlap of two 150 fs pulses is lost after a few tens of
micrometers. Hence, with radii of approximately 180 μm,
pulse overlap can be lost well before a single cavity round
trip is completed. To circumvent this problem, the pump
pulses should be stretched, to ensure permanent overlap as
shown schematically in Fig. 8. This pulse stretching can
be done with the same tapered fiber that is used to couple
light into the WGMs of the circular micro-resonator. In the
experiment in [63], 140 m of an optical fiber loop placed in
between the entrance of the fiber and the tapered coupling

Figure 8 (online color at: www.lpr-journal.org) Schematic view
of pulse walk-off in a microsphere when the pulses are coupled
into the WGMs. The yellow area represents the region of overlap
between the fundamental (red) and SH (blue) pulses when such
pulses are stretched (solid lines) relative to the original pulses
(dotted lines) which do not overlap.

region was found to yield optimal stretching. The resulting
pulse length was close to 20 times the sphere perimeter.
Given the interaction within a spherical cavity, overlap was
preserved, no matter the distance traveled by the pulses.

3.4. Out-coupling the nonlinear generated light

Typically, pump laser light is coupled into a micro-resonator
using either a prism coupler or, more often, a tapered optical
fiber. In an up-conversion process, the tapered coupler is de-
signed for efficient coupling of the infrared pump. Although
this coupler is not phase matched in the visible region, typ-
ically it does allow enough coupling of the up-converted
radiation back to the fiber for then to be measured at the exit
tip of the fiber [27]. To make such a process more efficient,
Carmon et al. recently developed a wide band (850 nm) fiber
coupler to a whispering gallery cavity with ultrahigh qual-
ity factor [38]. It consisted of a bent-taper coupler whose
design was intended to match closely toroidal whispering
galleries. This, in turn, endowed the device with enhanced
coupling bandwidth. The key idea of the proposed device
was to provide a more symmetrical coupling geometry in
which a tightly bent coupling mimicked the form factor
(for dispersion) of the toroidal whispering gallery. Efficient
input coupling to micro-toroid resonators over spans as
large as 850 nm was demonstrated. This enhancement was
achieved, in part, by compromising the output coupling effi-
ciency and overall ideality, which was not as high as for the
tapered fibers. Nonetheless, this compromise could result
in acceptable output coupling efficiency over very broad
wavelength spans. Alternative approaches may consider a
dual-fiber coupling system where two taper couplers are
placed tangentially at the opposite sides of the equator of
a microsphere [8]. One serves as the input coupler and the
other as the output coupler. This last approach, however, has
not yet been implemented to out-couple light at double the
frequency relative to the input light. It has also been sug-
gested that thinning down the taper may prevent coupling
of the up-converted light to a high-order transverse mode
and consequently increase the coupling efficiency in the
visible or UV generated light relative to the infrared pump.
However, when using high peak power laser pulses, thinning
down the taper may lead to an intense white light genera-
tion. Such white light would mix with the up-converted light
which could no longer be filtered to be detected at the exit
end of the coupling fiber. In that event, the Rayleigh scat-
tered light from defects at the surface of the sphere could
be collected, appropriately filtered, and detected separately
from any other background light. Measuring up-conversion
in WGMs from scattered light has been carried out success-
fully [27, 63].

3.5. SHG from a small number of molecules

The possibility to tailor the configuration of a nonlinear ma-
terial separately from the specificities of a micro-resonator
has allowed, very recently, the demonstration of SH light
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Figure 9 (online color at: www.lpr-journal.org) Sequence of
1 s UV flashes (horizontal axis). Left-hand side (LHS) of Eq. (20)
where the variables correspond to the experimentally measured
intensities (left vertical axis and red spheres). The background
noise intensity is subtracted from the measured intensity and then
this difference is divided by the reference input intensity to ensure
a dimensionless logarithmic argument. The number of molecules
on the surface is determined using Eq. (21), N0 � 506, and α � is
determined from the linear fit to the first four experimental data
points (right vertical axis and green dots). Linear fit to the first four
experimental data points (red dotted line). Linear fit to the last four
experimental data points (blue dashed line).

generation from a very small number of molecules [63].
As we will discuss later in Sect. 4, this may have relevant
implications for sensing devices meant to detect low concen-
trations of small molecules. The procedure used in [63] was
to coat a microsphere resonator with low-concentration so-
lutions of CV molecules and then inscribe a periodic grating
following the electron beam technique described in Sect. 3.2.
Such a nonlinear resonator was placed in the experimental
setup where short light pulses from an amplified Ti:sapphire
laser were coupled into the WGMs of the sphere. Then,
a UV disinfection flashlamp was shone at 1 s intervals to
degrade the CV molecules until the SH signal measured
was down to noise level. In Fig. 9, the SH light intensity is
shown as a function of the number of UV flashes. Given
a background SH intensity noise Ibg and an initial number
N0 of active molecules, the measured SH intensity I2ω is
related to the fundamental pump intensity Iω by [63]

ln

�
I2ω � Ibg

Iω
��α �t� ln

�
N0

�
β Iω

�
� (20)

where Ibg is the background signal noise at the SH frequency
not coming from the molecules, α �

