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a b s t r a c t

Pancreatic �-cells originate from gut endoderm during development. Pancreatic endocrine cells represent
about 10% of the mature pancreatic cells, and �-cells represent the majority of endocrine cells. �-cells
secrete insulin in response to elevation of nutrient concentrations. Insulin maintains glucose homeostasis
by stimulating glucose uptake into muscle and adipose tissue. Aquaglyceroporin 7, permeable to water,
glycerol and urea, is expressed in pancreatic �-cells and was recently described as being involved in the
control of insulin secretion.

© 2010 Elsevier Ltd. All rights reserved.

Cell facts

• Pancreatic �-cells are endocrine cells which comprising
∼1–2% of the total cell mass of the pancreas, and ∼65–85%
of the Langerhans islets cells.

• Pancreatic �-cells synthesize, store in secretory granules and
secrete insulin in response to rising concentration of circu-
lating glucose.

• Aquaglyceroporin 7, a water and glycerol permeable protein
channel, is expressed by pancreatic �-cells.

1. Introduction

Paul Langerhans, during his MD thesis, made a famous histo-
logical discovery: the pancreatic islets, groups of small polygonal
cells with an almost perfect homogeneous content (Langerhans,
1869). It was not until 1893 that Edouard Laguesse postulated that
these cells might produce an endocrine secretion. This secretion
was later supposed to regulate sugar in the bloodstream. In 1922,
insulin was isolated from islets of Langerhans by Frederick Banting
and John Macleod (Bliss, 1982).

Pancreatic �-cells derive from gut endoderm during develop-
ment. In mature pancreas, endocrine and exocrine cells account
respectively for 10% and 90% of total cells. The function of pancreatic
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�-cells is to release insulin in response to increase nutrients such
as glucose, amino acids, and fatty acids. Subsequent insulin release
then stimulates glucose uptake principally in muscle and adipose
tissue, to maintain glucose homeostasis. Recently, aquaglycero-
porin 7 (AQP7), permeable to water as well as glycerol and urea,
was shown to be expressed in pancreatic �-cells. Consequently,
the role of AQP7 in the insulin secretion process was investigated.
Diabetes is characterized by abnormal regulation of blood glucose
levels. Type 1 and type 2 diabetes result respectively, from the loss
or the impaired function of pancreatic �-cells. Due to the high
prevalence of diabetes worldwide, understanding the control of
insulin secretion and pancreas development is crucial to develop
new therapeutic approaches.

2. Cell origin and plasticity

During vertebrate development, three germline layers emerge
after gastrulation: the ectoderm, mesoderm and endoderm. A series
of coordinated signalling events and regulatory transcriptional cas-
cades play crucial roles in pancreas patterning, originating from the
gut endoderm and progressing to the adult organ (Gittes, 2009; Puri
and Hebrok, 2010). By E15.5, fate specification of all differentiated
cells types forming the mouse adult pancreas has been under-
gone (Jørgensen et al., 2007). During the formation of the complex
three-dimensional branched structure of the pancreas, endocrine
precursors delaminate from the epithelium and clusters, while cells
remaining within the epithelium adopt exocrine fates (Puri and
Hebrok, 2010). Mature pancreas consists of 90% of exocrine cells
and 10% of endocrine cells. Exocrine cells comprise acinar cells,
synthesizing and secreting digestive enzymes, and ductal cells,
releasing mostly fluid (McManaman et al., 2006). Endocrine cells
are a compound structure termed islet of Langerhans. Islets of
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Langerhans are made of a majority of insulin-producing �-cells sur-
rounded by glucagon-producing �-cells, somatostatin-producing
�-cells and pancreatic polypeptide-producing PP cells.

After birth, the rate of �-cell mass expansion, governed by the
rates of new �-cells formation and �-cells loss, slows down. A better
understanding of the mechanisms involved in �-cell expansion has
contributed to the identification of a whole set of distinct signaling
pathways and molecules that can be used as potential target to
allow in vitro and in vivo proliferation of �-cells (Puri and Hebrok,
2010; Dhawan et al., 2007). Generation of �-cells can be achieved by
exocrine-to-endocrine transdifferentiation (Baeyens and Bouwens,
2008), differentiation of stem and progenitors cells (Dhawan et al.,
2007; Puri and Hebrok, 2010).

