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Abstract

In this paper we propose pricing bounds for European-stglerete arithmetic Asian basket options in a Black & Schélase-
work. We start from methods used for basket options and Agpdions. First we use the general approach for deriving uapé
lower bounds for stop-loss premia of sums of non-indepen@arom variables as in Kaas et al. (2000) or Dhaene et d&2&)0
We generalize the methods in Deelstra et al. (2004) and Valened al. (2006). Afterwards we show how to derive an anzyti
closed-form expression for a lower bound in the non-comamiotcase. Finally, we derive upper bounds for Asian basggbons
by applying techniques as in Thompson (1999a) and Lord (R00@nerical results are included and on the basis of our nicaie
tests, we explain which method we recommend depending oryness and time-to-maturity.
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1. Introduction

In this paper we propose pricing methods for European-shigerete arithmetic Asian basket
options in a Black & Scholes framework.
We consider a basket with assets whose prices(t), « = 1,...,n, are described, under the
risk neutral measur® and withr some risk-neutral interest rate, by
where{WW;(t), t > 0} are standard Brownian motions associated with the prices#ta Further,
we assume that the different asset prices are instantdgeouelated in a constant way i.e.
Corr(dWi, dW]> = pZ]dt (2)

An Asian basket option is a path-dependent multi-assebopthose payoff combines the payoff
structure of an Asian option with that of a basket option. Pphiee of a discrete arithmetic Asian
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basket call option with a fixed strik€ and maturityl’ onm averaging dates at current time- 0
is determined by

ABC(n,m,K,T) = e "TEY

n m—1
(ZaezbjSe(T—j)—K) ] 3)
=1  j=0 n
with a, andb; positive coefficients, which both sum up tpand with(z); = max{z,0}. For

T < m — 1, the Asian basket call option is said to be in progress and’'for m — 1, we call it
forward starting. Throughout the paper we consider forvedadting Asian basket options but the
methods apply in general.

Asian basket options are suitable for hedging exposureeaspgyoff depend on an average of
asset prices at different times and of different asseteddgaveraging has generally the effect of
decreasing the variance, therefore making the option bgssnsive. Moreover the Asian basket
option takes the correlations between the assets in theebadk account. Asian basket options
are especially important in the energy markets where mdatet contracts are priced on the
basis of an average price over a certain period.

Within a Black and Scholes [3] setting, no closed-form dohd are available for Asian basket
options involving the average of asset prices taken atréifftedates. Dahl and Benth value such
options in [6] and [7] by quasi-Monte Carlo techniques amdslar value decomposition. But as
this approach is rather time-consuming, it would be idedldwe accurate analytical and easily
computable bounds or approximations of this price.

In the setting of Asian options, an analytical lower and ugpeund in the case of continuous
averaging is obtained by the methods of conditioning in j&d & [17]. Thompson [19] used a
first order approximation to the arithmetic sum and derivedper bound that sharpens those of
Rogers and Shi. Lord [15] revised Thompson’s method andgsegha shift lognormal approxima-
tion to the sums and he included a supplementary parametein vgtestimated by an optimization
algorithm. In [16], Nielsen and Sandmann applied the RogedsShi approach to arithmetic Asian
option pricing by using one specific standardized normaibyritbuted conditioning variable and
only in a Black & Scholes settingimon et al. [18] derived an easy computable upper bound for
the price of an arithmetic Asian option based on the res@ihaene et al. [9]. Dhaene et al. [10]
and [11] studied extensively convex upper and lower bouadsudms of lognormals, in particular
of Asian options. Vanmaele et al. [24] used techniques basetbmonotonic risks for deriving
upper and lower bounds for stop-loss premia of sums of ndagandent random variables, as ex-
plained in [14] and the already mentioned [10] and [MHAnmacele et al. [24] improved the upper
bound that was based on the idea of Rogers and Shi [17], amiladeed the approach of Nielsen
and Sandmann [16] to a general class of normally distribatedlitioning variables. In [8] these
methods for Asian options were generalized to the case éEbagtions.

In this paper, we concentrate upon the derivation of bouad#és$ian basket options. We start
with extending the methods of [8] and [24] to the Asian baskste.