� αIuv (where Iuv is the
UV intensity at the sphere surface), t is the illumination
time, and α and β are constants of proportionality to ensure
dimensional consistency. The slope of such a linear curve
is directly linked to the rate at which the nonlinear activity
of the molecules is destroyed by the UV lamp. Indeed, the
number of molecules that remain active on the surface can

easily be shown to evolve as

N � N0e�α �t
� (21)

As described in Sect. 3.1, the surface density of CV mol-
ecules can be deduced from the molarity of the coating
solution. Provided that the interaction surface region is lim-
ited to the portion of the sphere surface where the periodic
grating simultaneously overlaps with the two interacting
waves, the initial number of molecules participating in SHG
is calculated to be 506�9. In the last UV flash before the
signal goes down to noise level, 75 molecules are destroyed.
As shown in Fig. 9, the signal-to-noise ratio amounts to a
dispersion in the number of molecules close to 50, imply-
ing that approximately 50 to 100 molecules are needed to
measure a change in the SH light. This result confirms the
relevant role played by such high-Q microspheres. By com-
parison, when molecules are deposited on a flat transparent
substrate, using laser pulses with a peak intensity very close
to the damage threshold of the substrate or molecules, one
would typically need 1010 molecules to obtain a measurable
signal.

4. Conclusion and outlook

The study of nonlinear optical processes, especially those
of second order, in spherical geometry has led to the re-
examination of the question of phase matching. This is
particularly relevant for large circular geometries forming
WGM resonators. It was gradually realized that the usual
rule of linear momentum conservation gives way to angular
momentum conservation, with the same selection rules as
those found in quantum mechanics.

Very recently, two new significant steps towards the
control of the nonlinear interaction in ring or spherical res-
onators were made. The former led to the enhancement of
the nonlinear interaction in the bulk of the resonator [49,66],
and the latter achieved quasi-phase matched nonlinear sur-
face interaction [63]. Based on these results, several interest-
ing advances are in view. On the one hand, perfectly phase
matched nonlinear interaction can be used to design highly
efficient OPOs. On the other hand, WGMs can be used to
nonlinearly sense the presence of small quantities of a given
substance which may be deposited on the surface of the
resonator.

The recent demonstration of low-threshold parametric
oscillation opened the door to the development of com-
pact, stable, low-power tunable spectroscopy sources with
narrow linewidth. The high Q of the WGM interaction in
such sources may find useful applications in quantum op-
tics where a large ratio for the nonlinear interaction when
compared to losses or other sources of noise is essential.
Parametric down-conversion using sub-threshold paramet-
ric oscillators and parametric amplifiers has been a very
successful strategy for the generation of quantum optical
states such as squeezed light [71, 72], entangled photon
pairs [73], and heralded single photons [74]. It is natural to
ask what advantages nonlinear micro-resonators may offer
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for these applications in quantum optics. While quantum
state generation is beyond the scope of this review, we make
some general observations. Parametric down-conversion is
almost always performed in a low-gain regime, often with
optimum gain found between a tenth and a half of the thresh-
old for oscillation. As such, low-threshold oscillators may
enable the realization of quantum optical sources with ex-
tremely low pump powers [66, 75]. At the same time, the
degree of squeezing is often limited by losses, either within
the resonator or on collection/out-coupling. High Q and
large coupling efficiencies of micro-resonators are thus es-
pecially attractive for squeezing applications, while low-loss
coupling into fibers may make practical the distribution of
highly squeezed states over large distances. Experiments
with entangled pairs can also benefit from low thresholds.
While these photon counting experiments are far less sensi-
tive to losses, they are highly sensitive to background from
other processes [76]. For this reason, the practical applica-
tion to quantum light generation may depend on features of
the resonator and nonlinear material not directly related to
the nonlinear process itself. A survey of the many difficulties
encountered in generating squeezed states is given in [77].
Aside from quantum optics, Fürst et al. [66] suggested other
areas of physics where low-threshold WGM OPOs might
find applications, such as to investigate the rich dynamic
phenomena in the far-above-threshold regime or to combine
the optical nonlinearity with optomechanics.

The quasi-phase matched SHG in WGMs from mole-
cules on the surface of a sphere may prove to be very ef-
fective as a sensing mechanism. A versatile sensing device
must be capable of detecting label-free or unmarked objects,
exhibit a high sensitivity, and be able to distinguish positive
signals coming from the object to be detected from signals
triggered by other unwanted objects present in the environ-
ment of the device. Label-free detection can be achieved
when the property on which the sensing device is based is
shared by many different types of objects. As indicated in
the introduction, generation of light via a quadratic non-
linear process is rather universal since all forms of matter
may be used, in principle, to generate a SH. SHG has al-
ready been applied successfully for label-free multichannel
biosensing [78] and also to detect the signal from very small
nitrate molecules at an interface [79]; such molecules are
difficult to visualize with other optical systems.