Both insulin and insulin like growth factor (IGF) signalling
pathways through insulin receptor substrate proteins (IRS) play
important roles for proper maintenance and functioning of beta
cells (Kubota et al., 2000). The latter is essential for the transmission
of intracellular signalling from the insulin receptor to downstream
pathways and transcriptional regulation.

Recently, it has been demonstrated that glucose effect on beta-
cells growth and survival requires activation of insulin receptors
(Assmann et al., 2009). Likewise, IRS1 and IRS2 seem to play critical
roles in beta cells mass, as supported by IRS1 or IRS2 knockout mice
(Burks and White, 2001).

3. Functions

During postprandial periods, �-cell insulin secretion is stim-
ulated by elevated plasma glucose, free fatty acids (Nolan et al.,
2006) and amino acids concentrations (Sener and Malaisse, 2002).
Insulin secretion is required to maintain glucose homeostasis by
promoting glucose uptake principally by muscle and adipose tissue.

In current models of stimulus-secretion (i.e. insulin) cou-
pling, �-cells are featured as electrically excitable fuel sensors
under hormonal and neural control. Stimulus-secretion coupling
models emphasize the role of mitochondrial metabolism, ATP-
sensitive potassium channels (KATP channels), calcium influx and
increase in cytosolic calcium concentration (Henquin and Meissner,
1984). In addition to this triggering pathway, an amplifying path-
way, increasing triggering calcium stimulated exocytosis, is also
involved in insulin secretion (Henquin, 2009).

Unlike epithelial cells, �-cells are not likely to be exposed to
important changes in extracellular osmolarity. However, alter-
ations in intracellular osmolarity and cell volume are likely to occur
in response to transport and intracellular metabolism of substrate
and metabolites. It has been shown that �-cell volume increases in
response to an increase in glucose concentration (Miley et al., 1997).
Importantly, cell volume was shown to profoundly influence the
activity of �-cells. Indeed, exposure of �-cells to hypotonic extra-
cellular solutions induce cell swelling, activating volume-regulated
anion channel (VRAC) and cell membrane depolarization, leading to
activation of voltage-sensitive calcium channels, allowing calcium
entry, and thereby insulin exocytosis (Best et al., 1996; Drews et al.,
2010).

Independently of the origin of �-cell swelling, e.g. exposure
to hypertonic extracellular medium or hypertonic intracellular
medium, aquaporins are likely to play a role in cell swelling. Aqua-
porins are membrane water channels of about 28 kDa possessing
six transmembrane domains and two repeating Asn-Pro-Ala (NPA)
sequences motifs, present in the first intracellular and third extra-
cellular loop, involved in the formation of the water pore (Agre,
2004). The thirteen mammalian aquaporins cloned so far can be
classified into three subfamilies according to their permeability:
(1) aquaporins: exclusively permeable to water (AQP1, AQP2, AQP4,
AQP5, AQP6, AQP8); (2) aquaglyceroporins: permeable to water as

Fig. 1. AQP7 expression in rat pancreatic islets and BRIN-BD11 cells. (A and D) RT-
PCR detection of AQP7 mRNA. (B and E) AQP7 detection of expression by Western
blot. (C) Double fluorescent immunolabelling of AQP7 expression in rat pancreatic
�-cells. AQP7 labelling, in green, overlaps with that of insulin, in red.