New is that also in the non-comonotonic case we are able icedesimple analytical lower bound
and an upper bound based on the Rogers and Shi [17] approach.

Finally, we generalize the method of Thompson [19] and ofilJa5] to the Asian basket case.
In Thompson’s approach, we include an additional paranveterh is optimized by using an op-
timization algorithm as in [15]. Numerical results are umbdéd and based on several numerical
tests, we give a conclusion which should help the readerdoss a precise bound according to
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the situation of moneyness and time-to-maturity that slvemgronted with.

The paper is organized as follows. In Section 2, we deal wibsgdures for obtaining the lower
and upper bounds for prices, by using the concept of comaiwtpas explained in [14], [10] and
[11], along the lines of [24] and [8]. In Section 3, we deriveamnalytical closed-form expression
for a lower bound in a non-comonotonic situation, which isrtlused to obtain the upper bound
in the Rogers and Shi approach. In Section 4, we generaleegper bound based on the idea
of Thompson [19] and the approach of Lord [15] to discretéharetic Asian basket options. In
Section 5, we discuss the quality of all these bounds in sameerical experiments and give a
guideline of which bound to use in which situation.

2. Bounds based on comonotonicity and conditioning

In this section we generalize the bounds of [8] and [24] toAB&n basket case. In these pa-
pers the pricing of discrete arithmetic basket and Asiamaptare studied by using the notion
of comonotonicity, as explained in [14], [10] and [11]. Thieyther improve the bounds by in-
corporating the ideas of Curran [5], Rogers and Shi [17] ardsin and Sandmann [16], and by
looking for good conditioning variables.

2.1. Comonotonic upper bound

Remark that the double sufh= ") ; a, 27;01 b;Se (T — j), showing up in equation (3), is a
sum of lognormal distributed variables and can be written as

S=3 Xi=> e (4)
=1 =1
with (r—302, )(T—(i—1) )
r— i T—(i—1) modm
Qi = g 29bG- 1) moamSy 21 (0)e * T (5)
and

E:U%]W%](T—(i—l)modm) ~ N(0, 0%, :0?#](T—(i—1)modm)) (6)

foralli =1,...,mn, where[z] is the smallest integer greater than or equal emd

ymodm =y — |y/m|m
where |y | denotes the greatest integer less than or equal f&s explained in [11], given the
marginal distributions of the terms in a random variaSle= 25;1 X;, we shall look at the
joint distribution with a smaller resp. larger sum, in theneex order sense. In particular, the
comonotonic counterpafi® of (4) leads to the so-called comonotonic upper bound, @ehby
CUB, where we recall that a random vectoXy, ..., X}) is comonotonidf each two possible
outcomeszy, ..., zx) and(yy, ..., yx) of (Xf,..., Xf) are ordered componentwise.
Theorem 1 Suppose the sufdis given by (4)-(6). Then the comonotonic upper bound for the
option priceABC(n,m, K,T) in (3) is determined by:

,_.

m—

CUB = zn: arb;Se(0)e™ " ® [am/T — = O N (Fse(K))| —e K (1 — Fse(K))  (7)

(=1 j=0
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where the valudis. (K') of the cumulative density function (cdf) of the comonotenioS© can be
found by solving

n m—1 1 . .
> aySi0)exp | (r = ST = )+ 00T = o7 (Fe(K)| =K ®)
=1 j=0
with ®(-) the standard normal cdf.
I nterpretation of the comonotonic upper bound  Starting from the payoff of the Asian basket
option and bounding thé ) -function above followed by a no-arbitrage argument, we fhmat
the time zero price of such Asian basket option should satti& following two relations:

H

ABC(n,m,K,T) < ZagAC'g m, K, T) < Z agb e I Cy( (K¢, T —j) (9)
/=1

(=1

[e=]

RN
,_.

