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Abstract

In this paper we propose pricing bounds for European-style discrete arithmetic Asian basket options in a Black & Scholesframe-
work. We start from methods used for basket options and Asianoptions. First we use the general approach for deriving upper and
lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. (2000) or Dhaene et al. (2002a).
We generalize the methods in Deelstra et al. (2004) and Vanmaele et al. (2006). Afterwards we show how to derive an analytical
closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options
by applying techniques as in Thompson (1999a) and Lord (2006). Numerical results are included and on the basis of our numerical
tests, we explain which method we recommend depending on moneyness and time-to-maturity.

Key words: Asian basket option, sum ofnon-independentrandom variables, non-comonotonic sum
MCS:91B28, 60E15, 60J65

1. Introduction

In this paper we propose pricing methods for European-stylediscrete arithmetic Asian basket
options in a Black & Scholes framework.

We consider a basket withn assets whose pricesSi(t), i = 1, . . . , n, are described, under the
risk neutral measureQ and withr some risk-neutral interest rate, by

dSi(t) = rSi(t)dt + σiSi(t)dWi(t), (1)

where{Wi(t), t > 0} are standard Brownian motions associated with the price of asseti. Further,
we assume that the different asset prices are instantaneously correlated in a constant way i.e.

corr(dWi, dWj) = ρijdt. (2)

An Asian basket option is a path-dependent multi-asset option whose payoff combines the payoff
structure of an Asian option with that of a basket option. Theprice of a discrete arithmetic Asian
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basket call option with a fixed strikeK and maturityT onm averaging dates at current timet = 0
is determined by

ABC(n, m, K, T ) = e−rT EQ









n
∑

ℓ=1

aℓ

m−1
∑

j=0

bjSℓ (T − j) − K





+



 (3)

with aℓ andbj positive coefficients, which both sum up to1, and with(x)+ = max{x, 0}. For
T ≤ m − 1, the Asian basket call option is said to be in progress and forT > m − 1, we call it
forward starting. Throughout the paper we consider forwardstarting Asian basket options but the
methods apply in general.

Asian basket options are suitable for hedging exposure as their payoff depend on an average of
asset prices at different times and of different assets. Indeed, averaging has generally the effect of
decreasing the variance, therefore making the option less expensive. Moreover the Asian basket
option takes the correlations between the assets in the basket into account. Asian basket options
are especially important in the energy markets where most delivery contracts are priced on the
basis of an average price over a certain period.

Within a Black and Scholes [3] setting, no closed-form solutions are available for Asian basket
options involving the average of asset prices taken at different dates. Dahl and Benth value such
options in [6] and [7] by quasi-Monte Carlo techniques and singular value decomposition. But as
this approach is rather time-consuming, it would be ideal tohave accurate analytical and easily
computable bounds or approximations of this price.

In the setting of Asian options, an analytical lower and upper bound in the case of continuous
averaging is obtained by the methods of conditioning in [5] and in [17]. Thompson [19] used a
first order approximation to the arithmetic sum and derived an upper bound that sharpens those of
Rogers and Shi. Lord [15] revised Thompson’s method and proposed a shift lognormal approxima-
tion to the sums and he included a supplementary parameter which is estimated by an optimization
algorithm. In [16], Nielsen and Sandmann applied the Rogersand Shi approach to arithmetic Asian
option pricing by using one specific standardized normally distributed conditioning variable and
only in a Black & Scholes setting.Simon et al. [18] derived an easy computable upper bound for
the price of an arithmetic Asian option based on the results of Dhaene et al. [9]. Dhaene et al. [10]
and [11] studied extensively convex upper and lower bounds for sums of lognormals, in particular
of Asian options. Vanmaele et al. [24] used techniques basedon comonotonic risks for deriving
upper and lower bounds for stop-loss premia of sums of non-independent random variables, as ex-
plained in [14] and the already mentioned [10] and [11].Vanmaele et al. [24] improved the upper
bound that was based on the idea of Rogers and Shi [17], and generalized the approach of Nielsen
and Sandmann [16] to a general class of normally distributedconditioning variables. In [8] these
methods for Asian options were generalized to the case of basket options.

In this paper, we concentrate upon the derivation of bounds for Asian basket options. We start
with extending the methods of [8] and [24] to the Asian basketcase.
New is that also in the non-comonotonic case we are able to derive a simple analytical lower bound
and an upper bound based on the Rogers and Shi [17] approach.

Finally, we generalize the method of Thompson [19] and of Lord [15] to the Asian basket case.
In Thompson’s approach, we include an additional parameterwhich is optimized by using an op-
timization algorithm as in [15]. Numerical results are included and based on several numerical
tests, we give a conclusion which should help the reader to choose a precise bound according to
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the situation of moneyness and time-to-maturity that she isconfronted with.

