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Abstract: This paper addresses the cell formation problem with alternative process plans and machine 
capacity constraints. Given alternative process plans, machine capacities and quantities of parts to produce, 
the problem consists in defining preferential process and routing for each part (grouping of operations into 
machines) optimizing machines grouping into manufacturing cells. The problem can be decomposed in 
two distinct sub-problems: operations grouping on resources, yielding flows between the machines, and 
grouping of these latter into independent cells. The objective of the proposed method is to optimize both 
groupings (operations on machines and machines into cell) minimizing of the inter-cellular moves. To 
solve simultaneously both grouping interdependent problems, we propose a modified grouping genetic 
algorithm (SIGGA). In our adapted grouping genetic algorithm, each chromosome is composed of two 
parts, one part for each problem. According to different application rates, the genetic operators are applied 
on the first, on the second problem, or on both problems. Finally, the population chromosomes 
simultaneously evolve in both problems. 

 

1. INTRODUCTION 

Cellular production systems are an important application of 
group technology, which consists in decomposing system 
into sub-systems and in grouping similar things together. 
Cellular manufacturing systems are based on the creation and 
the management of several production cells. These cells are 
composed by complementary machines placed as close as 
possible and dedicated to a product family. A principal 
problem for the implementation of these cells is precisely the 
cell formation problem. 

During the last years, the cell formation problem has been 
addressed in numerous works. Several methods have been 
presented and can be classified by different ways.  

Initially, the cell formation problem was really simplified and 
the methods used to solve the creation of product families 
were very simple (King 1980). With time, the problem has 
evolved with the data complexity. The authors took 
progressively into account new production parameters such 
as sequence operation (Gupta, 1993), cost (Choobineh, 1988), 
alternative process plans (Gupta 1993), part volumes 
(Logendran and al., 1994) , machine capacity 
(Sofianopoulou, 1999), labor-related factor (Suresh and 
Slomp 2001), flexibility (Defersha and Chen, 2006), … 
Suresh (Suresh and Slomp, 2001) proposes a classification 
and a review based on the parameters used for a more 
complex cell formation problem. 

Joines (Joines and al. 1996) presents a complete review of 
production oriented manufacturing cell formation techniques. 
They proposed a classification to group the resolution 
methods into different categories as:  

- Part Family identification methods (Classification and 
coding - Relational data bases) 

- Part-Machine grouping methods (Array based methods - 
Hierarchical clustering (similarity coefficient) - Non-
hierarchical clustering - Graph theory - Mathematical 
programming - Artificial intelligence - Search heuristic) 

Methods classified in the artificial intelligence are group into 
Neural Network (Mahdavi and al., 2007) Simulated 
Annealing method (Wu and al. 2008), Tabu Search 
(Logendran and al. 1994) or Genetic Algorithm.  

Genetic algorithms (GAs) are in order to explore and exploite 
a large space search to obtain a good solution. Many authors 
use them to solve a cell formation problem. Venugopal and 
Narendran (1992) and Onwubolu and Mutingi (2001) 
minimize the total cell load variation with a GA. Zhao and 
Wu (2000) and Uddin and Shanker (2002) used GA to solve 
a cell formation problem with alternative routes. Goncalves 
and al. (2004), Mahdavi and al. (2008) presented a method 
based on a genetic algorithm. 

As explained in the following section, the alternative process 
plans transform the grouping problem (machines into cells) in 
two grouping problems. The first one consists in allocating a 
machine for each operation. This machine must be able to 
achieve this operation (RP, Resource Planning problem). The 
second grouping problem tries to make independent cells in 
assigning a cell for each machine (CF, Cell Formation 
problem). This generalized problem is often treated by 
combining Artificial Intelligent methods with another 
heuristic. The resolution can be sequential, semi-
simultaneous or completely simultaneous. The sequential 
resolution finds a solution for the second problem based on 



     

the result found for the first problem or conversely (Gupta 
1993). The semi-simultaneous resolution is based on several 
iterations of the sequential resolution (Kasiligam and 
Lashkari 1991, Goncalves and Resende 2002). The 
simultaneous resolution permits to optimize both problems 
simultaneously.  

Nagi et al. (1990) proposed an (semi-simultaneous) iterative 
method solving the two distinct sub-problems: cell formation, 
tackled with a heuristic and routing selection, addressed with 
the Simplex method. The use of the simplex limits the size of 
the considered problem. Caux et al. (2000) proposed an 
approach based on simulated annealing and a branch-and-
bound algorithm in order to perform routing selection and 
inter-cellular moves minimization simultaneously. 
Sofianopoulou (1999) proposed an adapted simulated 
annealing-based heuristic. Vin and al. (2005) proposed a 
semi-simultaneous method based on a genetic algorithm to 
solve the selection of preferential routing. Given an operation 
assignment, a heuristic finds the “best” associated grouping 
of machines into cell.  