-1 n m-—
ABC(n,m, K,T) < bje VBC(n, K;, T —j) <> abje 7 Co(Ky;, T — j).  (10)

=0 /=1 =0

3

R

with

n m—1

ZCL@K@ Z b K Z Z agb ng =K. (11)
/=1 /=1 j=0
This means that the Asian basket caII option can be suparaggd by a stati€ portfolio of vanilla
call optionsC, on the underlying assets in the basket and with different maturities and strikes.
Also an average of Asian option$C, or a combination of basket optiorisC' with different
maturity dates form a superreplicating strategy. Sincembightsa, as well ash; sum up to one,
a possible choice for the strikes in the decompositionsq%, = K, = K,; = K. However
this will not provide optimal superreplicating strategiés[18] and [1] it was noted that in the
Asian option case the comonotonic upper bound can be istimghras the price of an optimal
static superreplicating strategy consisting of vanilliaps. Hobson et al. [13] obtained a similar
result for a basket option in a model free framework, while&hkt al. [4] extended this to a more
general class of exotic options.
Since prices for basket options can be simulated very fasgxpression (10) as a combination of
basket options with different maturity dates might be ukefu

2.2. Comonotonic lower bound

A lower bound, in the sense of convex order,$o& >~ X; is
S*=E[S|A]

whereA is a normally distributed random variablé.E [X; | A] are all non-decreasing functions
of A or all non-increasing functions df, S’ is a sum of comonotonic variables and the reasoning
of Dhaene et al. [10] and [11] for the stop-loss premium |legadEheorem 2 below whereBA

denotes ‘lower bound using the conditioning variabl@nd stands for""E® (S’ — K).|. The
non-comonotonic situation for Asian basket options is edln this paper in Section 3.

1 When exercising an option at a maturity— j with j € {1,...,m — 1}, one has in addition to invest the payoff in
the risk free money-account.



Theorem 2 Suppose the suiis given by (4)-(6) and\ is a normally distributed conditioning

variable such thatW, (T — j), A) are bivariate normally distributed for all and j and the cor-

relation coefficients

CO\(WZ<T B j)v A)
OA T —j

have the same sign, when not zero, for/alind ;. Then the comonotonic lower bound for the

option priceABC(n,m, K, T) in (3) is given by

ng' = (12)

n m—1

LBA =) Z agb;Se(0)e " ® [sign(rg,j) (rm%/T —j— cb—l(FSz(K))ﬂ
(=1 j=
TTKQ) [-s.grm,j)cpfl(pgz(z())} (13)
where the valué. (K) of the cdf of the comonotonic sihsolves
n m—1 1 . .
> abySu(0)exp |(r = 57 o) (T = )+ rejo/T = jo7 (Fu(K))| = K. (14)
=1 j=0

To judge the quality of the stochastic lower bouRdS | A], we might look at its variance.
To maximize it, i.e. to make it as close as possible tdSfathe average value of V& |A= )|
should be minimized. In other words, to get the best lowemldott andS should be as alike as
possible Recently, Vanduffel et al. provide in [23] a detailed dissios for the optimal choice of
the conditioning variable and propose new locally optinadices. In the present paper, however,
we restrict ourselves to four global conditioning variable

A first idea to choose conditioning variables is based on §i] [10] and consists in looking at
first order approximations &. We can take\ = FA1 or FA2 such that fori = 1, 2:

n m—1

FAi =373 agbyci(k, p)owSe(0)Wi(T — p), (15)
k=1 p=0
with 1 2
Cl(kLp) = e(riiak)(Tip)u 02(k7p) =L

Vanduffel et al. [21] suggest to look at the conditioningiable such that the first order approx-
imation of the variance d§’ is maximized. For Asian basket options, this is the case when
given by

n m—1

FA3= 30 Y ayby i (0) 70 [(r - %ai) (T~ p) + o WilT ~ )| (16)

k=1 p=0

Nielsen and Sandmann [16] suggest to look at the geometeageG which in the Asian
basket case is defined by

n m-— n m— a
=11 H (T — j)* =] (Hl (55(0)60%a%)(Tj)wwe(Tj))bf)

=1 j=0 =1 \ j=0
and to consider its standardized logarithm as conditionar@gble

oq-nG —E¢mG ¥, >0 agbjo Wi (T — j) . (17)

Var[In G| \/Var (S0 S ayoWlT — )]
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For all these choices of, the correlation coefficients ;, which enter the lower bound, are easy
to calculate. Their expressions contain the instantaneowslationsp;; (2), which influence the
sign of ther, ;. Only when the (non-zero) correlation coefficients have the same sign for &l
andj the comonotonic lower bound may be applied. Otherwise whermorrelations have mixed
signs, the lower bounB[S|A] is not a comonotonic sum. Hence the expression (13) is ngelon
valid. The lower bound of the option price will now involve aregral (see (21)). In Section 3 it
is shown that this integral can be simplified and that a cldeet expression is still available.