The paper is organized as follows. In Section 2, we deal with procedures for obtaining the lower
and upper bounds for prices, by using the concept of comonotonicity as explained in [14], [10] and
[11], along the lines of [24] and [8]. In Section 3, we derive an analytical closed-form expression
for a lower bound in a non-comonotonic situation, which is then used to obtain the upper bound
in the Rogers and Shi approach. In Section 4, we generalize the upper bound based on the idea
of Thompson [19] and the approach of Lord [15] to discrete arithmetic Asian basket options. In
Section 5, we discuss the quality of all these bounds in some numerical experiments and give a
guideline of which bound to use in which situation.

2. Bounds based on comonotonicity and conditioning

In this section we generalize the bounds of [8] and [24] to theAsian basket case. In these pa-
pers the pricing of discrete arithmetic basket and Asian options are studied by using the notion
of comonotonicity, as explained in [14], [10] and [11]. Theyfurther improve the bounds by in-
corporating the ideas of Curran [5], Rogers and Shi [17] and Nielsen and Sandmann [16], and by
looking for good conditioning variables.

2.1. Comonotonic upper bound

Remark that the double sumS =
∑n

ℓ=1 aℓ
∑m−1

j=0 bjSℓ (T − j), showing up in equation (3), is a
sum of lognormal distributed variables and can be written as

S =
mn
∑

i=1

Xi =
mn
∑

i=1

αie
Yi (4)

with

αi = a⌈ i
m
⌉b(i−1) mod mS⌈ i

m
⌉(0)e

(r− 1
2
σ2

⌈ i
m ⌉

)(T−(i−1) mod m)
(5)

and

Yi = σ⌈ i
m
⌉W⌈ i

m
⌉(T − (i − 1) modm) ∽ N (0, σ2

Yi
= σ2

⌈ i
m
⌉(T − (i − 1) modm)) (6)

for all i = 1, . . . , mn, where⌈x⌉ is the smallest integer greater than or equal tox and

y mod m = y − ⌊y/m⌋m,

where⌊y⌋ denotes the greatest integer less than or equal toy. As explained in [11], given the
marginal distributions of the terms in a random variableS =

∑k
i=1 Xi, we shall look at the

joint distribution with a smaller resp. larger sum, in the convex order sense. In particular, the
comonotonic counterpartSc of (4) leads to the so-called comonotonic upper bound, denoted by
CUB, where we recall that a random vector(Xc

1, . . . , X
c
k) is comonotonicif each two possible

outcomes(x1, . . . , xk) and(y1, . . . , yk) of (Xc
1, . . . , X

c
k) are ordered componentwise.

Theorem 1 Suppose the sumS is given by (4)-(6). Then the comonotonic upper bound for the
option priceABC(n, m, K, T ) in (3) is determined by:

CUB =
n
∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0)e−rjΦ
[

σℓ

√

T − j − Φ−1(FSc(K))
]

− e−rT K (1 − FSc(K)) (7)
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where the valueFSc(K) of the cumulative density function (cdf) of the comonotonicsumSc can be
found by solving

n
∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0) exp
[

(r − 1

2
σ2

ℓ )(T − j) + σℓ

√

T − jΦ−1(FSc(K))
]

= K (8)

with Φ(·) the standard normal cdf.
Interpretation of the comonotonic upper bound Starting from the payoff of the Asian basket
option and bounding the(·)+-function above followed by a no-arbitrage argument, we findthat
the time zero price of such Asian basket option should satisfy the following two relations:

ABC(n, m, K, T ) ≤
n
∑

ℓ=1

aℓACℓ(m, Kℓ, T ) ≤
n
∑

ℓ=1

m−1
∑

j=0

aℓbje
−rjCℓ(Kℓj , T − j) (9)

ABC(n, m, K, T ) ≤
m−1
∑

j=0

bje
−rjBC(n, Kj , T − j) ≤

n
∑

ℓ=1

m−1
∑

j=0

aℓbje
−rjCℓ(Kℓj, T − j). (10)

with
n
∑

ℓ=1

aℓKℓ =
m−1
∑

j=0

bjKj =
n
∑

ℓ=1

m−1
∑

j=0

aℓbjKℓj = K. (11)

This means that the Asian basket call option can be superreplicated by a static1 portfolio of vanilla
call optionsCℓ on the underlying assetsSℓ in the basket and with different maturities and strikes.
Also an average of Asian optionsACℓ or a combination of basket optionsBC with different
maturity dates form a superreplicating strategy. Since theweightsaℓ as well asbj sum up to one,
a possible choice for the strikes in the decompositions (9) is Kℓ = Kj = Kℓj = K. However
this will not provide optimal superreplicating strategies. In [18] and [1] it was noted that in the
Asian option case the comonotonic upper bound can be interpreted as the price of an optimal
static superreplicating strategy consisting of vanilla options. Hobson et al. [13] obtained a similar
result for a basket option in a model free framework, while Chen et al. [4] extended this to a more
general class of exotic options.
Since prices for basket options can be simulated very fast, the expression (10) as a combination of
basket options with different maturity dates might be useful.