To reach large sensitivities, in some optical devices one
may take advantage of an optical cavity configuration that
would allow for the light to interact elastically many times
with the object to be detected. The number of interactions
is simply given by the ratio of the photon cavity lifetime to
the round-trip time, which can be computed as

QΔνfsr

2πν
�

where Δνfsr is the free-spectral range and ν is the frequency
(in Hz). This is, essentially, the cavity finesse. Such a num-
ber becomes close to one million when microsphere res-
onators with Q factors of 108–109 are used. The pioneering
use of WGMs in microspheres for sensing considered the
detection of proteins adsorbed on the surface of the spheres.

The resulting increase of the resonator volume leads to a
larger optical path along the equator, and hence to a de-
tectable red-shift of the WGM resonances [80–82]. It has
been noted that the power dissipated by a molecule could
also result in a resonance shift through the thermal depen-
dence of the refractive index in the sphere. This thermo-optic
effect is distinct from the reactive effect described in [80],
which is power-independent. However, attempts to increase
the sensitivity with the thermo-optic effect have produced no
reliable results, and a recent theoretical comparison between
the two mechanisms, thermo-optics and reactive, concluded
that no significant enhancement could be obtained from the
thermo-optic effect [83]. Measuring the resonance shift was
also applied to detect other types of single objects, such as
the influenza A virus [84] and nanospheres [85]. As for the
detection of single objects, at the time of writing, maximum
sensitivity can be achieved when a thermally stabilized ref-
erence interferometer is used in conjunction with a WGM
microcavity [86].

For all such configurations to be effective in a detection
device for a given small object, there must be a mechanism
or design capable of distinguishing the object to be detected
from another one that, if bound to the sensing area of the
device, would produce a similar signal to that of the object
to be detected. Binding sites selective to the object to be
detected are typically used to prevent unwanted molecules
or objects from attaching themselves to the surface of ring
or spherical micro-resonators.

As discussed above, any object attached to an interface
can be used for SHG enhancement owing to the lack of
inversion symmetry of the interface. Labeling of the object
with, for instance, a fluorescent chromophore is not required.
To enhance the effectiveness of light generation, it is not
a condition for the molecules to be large. For instance, an
acceptor-donor character would also enhance the nonlinear
interaction. For the sake of comparison, 100 of the mole-
cules used in [63] and in Sect. 3.5 occupy a volume that
is approximately three orders of magnitude smaller than
the nanoparticles used in [86]. At the moment, in terms of
concentration, resonance shift-based systems present a clear
advantage, while SHG-based ones are more suitable for the
detection of extremely small objects.

The quasi-phase matching mechanism required to ob-
tain effective SHG provides in itself the means to avoid the
detection of unwanted objects. To sense a specific type of
molecule by SHG using microsphere resonators, one would
have to cover them with a monolayer surface of molecular
sites where the specific molecule to be detected would bind.
To obtain enhanced quasi-phase matched SHG, one would
have to previously periodically pattern such a monolayer of
sites, as shown schematically in Fig. 10. This could be per-
formed using electron beam periodic patterning [87] similar
to that implemented in [63]. In such a way, molecules would
bind more effectively to the proper stripes on the sphere
surface and quasi-phase matching would be possible. Note
that, even in the case where single-molecule detection is
considered, the same periodic patterning is necessary. Oth-
erwise, if the molecules were to be adsorbed anywhere on
the surface, the contribution from a given molecule would
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Figure 10 (online color at: www.lpr-journal.org) Schematic
representation of a microsphere prepared for sensing suspended
molecules (orange). The sites (red) where the molecules bind are
periodically patterned to achieve phase matched SHG. The SH
signal coupled out of the resonator would increase progressively
as molecules bind to the sites.

be cancelled by the contribution from another molecule sep-
arated a distance equivalent to twice the coherence length.
When the surface is patterned, if unwanted highly nonlinear
molecules are adsorbed anywhere on the surface, the SHG
from these molecules would remain down to noise level as
was demonstrated in [63]. Note that, except for very specific
radii and conditions, the contribution from the resonator
surface would not be phase matched. Such a contribution
could not grow even if the value of Q were high.

There are, still, many issues to be resolved before SHG
in WGMs can be effectively used in very sensitive sensing.
For instance, work must be done on reducing the area aspect
ratio between the sensitive part of the sphere surface and the
one that does not contribute to sensing. A possible path to
markedly reduce the molecular concentration needed for de-
tection might be by forming arrays of spheres, which would
be coupled to each other in order to enhance the sensitivity
to concentration, forming what could be named an optical
nose. We see, however, that the work performed over the
last fifteen years in the field of SHG in circular geometries
and WGMs in ring or spherical micro-resonators has laid
the foundations for the development of such new types of
sensing devices with unsurpassed detection sensitivity.

Finally, as commented above, the interest in nonlinear
optics in ring or spherical micro-resonators is not limited to
sensing. Fundamental aspects of physics, such as quantum
state entanglement or cavity-enhanced nonlinear interac-
tions, are still to be found in such circular geometries.
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[19] A. Molinos-Gómez, M. Maymó, X. Vidal, D. Velasco, J. Mar-
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