2.3. Bounds based on the Rogers and Shi approach

Rogers and Shi [17] derived an upper bound based on the lowerdstarting from the follow-
ing general inequality for any random variableand ~7:

0<E[E(Y"|2)-E(Y|2)"] < %E\/Var(Y | Z).

According to an idea of Nielsen and Sandmann [16], we detey € R for each of the four
differentA’s (15), (16) and (17) such that > d, implies thatS > K.

Combination of both techniques, as done in [8] and [24], ltesn the following upper bounds
which are denoted by BRSA with A being a conditioning variable:
Theorem 3 LetS be given by (4)-(6) and be a normally distributed conditioning variable such
that (W, (T — j), A) are bivariate normally distributed for all and ;. Further, suppose that there
exists ad, € R such thatA > d, implies thatS > K. Then an upper bound to the option price
ABC(n,m, K, T)in (3)is

1

1 1 n n m—1m—
UBRSA = ¢ "TEQ [(Sg — K)J +5¢ e T d (d}))? x {ZZ Z Z agarb;bySe(0)SL(0) x
: p:
-p) _

=1k
(T—

x e"(2T=j—p) (edwkpék min i Tk,pTLOk (Tj)(Tp))

x P <dj‘\ — 1,00\ T — § =1k poryT — p)}2 (18)

with d;, = dA*UEA@[A], r¢,; andry,, the correlation coefficient§l2) and o, the instantaneous corre-
lations(2).

Remark that if the correlation coefficients; have the same sign, when not zero, for’alhdy,
thene"7E? (S - K)., | equals the comonotonic lower bouh#A of Theorem 2. The explicit

expression ok "TEQ {(Sf — KH in the non-comonotonic situation will be derived in Section
3. Therefore, it is one of the merits of this paper, that itvehdhat even in a non-comonotonic
situation the upper bound based on Rogers and’8fitSA can be obtained.

2.4. Partially exact/comonotonic upper bound

The so-called partially exact/comonotonic upper boundpted byPECUBA with A being a
conditioning variable, consists of an exact part of theapfirice and some improved comonotonic
upper bound for the remaining part, and can be derived aglin [2
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Theorem 4 LetS be given by (4)-(6) and is a normally distributed conditioning variable sat-
isfying the assumptions of Theorem 3. Then the partiallgtés@monotonic upper bound to the
option priceABC(n,m, K, T) in (3) has the following expression:

n m—1

PECUBA = agb; Se(0)e I ® <rg]au/T G- d}‘\> — TR (1 — B(d))+

]:
- P (d*
+ Z Z aﬁb SZ e A ])/ w eTe,er\/Ti—ﬁb*l(v)X
0

x ® (00 /(T = j)(1 = 17;) = @ (Fauy—o(K))) dv—
;. a(d})
~Ke T (@(dy) — / Fyupy—o(K)dv (19)
0
whereV = & (%) and Fsuy—,(K) solves

zn:mZ: agb Sg Tﬁ%Ug)(T*J')JrTz,jﬂequ(v)vT*jJrUé (T—5)(A=r7 )@~ (Fsujv=y(K)) _ K. (20)

We stress that for practical applicatioRs., —, (/) just has to be solved from equation (20).
The notationfs. |y —,, however, stands for the cdf of the so-called improved cartmric sum and
we refer the interested reader to [14] in which this notioimisoduced.