In this paper, we solve a cell formation problem with real 
alternative process plans. We propose a new adapted 
algorithm (SIGGA, Simultaneous resolution by a Grouping 
Genetic Algorithm) based on a grouping genetic algorithm 
(GGA) simultaneously to solve both problems:  

• The routing selection problem and the allocation of 
operations on a specific machine, yielding flows between the 
machines (resource planning problem with several constraints 
and criteria); 

• The grouping of machines into independent cells (cell 
formation problem). 

In the section 2 the problem is described with all used 
parameters and all used constraints. The mathematic 
formulation is exposed in the section 3. The proposed method 
based on the grouping genetic algorithm GGA and the 
different characteristics of the implementation are explained 
in section 4. A case study is presented in section 5, before 
concluding in section 6. 

2. DESCRIPTION OF THE PROBLEM 

2.1. Alternative Routes/Processes 

The Suresh and al.’s review (2001) does not make any 
distinction between different alternative process plans. First, 
Kusiak (1987) and Choobineh (1988) introduced the 
alternative routings in working with some duplicated 
machines. When the number of identical machines increases, 
types of machine can be defined. The process plan is 
represented like a sequence of machine type (Pr = {tm1, tm2, 
tm3}) where tmi represents the machine type i. Each type is 
composed of several machines able to achieve a type of 
operation. One process plan corresponds to alternative 
routings (=sequence of machines) (Askin et al., 1997); 
(Suresh and Slomp, 2001), (Yin and Yasuda, 2002), (Vin and 
al., 2005). 

Others authors (Kusiak, 1987); (Gupta, 1993); (Logendran et 
al., 1994); (Caux et al., 2000); (Adenso-Diaz, 2001) use 
several processes defined like a sequence of machines. (Pr1 = 
{m1, m2, m3}, Pr2 = {m3, m2, m6} where the product is defined 
by two process).  

The cell formation becomes more complex when the 
alternative process plans are used and when each process is 
defined like a sequence of the machine type (Pr1 = {tm1, tm2, 
tm3}, Pr2 = {tm3, tm2, tm6,} where the product is defined by 
two processes). To achieve each product, we need to choose 
which process is the best and for each operation, the best 
machine to manufacture it. The cell formation is reduced in 
the choice of process, the choice of routing in this process, 
and machine grouping into cells. Authors using these real 
alternative process plans are not frequent (Sofianopoulou, 
1999), (Uddin and Shanker, 2001). 

2.2. Notations 

Indices 

t Machines types index (TMt=Machine type t). t=1,2,..,nt 
m Machines index (Mm=Machine m).     m=1,2,..,nm 
i  Products index (Pi=Product i).    i=1,2,..,np 
j Process index (Prij=Process j of product i).    
j=1,2,..,npri 
k Operations index (Oijk=Operation k of process j of 
product i). k=1,2,..,noij 
c Cells index (cc=Cell c)    c=1,2,.., nc 

Parameters 

dm Availability of machine m. 
Qi Quantity of product i. 
Tijk Average operating time of operation Oijk. 
Tijkm Operating time if Oijk on machine m. 
nc Maximum number of cells. 
nmc Maximum number of machines in cell c. 

Necessary data and hypotheses are presented hereunder. A 
machine type has different capabilities in terms of operation 
types. Each machine m, unique, is characterized by an 
availability parameter dm, which is equal to its capacity value 
times its availability rate. Each machine belongs to at least 
one type and can belong to several types if it is a multi-
functional machine.  

Each product is defined by a set process (Process = a 
sequence of npri operations {oij1, oij2,…, oij npri}). Each 
operation is defined as an operation type that can be 
accomplished on one machine type (lathe, grinding machine, 
etc.). So each operation can be performed on all machines 
belonging to its type. The duration of each operation can be 
fixed for the considered machine type (average operating 
time, Tijk), or particularized to a specific machine (operating 
time, Tijkm). Each product has several potential routings 
available for a specific process. 

 

 



     

3. FORMULATION 

3. 1. Decision variables 

xij = 1 if process j of product i is used (= 0 otherwise). 
yijkm = 1  if operation Oijk is achieved on machine m (= 0 
otherwise). 
zmc = 1  if machine m is in cell c (= 0 otherwise). 