2.2. Comonotonic lower bound

A lower bound, in the sense of convex order, forS =
∑mn

i=1 Xi is

Sℓ = E [S | Λ]

whereΛ is a normally distributed random variable.If E [Xi | Λ] are all non-decreasing functions
of Λ or all non-increasing functions ofΛ, Sℓ is a sum of comonotonic variables and the reasoning
of Dhaene et al. [10] and [11] for the stop-loss premium leadsto Theorem 2 below whereLBΛ

denotes ‘lower bound using the conditioning variableΛ’ and stands fore−rT EQ
[

(Sℓ − K)+

]

. The
non-comonotonic situation for Asian basket options is solved in this paper in Section 3.

1 When exercising an option at a maturityT − j with j ∈ {1, . . . , m − 1}, one has in addition to invest the payoff in
the risk free money-account.
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Theorem 2 Suppose the sumS is given by (4)-(6) andΛ is a normally distributed conditioning
variable such that(Wℓ(T − j), Λ) are bivariate normally distributed for allℓ andj and the cor-
relation coefficients

rℓ,j =
Cov(Wℓ(T − j), Λ)

σΛ

√
T − j

(12)

have the same sign, when not zero, for allℓ and j. Then the comonotonic lower bound for the
option priceABC(n, m, K, T ) in (3) is given by

LBΛ =
n
∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0)e−rjΦ
[

sign(rℓ,j)
(

rℓ,jσℓ

√

T − j − Φ−1(FSℓ(K))
)]

− e−rT KΦ
[

−sign(rℓ,j)Φ
−1(FSℓ(K))

]

(13)

where the valueFSℓ(K) of the cdf of the comonotonic sumSℓ solves
n
∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0) exp
[

(r − 1

2
r2
ℓ,jσ

2
ℓ )(T − j) + rℓ,jσℓ

√

T − jΦ−1(FSℓ(K))
]

= K. (14)

To judge the quality of the stochastic lower boundE [S | Λ], we might look at its variance.
To maximize it, i.e. to make it as close as possible to Var[S], the average value of Var[S |Λ= λ]
should be minimized. In other words, to get the best lower bound,Λ andS should be as alike as
possible.Recently, Vanduffel et al. provide in [23] a detailed discussion for the optimal choice of
the conditioning variable and propose new locally optimal choices. In the present paper, however,
we restrict ourselves to four global conditioning variables.

A first idea to choose conditioning variables is based on [14]and [10] and consists in looking at
first order approximations ofS. We can takeΛ = FA1 or FA2 such that fori = 1, 2:

FAi =
n
∑

k=1

m−1
∑

p=0

akbpci(k, p)σkSk(0)Wk(T − p), (15)

with
c1(k, p) = e(r− 1

2
σ2

k)(T−p), c2(k, p) = 1.

Vanduffel et al. [21] suggest to look at the conditioning variable such that the first order approx-
imation of the variance ofSℓ is maximized. For Asian basket options, this is the case whenΛ is
given by

FA3 =
n
∑

k=1

m−1
∑

p=0

akbpSk (0) er(T−p)
[

(r − 1

2
σ2

k) (T − p) + σkWk(T − p)
]

. (16)

Nielsen and Sandmann [16] suggest to look at the geometric averageG which in the Asian
basket case is defined by

G =
n
∏

ℓ=1

m−1
∏

j=0

Sℓ(T − j)aℓbj =
n
∏

ℓ=1





m−1
∏

j=0

(

Sℓ(0)e(r− 1
2
σ2

ℓ
)(T−j)+σℓWℓ(T−j)

)bj





aℓ

and to consider its standardized logarithm as conditioningvariable

GA =
ln G − EQ [ln G]
√

Var [ln G]
=

∑n
ℓ=1

∑m−1
j=0 aℓbjσℓWℓ(T − j)

√

Var
[

∑n
ℓ=1

∑m−1
j=0 aℓbjσℓWℓ(T − j)

]

. (17)
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For all these choices ofΛ, the correlation coefficientsrℓ,j, which enter the lower bound, are easy
to calculate. Their expressions contain the instantaneouscorrelationsρij (2), which influence the
sign of therℓ,j. Only when the (non-zero) correlation coefficientsrℓ,j have the same sign for allℓ
andj the comonotonic lower bound may be applied. Otherwise when the correlations have mixed
signs, the lower boundE[S|Λ] is not a comonotonic sum. Hence the expression (13) is not longer
valid. The lower bound of the option price will now involve anintegral (see (21)). In Section 3 it
is shown that this integral can be simplified and that a closed-form expression is still available.