3. Non-comonotonic lower bound and upper bound based on the Rogers and Shi approach

In this section, we consider the case where notgllof (12) have the same sign. Thef,
will not be a comonotonic sum of random variables, makingiermination of the lower bound
more complicated since it does not follow from the comoniiioy literature. To determine a
lower bound, we follow the approach suggested in [15] fokbasptions. We know that the lower
bound can be rewritten as

e B2 [(S* - K).| = e B2 [(B2[S | A] - K) |

n m-— A o
(Z agb;Sy(0 (7'—%7'?,]-0'?)(71—])+7’["7-0'[\/’]T]T[] B K) ]
+

(=1 7=0

H

— —TTEQ

.
H

m—

/=1 j=0

.
(21)
with v = @ (A—L@W)

OA

Let us denote
v) = zn:mZ: agb;Se(0 =377, 00T =) +rejory/T=j® 7 (v) _ fo (22)
/=1 :

Notice thatf(v) is no longer a monotone function of(as in the comonotonic situation) when not
all v, ; have the same sign. The derivatif/¢v) with respect ta equals
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n m—1

') = gy & 2 wbiSiO)regou el s o e/ T )
Z 1 j=0

whereg(+) is the standard normal density function. Obviously, thevaldenominator is strictly
positive forv € (0, 1). The numerator, which we will denote l3y(v), is a non-decreasing function
of v since its derivative with respect tois positive. Moreover, this numerator has the following
limits:

)

lir%K(v) = —oo and liH%K(’U) = +00.

Therefore, there exists a uniqué such thatK (v*) = 0 and consequently’(v*) = 0. Since
moreover
lin%f(v) =400 and lirqf(’u) = 400,

we conclude thaf (v) is either positive upon whole the intenvdl 1], or has a strictly negative
minimum f(v*). Hence, in the latter casg¢(v) stays positive before a certain valiig €]0, 1], is
then negative until a valué,, €]d,,, 1[ but has then again positive values on the intejig), 1].
Therefore, the following theorem can easily be proved:

Theorem 5 LetS be given by (4)-(6) and lek be a normally distributed conditioning variable
such thatW,(T —j), A) are bivariate normally distributed for all andj. Suppose that not at}, ,

of (12) have the same sign and consider the funcfiamroduced in(22). The non-comonotonic
lower bound for the option pricd BC'(n, m, K, T') in (3) is such that

a) if f(v) > 0forall v, then

n m—1
LBA =>" 3" ab;Se(0)e ™7 — Ke "7, (23)
(=1 j=0
b) if f(v*) < 0, with v* the solution off’(v) = 0, then
n m—1
LBA =Y 3 ab;Sy(0)e i <d;1 — 1o o0 /T — j) ~ Ke "o (d3,) +
(=1 j=0
n m—1
£33 ab; Su(0)e i <rmau/T - d@) ~Ke "0 (~dy)  (24)
/=1 =0

where, fori = 1,2, dy. = d“’;i"iw andd,, < d,, denote the two solutions of the following
equation inz:

102 o2 (T Vb oy T E=ECIA]
azbjSz(O)e(r 37730 T tregoe/ T-I*=08 e (25)

o~
I M:
I
o

1j

0 for all v is trivial.
,or A >d,, implythatS>K andd,, < A < d,, impliesS‘<K. O

PROOF. Case off(v) >
Case off (v*) < 0: A < dy
Remarks
(i) This lower bound can be used in the Rogers and Shi appysacthe upper boundBRSA
can also be derived in the non-comonotonic situation.
(i) As a basket option is a special case of an Asian baskebroptith m = 1, the reasoning
above and formula (24) (witlh = 1) remains valid for basket options in the cases wi$re
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is not a comonotonic sum, providing a much simpler lower loian in [8]. No optimization
algorithm is needed.

(i) The approach in this section is general and can alsodeel in other settings in which sums
of non-comonotonic random variables show up with correfegiwith mixed signs. In [22],
Vanduffel et al. deal with cash flows with mixed signs and ob&result with a similar taste.

4. Generalization of an upper bound based on the method of Thompson and of Lord

In his paper [19], Thompson used intuition and simple optation to derive an upper bound
which tightened Rogers and Shi's upper bound considerablgdntinuously sampled Asian op-
tions. His reasoning is based upon a first order approximaital is therefore referred &sFA. In
his Ph.D. thesis [20], Thompson already suggested the iid@@ding a supplementary parameter
but he did not work it out. Thompson’s approximation is onlgtjfied wherns,W,(T" — j) has a
small variance (i.e. whes? (T — j) is small).

In case of Asian options, Lord [15] approximates the aritho®um by a shifted lognormal vari-
able — and therefore the results are referreds6' . N — and then adds according to the ideas
of Thompson a supplementary parameter.