When the algorithm assigns an operation O123 to a specific 
machine M5, variable x12 is put at 1 to specify that process j 
of product i is used in the solution. This variable implies that 
all other variables x1j≠2 of the same product (P1) are put at 0. 
In this case, all operations belonging to P1j≠2 cannot be used 
in the grouping solution. To complete this notation, decision 
variable y1235 is also equal to 1. 

Decision variable zmc is used to compute moves between cells 
as a function of the assignation of machines in each cell. 

3.2 RP Constraints 
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Constraint (1) represents the process selection. As explained 
above, only one process can be chosen by product. Second 
constraint defines the machine charge. This charge cannot 
exceed the machine availability. Constraint (3) determines 
that an operation assigned to a specific machine must have a 
strictly positive operating time. Indeed, if a machine cannot 
achieve an operation, the operating time Tijkm of the operation 
Oijk on the machine Mm will be null. 

3.3. CF Constraints 
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Constraints (4) and (5) concern machine grouping into cells. 
The first one verifies that all used machines have been 
grouped. The second one confirms that each cell capacity is 
not exceeded. The maximum capacity can be different on 
each cell.  

3.4. Cost Function 
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The proposed method is a multicriteria method, but this paper 
is focused on one criterion: the minimization of inter-cellular 
moves. Equation (6) represents the move between two 
machines, m and n. It is computed on the basis of the sum of 
operating time to achieve on machine n for all products 
coming from machine m. This value can be computed when 
the first part of the chromosome is completed and the first 
problem is solved. To compute equation (7), the second part 
of the chromosome needs to be completed and a valid 
solution of cell assignment found. The intra-cellular moves 
into a cell c are the sum of moves between all machines 
assigned to this cell c. The total intra-cellular move is the 
sum of intra-cellular moves for each cell. The total moves can 
be different depending on process and routing choices. To 
compare two solutions and take into account this difference, 
the criterion to minimize is the relative inter-cellular moves 
(9). This criterion is the same as the maximization of the total 
intra-cellular move. 

The whole problem is solved with a SIGGA whose flowchart 
is illustrated in Fig. 1. This algorithm is an adaptation of the 
Grouping Genetic Algorithm (GGA) explained in next 
section. 

4. SIGGA 

4.1. Origins 

The genetic algorithms (GAs) are an optimization technique 
inspired by the evolution process of living organisms 
(Holland, 1975). The basic idea is to maintain a population of 
chromosomes, each chromosome being the encoding (a 
description or genotype) of a solution (phenotype) of the 
problem being solved. The worth of each chromosome is 
measured by its fitness, which is often simply the objective 
function value of the search space point defined by the 
(decoded) chromosome. Falkenauer (Falkenauer, 1998) 
pointed out the weaknesses of standard GAs when applied to 
grouping problems, and introduced the GGA, which is a GA 
heavily modified to match the structure of grouping 
problems. Those are the problems where the aim is to group 
together members of a set (i.e. find a good partition of the 
set). The GGA operators (crossover, mutation and inversion) 
are group-oriented, in order to follow the structure of 
grouping problems. 

We (Vin and al., 2005) presented an genetic algorithm in two 
steps. The used algorithm is based on a semi-simultaneous 
method. First, a population of RP solution 
(operation/machine) is initialized by a heuristic. Next, for 
each solution, a heuristic is applied to complete the 
chromosome with a valid solution for the second problem 
(machine/cell): machine grouping into cells. This method was 



     

good but for large scale problem, the heuristic can not find 
the best solution. Moreover, the method was limited to cases 
studies with alternative routings but with only one process 
(sequence of machine types).  

4.2. Description of the SIGGA 

The SIGGA (Simultaneous resolution by a Grouping Genetic 
Algorithm) is presented in the Fig. 1. 

This algorithm is based on a classical GGA. A population of 
chromosomes is initialized. Each chromosome represents a 
valid solution to both problems: the process selection and the 
assignment of each operation on a specific machine able to 
achieve it (Resource Planning Problem: operation/machine); 
the grouping of machine into independent cells (Cell 
Formation Problem: machine/cell). 

 

Fig. 1. Adapted SIGGA 

Both problems are interdependent because groups of the first 
problem are precisely the objects to group in the second 
problem. Our objective is to find a “good” solution for both 
problems (RP, Resource Planning, and CF, Cell Formation). 