2.3. Bounds based on the Rogers and Shi approach

Rogers and Shi [17] derived an upper bound based on the lower bound starting from the follow-
ing general inequality for any random variableY andZ:

0 ≤ E
[

E(Y + | Z) − E(Y | Z)+
]

≤ 1

2
E
√

Var(Y | Z).

According to an idea of Nielsen and Sandmann [16], we determinedΛ ∈ R for each of the four
differentΛ’s (15), (16) and (17) such thatΛ ≥ dΛ implies thatS ≥K.

Combination of both techniques, as done in [8] and [24], results in the following upper bounds
which are denoted byUBRSΛ with Λ being a conditioning variable:
Theorem 3 Let S be given by (4)-(6) andΛ be a normally distributed conditioning variable such
that (Wℓ(T − j), Λ) are bivariate normally distributed for allℓ andj. Further, suppose that there
exists adΛ ∈ R such thatΛ ≥ dΛ implies thatS ≥K. Then an upper bound to the option price
ABC(n, m, K, T ) in (3) is

UBRSΛ = e−rT EQ
[

(Sℓ − K)+

]

+
1

2
e−rT {Φ (d∗

Λ)} 1
2 ×







n
∑

ℓ=1

n
∑

k=1

m−1
∑

j=0

m−1
∑

p=0

aℓakbjbpSℓ(0)Sk(0) ×

× er(2T−j−p)
(

eσℓσkρℓk min(T−j,T−p) − erℓ,jrk,pσℓσk

√
(T−j)(T−p)

)

×Φ
(

d∗
Λ − rℓ,jσℓ

√

T − j − rk,pσk

√

T − p
)} 1

2

(18)

with d∗
Λ = dΛ−EQ[Λ]

σΛ
, rℓ,j andrk,p the correlation coefficients(12)andρℓk the instantaneous corre-

lations(2).
Remark that if the correlation coefficientsrℓ,j have the same sign, when not zero, for allℓ andj,

thene−rT EQ
[

(Sℓ − K)+

]

equals the comonotonic lower boundLBΛ of Theorem 2. The explicit

expression ofe−rT EQ
[

(Sℓ − K)+

]

in the non-comonotonic situation will be derived in Section
3. Therefore, it is one of the merits of this paper, that it shows that even in a non-comonotonic
situation the upper bound based on Rogers and ShiUBRSΛ can be obtained.

2.4. Partially exact/comonotonic upper bound

The so-called partially exact/comonotonic upper bound, denoted byPECUBΛ with Λ being a
conditioning variable, consists of an exact part of the option price and some improved comonotonic
upper bound for the remaining part, and can be derived as in [24]:
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Theorem 4 Let S be given by (4)-(6) andΛ is a normally distributed conditioning variable sat-
isfying the assumptions of Theorem 3. Then the partially exact/comonotonic upper bound to the
option priceABC(n, m, K, T ) in (3) has the following expression:

PECUBΛ =
n
∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0)e−jrΦ
(

rℓ,jσℓ

√

T − j − d∗
Λ

)

− e−rT K(1 − Φ(d∗
Λ))+

+
n
∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0)e−jr− 1
2
r2
ℓ,j

σ2
ℓ
(T−j)

∫ Φ(d∗Λ)

0
erℓ,jσℓ

√
T−jΦ−1(v)×

× Φ
(

σℓ

√

(T − j)(1 − r2
ℓ,j) − Φ−1(FSu|V =v(K))

)

dv−

− Ke−rT

(

Φ(d∗
Λ) −

∫ Φ(d∗Λ)

0
FSu|V =v(K)dv

)

(19)

whereV = Φ
(

Λ−EQ[Λ]
σΛ

)

andFSu|V =v(K) solves

n
∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0)e(r− 1
2
σ2

ℓ
)(T−j)+rℓ,jσℓΦ

−1(v)
√

T−j+σℓ

√
(T−j)(1−r2

ℓ,j
)Φ−1(FSu|V =v(K)) = K. (20)

We stress that for practical applicationsFSu|V =v(K) just has to be solved from equation (20).
The notationFSu|V =v, however, stands for the cdf of the so-called improved comonotonic sum and
we refer the interested reader to [14] in which this notion isintroduced.