In this section, both the methods of Thompson [19] and Lo#] {4ill be generalized to the
Asian basket case by taking into account a supplementaayneder. The numerical section 5 will
show that these methods provide most of the times the best byopinds.

Theorem 6 LetS be given by (4)-(6) andg > 0, then upper bounds based on Thompson’s method
(for X beingFA) and Lord’s reasoning (foX beingSLN) for the option priceABC (n, m, K, T')
in (3) are given by

n m—1 400 X (T — 45 =
ABC(n,m,K,T) < e’TTZ > agbj/ {cg((T —j,x,7)P (Czd((T j;xi;j)>
(=1 j=0 oo L =)0
L (T —j,x,7

(26)

with ¢ the standard normal density function, and with(T' — j, z,7) andd?(T — j, ) the condi-
tional mean and variance:

Cﬁ((T — J,2,0) :Sg(O)e(Tféag)(T*J)JFUM\/TTj

X(T nomel min(T—k:T—j))
oK —|—0'gl'\/T — a;bLo; o= T
( EpIpa VT =]

=1

(27)
and
n m—1 n m—1
(T - §,5) =5 Z Z Z a;bganbyoioy,pip, min(T — k, T — p)
i=1 k=0 h=1 p=0
( ?:1 Z o azbkazpzZ mln(T k T — j))2
_ . (28)
T—j



In case of the generalization of Thompson’s method:

AT = ) = = (SU0)er AT 1 Nar (VAT — 7)) 29)
with
pa_ K= T S b Si(0)er DT (30)
Sy St aghyy/Var (VEA (T — )
and with the first order approximations fé (7" — j) given by
SFA(T = §) = Sp(0)e=27DT=0) (1 + 6, W,(T — j)). (31)

n m—1

YT — ) = SFAN(T — j) - 5K lcrgWgT ) ZZazbkaz Wi(T — k:)] (32)

=1k
is a first order approximation of

YT = j) = S¢ (T — j) — 5K |o;W,(T zn:mz:albkaz (T — k)] (33)

i=1 k=0

In case of Lord’s generalized results, a shifted lognormgraximation forY;, (7" — 7) is of the
form:

Y'ZSLN (T - j) = Oé(&T - j) + exp [9(€7T - j) + W(&T - j)Zﬁ] ) (34)
wherea(¢, T — j),0(¢, T — 7) andw(¢, T — j) are the shift, mean and volatility functions a#gd
is a standard normal distribution. Further,

: 1 . .
(T = 3) = 2 |67 =) +exp [0(6T = ) + " w(E. T = 5], (35)
with the constant®~“" determined by the condition
n m—1
2> it (T -j)=1. (36)
/=1 j=

In this theorem7 is an arbitrary parameter. In [19], only the choicesof 1 is considered and
this in the case of an Asian option. Numerically, we find tihat apper bound is quadratic around
the optimal value of and therefore one can use an algorithm suggested by Lordd t&fermine
the optimal upper bound.

Algorithm

(i) Calculate the upper bound usipg” (T — j) (resp.u; XN (T — 7)) for three carefully chosen

values of;

(i) Fit a quadratic function irF to these computed values;
(iii) Determine the value of in which the upper bound attains its minimum;

(iv) Recalculate the upper bound in the approximately oakim

In the numerical section, we will compare the boundsfet 1, which will be called ‘ThompUB’,

with (among others) the bound obtained by the optimizashich will be called ‘ThompUBquad'.
Especially for long maturities, high volatilities and higtrike values, the effects of optimizirag
are considerable.
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initial  weight volatility dividend yield

stock stock price (in %)  (in %) (in %)
BASF 42.55 25 33.34 2.59
Bayer 48.21 20 31.13 2.63
Degussa-Huls 34.30 30 33.27 3.32
FMC 100.00 10 35.12 0.69
Schering 66.19 15 36.36 1.24
Table 1
Stock characteristics
BASF Bayer Degussa-Hils FMC Schering
BASF 1.00 0.84 —0.07 0.45 0.43
Bayer 0.84 1.00 0.08 0.62 0.57
Degussa-Hils —0.07 0.08 1.00 —0.54 -0.59
FMC 0.45 0.62 —0.54 1.00 0.86
Schering 0.43 057 —0.59 0.86 1.00
Table 2