A RP Heuristic initialized the first part of the chromosome 
while a CF Heuristic initialized the second part of each 
chromosome. These two heuristics generate only valid 
solutions respecting all hard constraints defined in section 
3.2. After this separated initialization, the fitness of each 
chromosome is completed with its evaluation. The best 
chromosome is saved. In order to evolve to the best solution, 
different genetic operators are applied after a specific 
selection (tournament strategy). These genetic operators are 
applied on the complete chromosome to make both problems 
evolve simultaneously. After the application of genetic 
operators, both parts of each chromosome are reconstructed. 
And a new generation is started. The algorithm stops when 
the maximum number of generation is reached or when the 
algorithm finds the solution without flow between cells. 

4.3. Coding of the chromosomes 

The coding of chromosome is similar to the Grouping 
Genetic Algorithm (GGA) presented by Falkenauer (1998). 
However, this encoding is doubled. More concretely, let us 
consider the following chromosome: 

ADBCEB:ADBCE: FFGFG:FG 

The chromosome encodes the solution for a double grouping 
problem where the first problem solution, composed by 6 
objects and 5 groups, can be written as  

A={0}, B={2,5}, C={3}, D={1} and E={4}. 

The second problem solution, composed of the 5 objects 
(equivalent to the groups for the first problem) and 2 groups, 
is: 

F={0,1,3}, G={2,4}. 

The visual encoding can be written as follows: 

{0}{2,5}{3}{1}{4}:{0,1,3}{2,4}. 

4.4. Initialisation 

Our heuristic is based on a first fit with a first random part. 
The different objects are treated in random order. The 
heuristic is decomposed in several steps: 

Step 1. Verify if the object can be used in order to respect the 
hard constraints with the actual solution in construction (one 
used process by product (RP), machine must be not empty to 
be grouped (CF)). 

Step 2. Create a new group with a variable probability equal 
to 

MaxGroups NbGroupsp
MaxGroups

−
=

 (10) 
where: MaxGroups = maximum of allowed groups for the 
problem, and NbGroups = actual number of used groups. 

Step 3. Find the first group able to accept the object in order 
to respect the hard constraints about capacity or compatibility 
(Capacity not exceeded (RP and CF), machine able to 
achieve the operation (RP)). If a group is found, the object is 
inserted. Otherwise, a new group is created to accept the 
object. 

4.5. Genetic operators 

The important point is that the genetic operators will work 
with the group part of the chromosomes, the standard object 
part of the chromosomes serving to identify which objects 
actually form which group. Note in particular that this 
implies that operators will have to handle chromosomes of 
variable length with genes representing the groups.  

The tournament strategy is chosen to rank the chromosomes. 
The chromosomes ranked in the top half will be used as 
parents for the crossovers and the resulting children will 
replace the chromosomes in the bottom half. 

The circular crossover get the population evolved. 

Step 1. A crossing site is randomly selected in each parent. 
Step 2. Groups selected by the crossing site of one parent are 
inserted at the second parent crossing site.  
Step 3. New injected objects have priority. So, the existing 
groups containing objects that are already in the inserted 
groups are eliminated.  
Step 4. The objects left aside are reinserted into the solution. 
It is the reconstruction phases. 

The mutation is the second operator applied to the 
population. The role of a mutation operator is to insert new 
characteristics into a population to enhance the search space 
of Genetic Algorithm. The idea is to randomly choose a few 



     

groups and to remove them from the solution. The objects 
attached to these groups are then reinserted into the solution.  

The chromosomes reconstruction is based on the flow 
computing. For the part RP the object/operation is inserted in 
the group/machine belonging to the cell with maximum flow. 
For the part CF the object/machine is inserted in the 
group/cell with maximum flow. If it is not possible because 
of the capacity constraint, object is inserted randomly. 

5. APPLICATION, CASE STUDY 

The algorithm has been tested with different case studies 
found in the literature. In this article, we will present the four 
case studies used by Sofianopoulou. The advantage of these 
four cases is that they represent a set of the different 
processes presented in the section 2. The implementation of 
the SIMOGGA algorithm for these problems is coded in C++ 
and run on a Bi-Xeon 3.60Ghz Hyper Threading with 1 Go 
RAM. 

For each problem, the solution is presented in a table where 
the cell composition is determined by the machines and the 
products assigned to each cell. When the product is written in 
parentheses in two cells, there are many moves in each cell. 
In this case, the product can be assigned independently to 
each cell. Furthermore, the selected process plan is defined in 
parentheses for each product with alternative process plans. 

5.1. Problem 1 

The first problem (P1) is an adaptation from Kusiak (1990) to 
take into account the processing sequence of each part and 
alternative routings (alternative machines sequences). We 
consider 5 products and 4 machines.  