well as small solutes such as glycerol and urea (AQP3, AQP7, AQP9,
AQP10); and (3) aquaporins with unusual NPA motifs and per-
meability remaining controversial (AQP11, AQP12) (Agre, 2004).
Aquaglyceroporin AQP7 is expressed in mouse (Matsumura et al.,
2007) and rat (Best et al., 2009) �-cells and pancreatic �-cell
line BRIN-BD11 (Delporte et al., 2009) (Fig. 1). Pancreatic �-cells
from AQP7 knockout mice display reduced size, mass, insulin con-
tent, and increased rates of basal and glucose-stimulated insulin
secretion (Matsumura et al., 2007). Furthermore, �-cells from
AQP7 knockout mice also showed increased glycerol and triglyc-
eride contents, increased glycerol kinase activity and decreased
forskolin-induced glycerol release through cAMP lipolysis stimu-
lation (Matsumura et al., 2007). Based on the analysis of AQP7
knockout mice, the role of AQP7 in pancreatic �-cells insulin
secretion is summarized in Fig. 2. Isoosmotic addition of glyc-
erol to the extracellular medium of normal rat �-cells induced
in �-cell the sequential swelling, VRAC activation, membrane
depolarization, electrical activity and concomitant insulin release
(Best et al., 2009) (Fig. 3). The effects of glycerol, in contrast to
urea, persist throughout exposure to osmolytes. Moreover, glyc-
erol activates �-cells even when added hyperosmotically in the
extracellular medium. These data suggest that �-cell activation
by glycerol is the results of its transport into the cells as well
as an additional action concomitant to glycerol metabolism (Best
et al., 2009). In BRIN-BD11 cells, glycerol uptake occurs rapidly
and is higher when cells are submitted to hypotonic extracellu-
lar medium or to medium deprived of 50 mM NaCl but enriched
with 100 mM urea, compared to isoosmotic medium. Insulin output
was concomitantly higher in BRIN-BD11 cells exposed to hypo-
tonic extracellular medium or to medium deprived of 50 mM NaCl
but enriched with 100 mM urea or 100 mM glycerol, compared to
isoosmotic medium. Furthermore, an inhibitor of VRAC, 5-nitro-2-
(3-phenylpropylamino)benzoate, suppress insulin output induced
by medium deprived of 50 mM NaCl but enriched with 100 mM
urea or 100 mM glycerol. These data confirm that under extracel-
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Fig. 2. Role of AQP7 in pancreatic �-cells based on the analysis of AQP7 knockout
mice. AQP7 knockout mice display increased glucose entry, increased intracellu-
lar glycerol and triglycerides (TG) concentrations, decreased intracellular insulin
concentrations, increased insulin secretion. Increased intracellular glycerol concen-
trations induce increased glycerol kinase (GK) activity. Glycerol kinase promotes
re-esterification of glycerol and accelerates TG accumulation. Increased glucose
capitation contributes to increased glucose metabolization by glycolysis.

lular isotonicity, both glycerol and urea rapidly enter BRIN-BD11
cells, inducing cell swelling, subsequent VRAC activation, mem-
brane depolarization, calcium entry, increase cytosolic calcium
concentration and insulin secretion (Delporte et al., 2009). The role
of glycerol and AQP7 in insulin secretion corroborates with the
observations made in AQP7 knockout mice (see above; Matsumura
et al., 2007). Under pathophysiological conditions, rise in local
intracellular glycerol concentration may result from either inten-
sive starvation concomitantly to glycerol entry, insulin increase
that downregulates AQP7 expression (Kishida et al., 2001; Kondo

et al., 2002), or genetic alteration of AQP7 gene leading to non-
functional or decreased AQP7 expression (see below). Furthermore,
rise in local intracellular glycerol/glycerol metabolites concentra-
tions may occur during insulin resistance leading to increased
blood glucose. Indeed, glucose-stimulated insulin secretion has
been shown to correlate with �-cell lipolysis (Mulder et al., 2004;
Winzell et al., 2006). Lipolysis will increase both intracellular glyc-
erol and fatty acids, the latter being necessary to support insulin
secretion (Yaney and Corkey, 2003). Glucose oxidation will acceler-
ate production of glycerol-3P. These events will lead to an increase
in glycerol/glycerol metabolites and may therefore induce the
observed in vitro glycerol effect (Best et al., 2009). Furthermore, the
downregulation of AQP7 expression by insulin (Kishida et al., 2001;
Kondo et al., 2002) will be sustained and mimic thereby the mouse
AQP7 knockout situation. Clarification of timing and metabolic
steps/metabolite(s) involved in these processes will require further
studies. For example, conditional knockout of AQP7 in pancreatic �-
cell should provide an additional tool to determine the role of AQP7
and glycerol in the process of insulin secretion under physiological
conditions.

