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Abstract

Determining the price of a basket option is not a trivial task, because

there is no explicit analytical expression available for the distribution of

the weighted sum of the assets in the basket. However, by conditioning

the price processes of the underlying assets, this price can be decomposed

in two parts, one of which can be computed exactly. For the remaining

part we first derive a lower and an upper bound based on comonotonic
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1. Introduction

One of the more extensively sold exotic options is the basket option, an option whose payoff

depends on the value of a portfolio or basket of assets. At maturity it pays off the greater of

zero and the difference between the average of the prices of the n different assets in the basket

and the exercise price.

The typical underlying of a basket option is a basket consisting of several stocks, that

represents a certain economy sector, industry or region.

The main advantage of a basket option is that it is cheaper to use a basket option for

portfolio insurance than to use the corresponding portfolio of plain vanilla options. Indeed, a

basket option takes the imperfect correlation between the assets in the basket into account and

moreover the transaction costs are minimized because an investor has to buy just one option

instead of several ones.

For pricing simple options on one underlying the financial world has generally adopted the

celebrated Black & Scholes model, which leads to a closed form solution for simple options

since the stock price at a fixed time follows a lognormal distribution. However, using the

famous Black & Scholes model for a collection of underlying stocks, does not provide us with

a closed form solution for the price of a basket option. The difficulty stems primarily from the

lack of availability of the distribution of a weighted average of lognormals, a feature that has

hampered closed-form basket option pricing characterization. Indeed, the value of a portfolio

is the weighted average of the underlying stocks at the exercise date.

One can use Monte Carlo simulation techniques (by assuming that the assets follow cor-

related geometric Brownian motion processes) to obtain a numerical estimate of the price.

Other techniques consist of approximating the real distribution of the payoffs by another more

tractable one. For instance, in industry it is common to use the lognormal distribution as an

approximation for the sum of lognormals, although it is known that this methodology leads
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sometimes to poor results. An extensive discussion of different methods can be found in the

theses of Arts (1999), Beißer (2001) and Van Diepen (2002).

Obviously, the payoff structure of a basket option resembles the payoff structure of an

Asian option. But whereas the Asian option is a path-dependent option, that is, its payoff

at maturity depends on the price process of the underlying asset, the basket option is a path-

independent option whose terminal payoff is a function of several asset prices at the maturity

date. Nevertheless, in literature, different authors tried out initial methods for Asian options

to the case of basket options. In this respect, it seems natural to adapt the methods developed

in Vanmaele et al. (2002) for valuing Asian options and indeed, we have transferred them in a

promising way to basket options.

Combining both types of options one can consider an Asian option on a basket of assets

instead of on one single asset. In this case we talk about an Asian basket option. Dahl

and Benth (2001a,b) value such options by quasi-Monte Carlo techniques and singular value

decomposition.

But as these approaches are rather time consuming, it would be vital to have accurate,

analytical and easily computable bounds or approximations of this price. As the financial in-

stitutions dealing with baskets are perhaps even more concerned about the ability of controlling

the risks involved, it is important to offer an interval of hedge parameters.

Confronted with such issues, the objective of this paper is to obtain accurate analytical lower

and upper bounds as well as approximations. To this end, we use on one hand the method of

conditioning as in Curran (1994) and in Rogers and Shi (1995), and on the other hand results

on a general technique based on comonotonic risks for deriving upper and lower bounds for

stop-loss premiums of sums of dependent random variables (see Kaas, Dhaene and Goovaerts

(2000)).

All lower and upper bounds can be expressed as an average of Black & Scholes option prices,

sometimes with a synthetic underlying asset. Therefore, hedging parameters can be obtained
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in a straightforward way.

A basket option is an option whose payoff depends on the value of a portfolio (or basket)

of assets (stocks). Thus, an arithmetic basket call option with exercise date T , n risky assets

and exercise price K generates a payoff (
∑n

i=1 aiSi(T )−K)+ at T , that is, if the sum S =∑n
i=1 aiSi(T ) of asset prices Si weighted by positive constants ai at date T is more than K,

the payoff equals the difference; if not, the payoff is zero. The price of the basket option at

current time t = 0 is given by

BC(n,K, T ) = e−rTEQ

( n∑
i=1

aiSi(T )−K

)
+

 (1)

under a martingale measure Q and with r the risk-neutral interest rate.

Assuming a Black & Scholes setting, the random variables Si(T )/Si(0) are lognormally dis-

tributed under the unique risk-neutral measure Q with parameters (r−σ2
i /2)T and σ2

i T , when

σi is the volatility of the underlying risky asset Si. Therefore we do not have an explicit

analytical expression for the distribution of the sum
∑n

i=1 aiSi(T ) and determining the price of

the basket option is not a trivial task. Since the problem of pricing arithmetic basket options

turns out to be equivalent to calculating stop-loss premiums of a sum of dependent risks, we

can apply the results on comonotonic upper and lower bounds for stop-loss premiums, which

have been summarized in Section 2.