3. Non-comonotonic lower bound and upper bound based on the Rogers and Shi approach

In this section, we consider the case where not allrℓ,j of (12) have the same sign. Then,Sℓ

will not be a comonotonic sum of random variables, making thedetermination of the lower bound
more complicated since it does not follow from the comonotonicity literature. To determine a
lower bound, we follow the approach suggested in [15] for basket options. We know that the lower
bound can be rewritten as

e−rT EQ
[

(Sℓ − K)+

]

= e−rT EQ
[

(EQ [S | Λ] − K)+

]

= e−rT EQ









n
∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0)e
(r− 1

2
r2
ℓ,j

σ2
ℓ
)(T−j)+rℓ,jσℓ

√
T−j

Λ−EQ[Λ]
σΛ − K





+





= e−rT
∫ 1

0





n
∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0)e(r− 1
2
r2
ℓ,j

σ2
ℓ
)(T−j)+rℓ,jσℓ

√
T−jΦ−1(v) − K





+

dv,

(21)

with v = Φ
(

λ−EQ[Λ]
σΛ

)

.
Let us denote

f(v) =
n
∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0)e(r− 1
2
r2
ℓ,j

σ2
ℓ
)(T−j)+rℓ,jσℓ

√
T−jΦ−1(v) − K. (22)

Notice thatf(v) is no longer a monotone function ofv (as in the comonotonic situation) when not
all rℓ,j have the same sign. The derivativef ′(v) with respect tov equals
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f ′(v) =
1

ϕ [Φ−1 (v)]

n
∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0)rℓ,jσℓ

√

T − je(r− 1
2
r2
ℓ,j

σ2
ℓ
)(T−j)+rℓ,jσℓ

√
T−jΦ−1(v),

whereϕ(·) is the standard normal density function. Obviously, the above denominator is strictly
positive forv ∈ (0, 1). The numerator, which we will denote byK(v), is a non-decreasing function
of v since its derivative with respect tov is positive. Moreover, this numerator has the following
limits:

lim
v→0

K(v) = −∞ and lim
v→1

K(v) = +∞.

Therefore, there exists a uniquev∗ such thatK(v∗) = 0 and consequentlyf ′(v∗) = 0. Since
moreover

lim
v→0

f(v) = +∞ and lim
v→1

f(v) = +∞,

we conclude thatf(v) is either positive upon whole the interval[0, 1], or has a strictly negative
minimumf(v∗). Hence, in the latter case,f(v) stays positive before a certain valuedΛ1 ∈]0, 1[, is
then negative until a valuedΛ2 ∈]dΛ1 , 1[ but has then again positive values on the interval[dΛ2 , 1].
Therefore, the following theorem can easily be proved:
Theorem 5 Let S be given by (4)-(6) and letΛ be a normally distributed conditioning variable
such that(Wℓ(T −j), Λ) are bivariate normally distributed for allℓ andj. Suppose that not allrℓ,j

of (12) have the same sign and consider the functionf introduced in(22). The non-comonotonic
lower bound for the option priceABC(n, m, K, T ) in (3) is such that

a) if f(v) ≥ 0 for all v, then

LBΛ =
n
∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0)e−rj − Ke−rT , (23)

b) if f(v∗) < 0, with v∗ the solution off ′(v) = 0, then

LBΛ =
n
∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0)e−rjΦ
(

d∗
Λ1

− rℓ,jσℓ

√

T − j
)

− Ke−rT Φ
(

d∗
Λ1

)

+

+
n
∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0)e−rjΦ
(

rℓ,jσℓ

√

T − j − d ∗
Λ2

)

− Ke−rT Φ
(

−d ∗
Λ2

)

(24)

where, fori = 1, 2, d ∗
Λi

= dΛi−EQ[Λ]
σΛ

anddΛ1 ≤ dΛ2
denote the two solutions of the following

equation inx:
n
∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0)e
(r− 1

2
r2
ℓ,j

σ2
ℓ
)(T−j)+rℓ,jσℓ

√
T−j

x−EQ[Λ]
σΛ = K. (25)

PROOF. Case off(v) ≥ 0 for all v is trivial.
Case off(v∗) < 0: Λ ≤ dΛ1 or Λ ≥ dΛ2

imply thatSℓ≥K anddΛ1 < Λ < dΛ2
impliesSℓ<K. 2

Remarks
(i) This lower bound can be used in the Rogers and Shi approach, so the upper boundUBRSΛ

can also be derived in the non-comonotonic situation.
(ii) As a basket option is a special case of an Asian basket option with m = 1, the reasoning

above and formula (24) (withm = 1) remains valid for basket options in the cases whereSℓ
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is not a comonotonic sum, providing a much simpler lower bound than in [8]. No optimization
algorithm is needed.

(iii) The approach in this section is general and can also be used in other settings in which sums
of non-comonotonic random variables show up with correlations with mixed signs. In [22],
Vanduffel et al. deal with cash flows with mixed signs and obtain a result with a similar taste.

4. Generalization of an upper bound based on the method of Thompson and of Lord

In his paper [19], Thompson used intuition and simple optimization to derive an upper bound
which tightened Rogers and Shi’s upper bound considerably for continuously sampled Asian op-
tions. His reasoning is based upon a first order approximation and is therefore referred toasFA. In
his Ph.D. thesis [20], Thompson already suggested the idea of adding a supplementary parameter
but he did not work it out. Thompson’s approximation is only justified whenσℓWℓ(T − j) has a
small variance (i.e. whenσ2

ℓ (T − j) is small).
In case of Asian options, Lord [15] approximates the arithmetic sum by a shifted lognormal vari-
able — and therefore the results are referred toasSLN — and then adds according to the ideas
of Thompson a supplementary parameter.