4. Associated pathologies: �-cells and diabetes

Diabetes results from either loss (type 1) or impaired functions
(type 2) of which pancreatic �-cells are involved. As a consequence,
abnormal regulation of blood glucose levels and significant com-
plications occur. According to the World Health Organization, the
prevalence of diabetes reached about 180 millions of people world-
wide in 2000, and is expected to double by 2030. Approaches
aiming at improving �-cell replacement therapy have focused on
finding the most suitable progenitor cell capable of generating
functional �-cells in large number: �-cells themselves, embryonic
or adult stem cells, or other cell types that can undergo repro-
gramming (such as exocrine-endocrine transdifferentiation) (Puri
and Hebrok, 2010; Baeyens and Bouwens, 2008; Dhawan et al.,
2007).

Fig. 3. Sequential events leading to insulin exocytosis in response to glycerol entry via AQP7. (A) Glycerol enters �-cells via AQP7 (1). (B) Glycerol entry causes cell swelling
(2). (C) Cell swelling activates VRAC channels with concomitant Cl− exit (3). (D) Cl− exit induces membrane depolarization (4). (E) Membrane depolarization stimulates
voltage-sensitive calcium channel and calcium entry into the cell (5). (F) Increased intracellular calcium concentration induces insulin exocytosis (6).
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Pancreatic beta cells are sensitive to attack by reactive oxygen
or nitrogen species (ROS or RNS) and contribute to gluco- and lipo-
toxicity in the development of diabetes. Furthermore, isolations
of islets for transplantation undergo detrimental oxidative stress.
Consequently, the addition of a redox modulation strategies could
be a beneficial clinical approach for islets preservation for islets
transplantation (Sklavos et al., 2010).

AQP7, controlling glycerol transport, plays a key role in insulin
secretion. Two AQP7 knockout mice display hyperinsulinemia
(Matsumura et al., 2007; Hibuse et al., 2005, accompanied (Hibuse
et al., 2005) or not accompanied (Matsumura et al., 2007) by
hyperglycemia. In a third AQP7 knockout mice model, insulin and
glucose concentration have not been determined (Hara-Chikuma
et al., 2005). Finally, a fourth AQP7 knockout mice model displays
normal glycaemia, while insulinemia has not been determined
(Skowronski et al., 2006). The existence of different AQP7 knock-
out mice phenotypes may be attributed to the different genetic
backgrounds of the mice. In Japanese subjects, the frequency of
missense mutations (R12C, V59L, G264V) and silent mutations
(A103A, G250G) of AQP7 were not associated with the phenotype
for diabetes or obesity, despite the absence of glycerol transport
in a subject with the G264V mutation (Kondo et al., 2002). More
recently, it was shown that a single-nucleotide polymorphism in
the human AQP7 promoter region (A-953G) resulted in a decreased
C/EBP-� DNA binding and AQP7 expression in adipose tissue from
obese individuals (Prudente et al., 2007). Furthermore, this poly-
morphism is associated with increased risk of type 2 diabetes in
women (Prudente et al., 2007). Concerning the possible existence
of a relationship between the level of AQP7 expression and obesity
and type 2 diabetes, data remain controversial. Indeed, decreased
AQP7 expression in adipose tissue was observed in severe obe-
sity (Ceperuelo-Mallafre et al., 2007), while no relationship was
found between AQP7 expression in adipose tissue and the pres-
ence of glucose abnormalities in morbid obesity (Miranda et al.,
2009; Catalan et al., 2008). No modification (Ceperuelo-Mallafre
et al., 2007), or an increase in AQP7 expression was observed in
adipose tissue from patients with type 2 diabetes (Miranda et al.,
2010). Different pathological conditions involve different sets of
perturbed metabolic pathways and therefore the implication of a
single gene product cannot necessarily have the same impact in
all settings. Therefore, it remains difficult to assess if the AQP7
polymorphism (A-953G), AQP7 mutations, and/or AQP7 expression
level contribute to obesity and type 2 diabetes. Further studies will
hopefully validate or invalidate the hypothesis. Moreover, AQP7
regulation could become an attractive drug-target pathway for
therapeutic obesity and type 2 diabetes strategies.
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