The paper is organized as follows. Section 2 recalls from Dhaene et al. (2002) and Kaas et

al. (2000) procedures for obtaining the lower and upper bounds for prices by using the notion

of comonotonicity. In Section 3 the price of the basket option in the Black & Scholes setting

is decomposed in two parts, one of which is computed exactly. For the remaining part we

derive bounds in Section 4, first by concentrating on the comonotonicity and then by applying

the Rogers and Shi approach to carefully chosen conditioning variables. We discuss different

conditioning variables in order to determine some superiority. In Section 5 the remaining

part in the decomposition of the basket option price is approximated using a moment matching
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method. Section 6 contains some general remarks. In Section 7, several sets of numerical results

are given and the different bounds and approximations are discussed. Section 8 discusses the

pricing of Asian basket options, which can be done by the same reasoning. Section 9 concludes

the paper.

2. Some theoretical results

In this section, we recall from Dhaene et al. (2002) and the references therein the procedures

for obtaining the lower and upper bounds for stop-loss premiums of sums S of dependent

random variables by using the notion of comonotonicity. A random vector (Xc
1, . . . , X

c
n) is

comonotonic if each two possible outcomes (x1, . . . , xn) and (y1, . . . , yn) of (Xc
1, . . . , X

c
n) are

ordered componentwise.

In both financial and actuarial context one encounters quite often random variables of the

type S =
∑n

i=1Xi where the terms Xi are not mutually independent, but the multivariate

distribution function of the random vector X = (X1, X2, . . . , Xn) is not completely specified

because one only knows the marginal distribution functions of the random variables Xi. In

such cases, to be able to make decisions it may be helpful to find the dependence structure

for the random vector (X1, . . . , Xn) producing the least favourable aggregate claims S with

given marginals. Therefore, given the marginal distributions of the terms in a random variable

S =
∑n

i=1Xi, we shall look for the joint distribution with a smaller resp. larger sum, in the

convex order sense. In short, the sum S is bounded below and above in convex order (�cx) by

sums of comonotonic variables:

S
` �cx S �cx S

c,

which implies by definition of convex order that

E[(S` − d)+] ≤ E[(S− d)+] ≤ E[(Sc − d)+]

for all d in R+, while E[S`] = E[S] = E[Sc] and var[S`] ≤ var[S] ≤ var[Sc].
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2.1. Comonotonic upper bound

As proven in Dhaene et al. (2002), the convex-largest sum of the components of a random

vector with given marginals is obtained by the comonotonic sum S
c = Xc

1 +Xc
2 + · · ·+Xc

n with

S
c d=

n∑
i=1

F−1
Xi

(U), (2)

where the usual inverse of a distribution function, which is the non-decreasing and left-continuous

function F−1
X (p), is defined by

F−1
X (p) = inf {x ∈ R | FX(x) ≥ p} , p ∈ [0, 1] ,

with inf ∅ = +∞ by convention.

Kaas et al. (2000) have proved that the inverse distribution function of a sum of comonotonic

random variables is simply the sum of the inverse distribution functions of the marginal

distributions. Moreover, in case of strictly increasing and continuous marginals, the cumulative

distribution function (cdf) FSc(x) is uniquely determined by

F−1
Sc (FSc (x)) =

n∑
i=1

F−1
Xi

(FSc (x)) = x, F−1
Sc (0) < x < F−1

Sc (1). (3)

Hereafter we restrict ourselves to this case of strictly increasing and continuous marginals.

In the following theorem Dhaene et al. (2002) have proved that the stop-loss premiums of a

sum of comonotonic random variables can easily be obtained from the stop-loss premiums of

the terms.

Theorem 1. The stop-loss premiums of the sum S
c of the components of the comonotonic

random vector (Xc
1, X

c
2, . . . , X

c
n) are given by

E
[
(Sc − d)+

]
=

n∑
i=1

E

[(
Xi − F−1

Xi
(FSc (d))

)
+

]
, (F−1

Sc (0) < d < F−1
Sc (1)). (4)

If the only information available concerning the multivariate distribution function of the random

vector (X1, . . . , Xn) are the marginal distribution functions of the Xi, then the distribution
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function of Sc = F−1
X1

(U) + F−1
X2

(U) + · · · + F−1
Xn

(U) is a prudent choice for approximating the

unknown distribution function of S = X1 + · · · + Xn. It is a supremum in terms of convex

order. It is the best upper bound that can be derived under the given conditions.