In this section, both the methods of Thompson [19] and Lord [15] will be generalized to the
Asian basket case by taking into account a supplementary parameter. The numerical section 5 will
show that these methods provide most of the times the best upper bounds.
Theorem 6 LetS be given by (4)-(6) andσ > 0, then upper bounds based on Thompson’s method
(for X beingFA) and Lord’s reasoning (forX beingSLN) for the option priceABC(n, m, K, T )
in (3) are given by

ABC(n, m, K, T ) ≤ e−rT
n
∑

ℓ=1

m−1
∑

j=0

aℓbj

∫ +∞

−∞

{

cX
ℓ (T − j, x, σ)Φ

(

cX
ℓ (T − j, x, σ)

dℓ(T − j, σ)

)

+dℓ(T − j, σ)ϕ

(

cX
ℓ (T − j, x, σ)

dℓ(T − j, σ)

)}

ϕ(x)dx.

(26)

with ϕ the standard normal density function, and withcX
ℓ (T − j, x, σ) andd2

ℓ(T − j, σ) the condi-
tional mean and variance:

cX
ℓ (T − j, x, σ) =Sℓ(0)e(r− 1

2
σ2

ℓ
)(T−j)+σℓx

√
T−j

− σK

(

µX
ℓ (T − j)

σ
+ σℓx

√

T − j −
n
∑

i=1

m−1
∑

k=0

aibkσi
min(T − k, T − j)√

T − j
x

)

(27)

and

d2
ℓ(T − j, σ) = σ2K2





n
∑

i=1

m−1
∑

k=0

n
∑

h=1

m−1
∑

p=0

aibkahbpσiσhρih min(T − k, T − p)

−
(

∑n
i=1

∑m−1
k=0 aibkσiρiℓ min(T − k, T − j)

)2

T − j





 . (28)
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In case of the generalization of Thompson’s method:

µFA
ℓ (T − j) =

1

K

(

Sℓ(0)e(r− 1
2
σ2

ℓ
)(T−j) + γFA

√

Var(Y FA
ℓ (T − j))

)

(29)

with

γFA =
K −∑n

ℓ=1

∑m−1
j=0 aℓbjSℓ(0)e(r− 1

2
σ2

ℓ
)(T−j)

∑n
ℓ=1

∑m−1
j=0 aℓbj

√

Var(Y FA
ℓ (T − j))

, (30)

and with the first order approximations forSℓ (T − j) given by

SFA
ℓ (T − j) = Sℓ(0)e(r− 1

2
σ2

ℓ
)(T−j) (1 + σℓWℓ(T − j)) . (31)

Y FA
ℓ (T − j) = SFA

ℓ (T − j) − σK

[

σℓWℓ(T − j) −
n
∑

i=1

m−1
∑

k=0

aibkσiWi(T − k)

]

(32)

is a first order approximation of

Yℓ(T − j) = Sℓ (T − j) − σK

[

σℓWℓ(T − j) −
n
∑

i=1

m−1
∑

k=0

aibkσiWi(T − k)

]

. (33)

In case of Lord’s generalized results, a shifted lognormal approximation forYℓ (T − j) is of the
form:

Y SLN
ℓ (T − j) = α(ℓ, T − j) + exp [θ(ℓ, T − j) + ω(ℓ, T − j)Zℓ] , (34)

whereα(ℓ, T − j), θ(ℓ, T − j) andω(ℓ, T − j) are the shift, mean and volatility functions andZℓ

is a standard normal distribution. Further,

µSLN
ℓ (T − j) =

1

K

[

α(ℓ, T − j) + exp
[

θ(ℓ, T − j) + γSLNω(ℓ, T − j)
]]

, (35)

with the constantγSLN determined by the condition
n
∑

ℓ=1

m−1
∑

j=0

aℓbjµ
SLN
ℓ (T − j) = 1. (36)

In this theorem,σ is an arbitrary parameter. In [19], only the choice ofσ = 1 is considered and
this in the case of an Asian option. Numerically, we find that the upper bound is quadratic around
the optimal value ofσ and therefore one can use an algorithm suggested by Lord [15]to determine
the optimal upper bound.

Algorithm
(i) Calculate the upper bound usingµFA

ℓ (T − j) (resp.µSLN
ℓ (T − j)) for three carefully chosen

values ofσ;
(ii) Fit a quadratic function inσ to these computed values;
(iii) Determine the value ofσ in which the upper bound attains its minimum;
(iv) Recalculate the upper bound in the approximately optimal σ.