Correlation structure

5. Numerical results

In this section we consider a numerical example for an Asiaskét option in the Black &
Scholes setting and compare the different lower and uppends We recall the following no-
tations where\ can be FAL, FA2, FA3 or GA: LB for both the comonotonic lower bound (13)
and the non-comonotonic lower bound (23) or (24), PEGU®& partially exact/comonotonic up-
per bound (19), UBRS for upper bound (18) (with a comonotonic or non-comonotdoveer
bound) based on the Rogers & Shi approach and CUB for comoicaipper bound (7). We use
the notation PECUB for the min(PECUBL1, PECUBFA2, PECUBFA3, PECUB=A), UBRS
for min(UBRSFA1, UBRSFA2, UBRSFA3, UBRSGA), LB for max(LBFA1, LBFA2, LBFA3,
LBGA), ThompUB for upper bound based on Thompson'’s first orderceqpmation withe = 1,
ThompUBquad, and SLNquad for upper bound based on the fatst approximation and on the
shift lognormal approximations, which use a numericalmpation algorithm to approximate the
optimal scales. The moneyness of the option is defined as

K
iy 2 ah;EQ [Sy(T — j)]

Negative moneyness corresponds to in-the-money optiosgjye moneyness to out-of-the-money
options. A moneyness of zero indicates that the option teetmoney. In order to illustrate our
bounds for an Asian basket options, we take a set of inputfdata[2] where the valuation re-
sults for Asian basket option with monthly averaging wergtem on a fictitious chemistry-pharma
basket that consists of the five German DAX stocks listed ié&al and 2.

The annual risk-free interest rateis equal to6% and we compute bounds for options with
three different maturity dates (half a year, one year andyieaes). The exercise prices are chosen
in such a way that Table 3 shows results for in-the-monethe&tmoney and out-of-the money
options. The averaging period of all options is five months starts five months before maturity.

In Table 3, we compare the upper and lower bounds with MonteoGlRIC) estimates. These

(37)
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Fig. 1. Comparison of bounds for an Asian basket option Witk 0.5

Monte Carlo estimates (and also the standard deviation$ §&&obtained by generating 1 000 000
paths using antithetic variables, by following the algumtof [6], [7] and of [12]. In Fig. 1 - Fig.

3 we plot the pricing error of a bound with respect to the mowesg (37) for different maturities
T'. This pricing error expressed in basis points (bp) is defased

bound— MC value
10000
i1 WSZ@)

where ‘bound’ takes the value of LB, UBRS, PECUB, ThompUBtoa SLNquad and the de-
nominator equal50.498 according to the data in Table 1.

For this data setf’A1, FA2 and FA3 lead not to comonotonic lower bounds since the correla-
tionsr,; of (12) do not have the same sign for &land ;. However, in this case the method of
Section 3 can be applied. The results from Table 3 reveathleaton-comonotonic lower bounds
LB FA1, LBFA2 and LBFA3 perform better than the comonotonic lower bound®B The non-
comonotonic lower bounds LIBA1, LB FA2 and LBFA3 equal up to the 20-th decimal the sum of
the last two terms in (24) as the sum of the first two terms iatmegligible.

From Table 3 and the figures Fig. 1 - Fig. 3, we notice that omtyshort maturities and in- and
at-the-money, UBRS outperforms all the other upper bouimdall other cases, ThompUBquad
and SLNquad provide the best upper bounds, with SLNquadniged@hompUBquad most of the
times. SLNquad is significantly sharper for long maturiaesl out-of-the money. We notice that
the lower bound is very close to the Monte Carlo value butdaseéit of its sharpness for larger
maturities. Also the precision of ThompUBquad and SLNquectéases with the maturity.
PECUB is too high to be useful in comparison with ThompUBgaad SLNquad. Only (far)
out of the money, PECUB becomes better than UBRS. It is eapyae that UBRS converges
to the constante""E?[Var(S*)]!/? for K tending to infinity, whereas both PECUB and CUB
converge to zero fofA tending to infinity. The CUB however, which can be seen as tieep
of a static hedging portfolio as mentioned before, leads wehmhigher upper bounds (see Table
3) since this bound does not take the correlations (2) intoaat. We further notice that UBRS
obtains the best values far= FA3, which by construction minimizes (a first order approxiraati