The following solution is founded for a maximum cell size 
nmc=2. The index of the product defines the selected process: 
Cell 1 {Mach (1, 3)-Prod (22, 42, 52)} and Cell 2 {Mach (2, 
4)-Prod (11, 32)}. Same solution has been found by 
Sofianopoulou and Kusiak with a number of inter-cellular 
moves equal to 0.  

 

 

5.2. Problem 2 

The second problem has the same particularity as the first one 
except for the size. The algorithm tries to group 20 products 
and 12 machines into 3 cells. The maximum cell size is equal 
to 5. The following solution is founded for 500 generations 
and the corresponding runtime was about 3 seconds.  

Cell 1 {Mach (1, 4)-Prod (3, 15)};  
Cell 2 {Mach (2, 6, 7, 9, 10)-Prod (22, 4, 51, 8, 10, 122, 142, 
16, 19, 20 (6, 172))};  
Cell 3 {Mach (3, 5, 8, 11, 12)-Prod (1, 7, 9, 11, 18 (13))}. 

The solution contains the same number of inter-cellular 
moves (29) as the Sofianopoulou’s solution. However, the 
selected process plans for each product is not the same and 
the machines are not allocated into the same cell. The 
principal difference however with Sofianopoulou’s solution 
is the type of moves. In our algorithm, the cell formation 
heuristic is adapted to preferentially produce unidirectional 
moves. To simplify moves between cells, it is better to visit 
cell 1, cell 2 and cell 3 than to visit cell 1, cell 2 and to come 
back to cell 1. The proposed solution has 13 go-returns and 
16 simple moves between cells. Sofianopoulou’s solution has 
the opposite, 16 go-returns, and 13 simple moves. 

5.3. Problem 3 

Problem 3 is composed of 20 products and 14 machines (12 
machine types). Two machines are duplicated. Each product 
is characterized by a unique process sequence. The utilization 
of duplicate machines implies one or several routings 
(machine sequence) for each product. As for problem 2, cell 
size is limited to 5. The algorithm was run for 500 
generations in 6 seconds. The solution is presented 
hereunder.  

Cell 1 {Mach (1, 4, 7, 10, 13)-Prod (32, 4, 82, 102, 14, 152, 
202, (92, 132, 192))} 
Cell 2 {Mach (2, 3, 5, 6, 11)-Prod (11, 21, 5, 113, 161, 171 (63, 
92, 13))} 
Cell 3 {Mach (8, 9, 12, 14)-Prod (7, 122, 182, (192))}  

The same observations as for problem 2 can be done. The 
selected process plans are not equivalent but in this case, 
types of moves are equivalents. 

5.4. Problem 4 

Problem 4 is an application of the alternative process plans. 
Each product is defined by several processes (machine type 
sequence) and each machine type can contain one or two 
machines. This problem is composed by 30 products and 18 
machines regrouped into 16 machine types. For this problem, 
the cell size is limited to 7 machines by cell. The solution is 
founded with 500 generations in 12 seconds. The best total 
number of inter-cellular moves found by the algorithm is 32, 
less than Sofianopoulou’s solution (34).  

Cell 1 {Mach (1, 2, 7, 11, 13, 14, 15)-Prod (21, 41, 9, 111, 123, 
15, 25, 30 (11, 17))} 
Cell 2 {Mach (5, 8, 18)-Prod (83, 242, 296 (5))} 
Cell 3 {Mach (3, 4, 6, 9, 10, 12, 16)-Prod (33, 63, 7, 101, 131, 
14, 161, 18, 19, 20, 211, 22, 231, 261, 27, 28 (1, 17))}  

Sofianopoulou needed 100 seconds to solve these two last 
problems. The presented SIGGA is fast and efficient with all 
types of data in term of alternative process plans and 
alternative routings. 

8. SUMMARY 

In the present paper, an adapted multi objective grouping 
genetic algorithm has been developed to solve a double 
grouping problem. The algorithm SIMOGGA can solve 



     

simultaneously two grouping problems. It is particularized to 
the cell formation problem for manufacturing systems. We 
took into account the three most important production 
parameters in cell design: 

- The process sequence allows defining the flows between 
machines; 
- The production volume allows computing the real 
material moves between machines and between cells; 
- The use of real alternative process plans allows 
optimizing the cell formation. 

The algorithm is applied with one flow criterion to four case 
study used by Sofianopoulou. These four cases are a good 
variety of the different processes utilization. The algorithm is 
efficient with both high and low flexibility cases.  
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