In the numerical section, we will compare the bound forσ = 1, which will be called ‘ThompUB’,
with (among others) the bound obtained by the optimizedσ, which will be called ‘ThompUBquad’.
Especially for long maturities, high volatilities and highstrike values, the effects of optimizingσ
are considerable.
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initial weight volatility dividend yield

stock stock price (in %) (in %) (in %)

BASF 42.55 25 33.34 2.59

Bayer 48.21 20 31.13 2.63

Degussa-Hüls 34.30 30 33.27 3.32

FMC 100.00 10 35.12 0.69

Schering 66.19 15 36.36 1.24

Table 1
Stock characteristics

BASF Bayer Degussa-Hüls FMC Schering

BASF 1.00 0.84 −0.07 0.45 0.43

Bayer 0.84 1.00 0.08 0.62 0.57

Degussa-Hüls−0.07 0.08 1.00 −0.54 −0.59

FMC 0.45 0.62 −0.54 1.00 0.86

Schering 0.43 0.57 −0.59 0.86 1.00

Table 2
Correlation structure

5. Numerical results

In this section we consider a numerical example for an Asian basket option in the Black &
Scholes setting and compare the different lower and upper bounds. We recall the following no-
tations whereΛ can be FA1, FA2, FA3 or GA: LBΛ for both the comonotonic lower bound (13)
and the non-comonotonic lower bound (23) or (24), PECUBΛ for partially exact/comonotonic up-
per bound (19), UBRSΛ for upper bound (18) (with a comonotonic or non-comonotoniclower
bound) based on the Rogers & Shi approach and CUB for comonotonic upper bound (7). We use
the notation PECUB for the min(PECUBFA1, PECUBFA2, PECUBFA3, PECUBGA), UBRS
for min(UBRSFA1, UBRSFA2, UBRSFA3, UBRSGA), LB for max(LBFA1, LBFA2, LBFA3,
LBGA), ThompUB for upper bound based on Thompson’s first order approximation withσ = 1,
ThompUBquad, and SLNquad for upper bound based on the first order approximation and on the
shift lognormal approximations, which use a numerical optimization algorithm to approximate the
optimal scaleσ. The moneyness of the option is defined as

K
∑n

ℓ=1

∑m−1
j=0 aℓbjE

Q [Sℓ(T − j)]
− 1. (37)

Negative moneyness corresponds to in-the-money options, positive moneyness to out-of-the-money
options. A moneyness of zero indicates that the option is at-the-money. In order to illustrate our
bounds for an Asian basket options, we take a set of input datafrom [2] where the valuation re-
sults for Asian basket option with monthly averaging were written on a fictitious chemistry-pharma
basket that consists of the five German DAX stocks listed in Tables 1 and 2.

The annual risk-free interest rater is equal to6% and we compute bounds for options with
three different maturity dates (half a year, one year and fiveyears). The exercise prices are chosen
in such a way that Table 3 shows results for in-the-money, at-the-money and out-of-the money
options. The averaging period of all options is five months and starts five months before maturity.

In Table 3, we compare the upper and lower bounds with Monte Carlo (MC) estimates. These
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Fig. 1. Comparison of bounds for an Asian basket option withT = 0.5

Monte Carlo estimates (and also the standard deviations (SE)) are obtained by generating 1 000 000
paths using antithetic variables, by following the algorithm of [6], [7] and of [12]. In Fig. 1 - Fig.
3 we plot the pricing error of a bound with respect to the moneyness (37) for different maturities
T . This pricing error expressed in basis points (bp) is definedas

bound− MC value
∑n

ℓ=1 aℓSℓ(0)
10 000

where ‘bound’ takes the value of LB, UBRS, PECUB, ThompUBquad or SLNquad and the de-
nominator equals50.498 according to the data in Table 1.

For this data set,FA1, FA2 andFA3 lead not to comonotonic lower bounds since the correla-
tions rℓ,j of (12) do not have the same sign for allℓ andj. However, in this case the method of
Section 3 can be applied. The results from Table 3 reveal thatthe non-comonotonic lower bounds
LBFA1, LBFA2 and LBFA3 perform better than the comonotonic lower bound LBGA. The non-
comonotonic lower bounds LBFA1, LBFA2 and LBFA3 equal up to the 20-th decimal the sum of
the last two terms in (24) as the sum of the first two terms is almost negligible.