12



K Thomp Thomp SLN

T (moneyness) To compare uB UBquad quad AB UBRSA PECUBRA A
% 40 MC:10.8465 10.8582 10.8580 10.8520 10.8448 10.8556 10.9042 FA1
(—0.2181) SED.0057 10.8448 10.8558 10.9054 FA2
CUB:11.1221 10.8448 10.8554 10.9023 FA3

10.8414 10.8770 10.9290 GA
50 MC:2.7860 2.9564 2.9442 2.9415 2.7801 2.8937 3.4912 FA1
(—0.0227) SE0.0040 2.7801 2.8930 3.4919 FA2
CUB:4.3465 2.7800 2.8903 3.4376 FA3

2.6705 3.2836 3.9378 GA
60 MC:0.2338 0.3591 0.3417 0.3361 0.2299 0.4617 0.9288 FA1
(0.1728) SE0.0012 0.2299 0.4613 0.9272 FA2
CUB:1.1856 0.2300 0.4573 0.9080 FA3

0.1742 1.1034 1.0407 GA
1 40 MC:11.7157 11.7727 11.7718 11.7678 11.6984 11.8013 12.0623 FA1
(—0.2332) SE0.0097 11.6988 11.8025 12.0710 FA2
CUB:12.8736 11.6979 11.7986 12.0473 FA3

11.6679 11.8879 12.1478 GA
50 MC:4.7336 4.9739 4.9579 4.9505 4.7094 5.0155 5.7644 FA1
(—0.0415) SED.0074 4.7095 5.0127 5.7664 FA2
CUB:6.9693 4.7092 5.0007 5.6535 FA3

4.5289 5.4830 6.2004 GA
60 MC:1.4083 1.7048 1.6562 1.6542 1.3882 1.9106 2.7179 FA1
(0.1502) SED.0043 1.3875 1.9080 2.7092 FA2
CUB:3.4347 1.3886 1.8903 2.6042 FA3

1.1935 2.9853 2.9852 GA
5 40 MC:17.3030 17.6536 17.6361 17.6159 16.9863 18.1608 18.5893 FA1
(—0.3346) SED.1319 17.0030 18.1698 18.6527 FA2
CUB: 20.2517 16.9727 18.1300 18.5112 FA3

16.9010 18.5126 18.8484 GA
50 MC:12.5916 13.2374 13.1674 13.1334 12.2352 13.9249 14.5541 FA1
(—0.1807) SE0.0295 12.2421 13.8929 14.5678 FA2
CUB:16.4350 12.2282 13.7679 14.1973 FA3

11.9023 14.6519 14.9816 GA
60 MC:9.1299 10.0549 9.8545 9.8331 8.7834 11.0153 11.6879 FA1
(—0.0168) SED.0268 8.7774 10.9485 11.6439 FA2
CUB:13.4094 8.7853 10.7215 11.0728 FA3

8.2379 12.0024 12.0553 GA
70 MC: 6.6520 7.8539 7.4618 7.4451 6.3285 9.0801 9.5618 FA1
(0.1470) SE:0.0241 6.3127 9.0051 9.5048 FA2
CUB: 11.0082 6.3376 8.6661 8.8910 FA3

5.6654 10.2258 9.7925 GA

Table 3

Valuation results for Asian basket call option

of) E2[Var(s‘)], a term which is related t8? |Var(S*)1(x<a,)| showing up in the expression of
UBRSA.
We also compare ThompUB, the Asian basket option bound rddaby following Thompson’s
approach for = 1, with ThompUBquad, the bound obtained by the optimize&specially for
long maturities and high strike values, the effects of ofing & are considerable.

Conclusion The lower bound LB, which can be calculated in both comonct@md non-
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comonotonic situations, leads to very precise lower bouBdsed on our numerical tests, we
recommend the reader to use for short maturities and in-tatetanoney the upper bound UBRS,
which also can be derived in both comonotonic and non-cooomosituations. In the other cases,
SLNquad seems to be the best upper bound.
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