From Table 3 and the figures Fig. 1 - Fig. 3, we notice that only for short maturities and in- and
at-the-money, UBRS outperforms all the other upper bounds.In all other cases, ThompUBquad
and SLNquad provide the best upper bounds, with SLNquad beating ThompUBquad most of the
times. SLNquad is significantly sharper for long maturitiesand out-of-the money. We notice that
the lower bound is very close to the Monte Carlo value but loses a bit of its sharpness for larger
maturities. Also the precision of ThompUBquad and SLNquad decreases with the maturityT .
PECUB is too high to be useful in comparison with ThompUBquadand SLNquad. Only (far)
out of the money, PECUB becomes better than UBRS. It is easy toprove that UBRS converges
to the constant1

2
e−rT EQ[Var(Sℓ)]1/2 for K tending to infinity, whereas both PECUB and CUB

converge to zero forK tending to infinity. The CUB however, which can be seen as the price
of a static hedging portfolio as mentioned before, leads to much higher upper bounds (see Table
3) since this bound does not take the correlations (2) into account. We further notice that UBRSΛ
obtains the best values forΛ = FA3, which by construction minimizes (a first order approximation
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K Thomp Thomp SLN

T (moneyness) To compare UB UBquad quad LBΛ UBRSΛ PECUBΛ Λ
1
2

40 MC:10.8465 10.8582 10.8580 10.8520 10.8448 10.8556 10.9042 FA1

(−0.2181) SE:0.0057 10.8448 10.8558 10.9054 FA2

CUB:11.1221 10.8448 10.8554 10.9023 FA3

10.8414 10.8770 10.9290 GA

50 MC:2.7860 2.9564 2.9442 2.9415 2.7801 2.8937 3.4912 FA1

(−0.0227) SE:0.0040 2.7801 2.8930 3.4919 FA2

CUB:4.3465 2.7800 2.8903 3.4376 FA3

2.6705 3.2836 3.9378 GA

60 MC:0.2338 0.3591 0.3417 0.3361 0.2299 0.4617 0.9288 FA1

(0.1728) SE:0.0012 0.2299 0.4613 0.9272 FA2

CUB:1.1856 0.2300 0.4573 0.9080 FA3

0.1742 1.1034 1.0407 GA

1 40 MC:11.7157 11.7727 11.7718 11.7678 11.6984 11.8013 12.0623 FA1

(−0.2332) SE:0.0097 11.6988 11.8025 12.0710 FA2

CUB:12.8736 11.6979 11.7986 12.0473 FA3

11.6679 11.8879 12.1478 GA

50 MC:4.7336 4.9739 4.9579 4.9505 4.7094 5.0155 5.7644 FA1

(−0.0415) SE:0.0074 4.7095 5.0127 5.7664 FA2

CUB:6.9693 4.7092 5.0007 5.6535 FA3

4.5289 5.4830 6.2004 GA

60 MC:1.4083 1.7048 1.6562 1.6542 1.3882 1.9106 2.7179 FA1

(0.1502) SE:0.0043 1.3875 1.9080 2.7092 FA2

CUB:3.4347 1.3886 1.8903 2.6042 FA3

1.1935 2.9853 2.9852 GA

5 40 MC:17.3030 17.6536 17.6361 17.6159 16.9863 18.1608 18.5893 FA1

(−0.3346) SE:0.1319 17.0030 18.1698 18.6527 FA2

CUB: 20.2517 16.9727 18.1300 18.5112 FA3

16.9010 18.5126 18.8484 GA

50 MC:12.5916 13.2374 13.1674 13.1334 12.2352 13.9249 14.5541 FA1

(−0.1807) SE:0.0295 12.2421 13.8929 14.5678 FA2

CUB:16.4350 12.2282 13.7679 14.1973 FA3

11.9023 14.6519 14.9816 GA

60 MC:9.1299 10.0549 9.8545 9.8331 8.7834 11.0153 11.6879 FA1

(−0.0168) SE:0.0268 8.7774 10.9485 11.6439 FA2

CUB:13.4094 8.7853 10.7215 11.0728 FA3

8.2379 12.0024 12.0553 GA

70 MC: 6.6520 7.8539 7.4618 7.4451 6.3285 9.0801 9.5618 FA1

(0.1470) SE:0.0241 6.3127 9.0051 9.5048 FA2

CUB: 11.0082 6.3376 8.6661 8.8910 FA3

5.6654 10.2258 9.7925 GA

Table 3
Valuation results for Asian basket call option

of) EQ[Var(Sℓ)], a term which is related toEQ
[

Var(Sℓ)1{Λ<dΛ}
]

showing up in the expression of
UBRSΛ.
We also compare ThompUB, the Asian basket option bound obtained by following Thompson’s
approach forσ = 1, with ThompUBquad, the bound obtained by the optimizedσ. Especially for
long maturities and high strike values, the effects of optimizing σ are considerable.

Conclusion The lower bound LB, which can be calculated in both comonotonic and non-
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Fig. 2. Comparison of bounds for an Asian basket option valuewith T = 1
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Fig. 3. Comparison of bounds for an Asian basket option withT = 5

comonotonic situations, leads to very precise lower bounds. Based on our numerical tests, we
recommend the reader to use for short maturities and in- and at-the money the upper bound UBRS,
which also can be derived in both comonotonic and non-comonotonic situations. In the other cases,
SLNquad seems to be the best upper bound.
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