2.2. Lower bound

Let X = (X1, . . . , Xn) be a random vector with given marginal cdfs FX1 , FX2 , . . . , FXn . Let

us now assume that we have some additional information available concerning the stochastic

nature of (X1, . . . , Xn). More precisely, we assume that there exists some random variable Λ

with a given distribution function, such that we know the conditional distribution, given Λ = λ,

of the random variables Xi, for all possible values of λ. We recall from Kaas et al. (2000) that

a lower bound, in the sense of convex order, for S = X1 +X2 + · · ·+Xn is

S
` = E [S | Λ] . (5)

This idea can also be found in Rogers and Shi (1995) for the continuous case.

Let us further assume that the random variable Λ is such that all E [Xi | Λ] are non-decreasing

and continuous functions of Λ and in addition assume that the cdfs of the random variables

E [Xi | Λ] are strictly increasing and continuous, then the cdf of S` is also strictly increasing

and continuous, and we get for all x ∈
(
F−1
S` (0) , F−1

S` (1)
)
,

n∑
i=1

F−1
E[Xi|Λ] (FS`(x)) = x ⇔

n∑
i=1

E
[
Xi | Λ = F−1

Λ (FS`(x))
]

= x, (6)

which unambiguously determines the cdf of the convex order lower bound S` for S. Using

Theorem 1, the stop-loss premiums of S` can be computed as:

E

[(
S
` − d

)
+

]
=

n∑
i=1

E
[(
E [Xi | Λ]− E

[
Xi | Λ = F−1

Λ (FS`(d))
])

+

]
, (7)

which holds for all retentions d ∈
(
F−1
S` (0) , F−1

S` (1)
)
.

So far, we considered the case that all E [Xi | Λ] are non-decreasing functions of Λ. The case
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where all E [Xi | Λ] are non-increasing and continuous functions of Λ also leads to a comonotonic

vector (E [X1 | Λ] , E [X2 | Λ] , . . . , E [Xn | Λ]), and can be treated in a similar way.

3. Basket options in a Black & Scholes setting: An exact part

We now shall concentrate on the pricing of basket options in the famous Black & Scholes

model by noticing that there is a part which can be calculated in an exact way. The remaining

part will be treated in subsequent paragraphs by lower and upper bounds and by approxima-

tions. Numerical computations show that the exact part contributes more than 90% to the

price of basket options.

Denoting by Si(t) the price of the i-th asset in the basket at time t, the basket is given by

S(t) =
n∑
i=1

aiSi(t),

where ai are deterministic, positive and constant weights specified by the option contract. We

assume that under the risk neutral measure

dSi(t) = rSidt+ σiSidWi(t),

where {Wi(t), t ≥ 0} is a standard Brownian motion associated with the price process of asset

i. Further, we assume the different asset prices to be instantaneously correlated according to

corr(dWi, dWj) = ρijdt. (8)

Given the above dynamics, the i-th asset price at time t equals

Si(t) = Si(0)e(r− 1
2
σ2
i )t+σiWi(t).

We can rewrite the basket as a sum of lognormal variables

S(t) =
n∑
i=1

Xi(t) =
n∑
i=1

αi(t)eYi(t), (9)
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where αi(t) = aiSi(0)e(r− 1
2
σ2
i )t(≥ 0) and Yi(t) = σiWi(t) ∼ N(0, σ2

i t) and thus Xi(t) is lognor-

mally distributed: Xi(t) ∼ LN(ln(aiSi(0)) + (r − 1
2σ

2
i )t, σ

2
i t).

In this case the stop-loss premium with some retention di, namely EQ
[
(Xi − di)+

]
, is well-

known since ln (Xi(t)) ∼ N
(
µi(t), σ

2
Yi(t)

)
with µi(t) = ln(αi(t)) and σYi(t) = σi

√
t, and equals

for di > 0

EQ[(Xi(t)− di)+] = eµi(t)+
σ2
Yi(t)

2 Φ(di,1(t))− di Φ(di,2(t)), (10)

where di,1 and di,2 are determined by

di,1(t) =
µi(t) + σ2

Yi(t)
− ln(di)

σYi(t)
, di,2(t) = di,1(t)− σYi(t), (11)

and where Φ is the cdf of the N(0, 1) distribution.

The case di < 0 is trivial.

In what follows we only consider the basket at maturity date T and for the sake of notational

simplicity, we shall drop the explicit dependence on T in Xi, αi and Yi.

For any normally distributed random variable Λ, with cdf FΛ(·), for which there exists a

dΛ ∈ R, such that Λ ≥ dΛ implies S ≥ K, it follows that

EQ[(S−K)+ | Λ] = EQ[S−K | Λ]
(5)
=
(
S
` −K

)
+
. (12)

For such Λ, we can decompose the option price (1) in the following way

e−rTEQ[(S−K)+] = e−rTEQ[EQ[(S−K)+ | Λ]] (13)

= e−rT
{∫ dΛ

−∞
EQ[(S−K)+ | Λ = λ]dFΛ(λ) +

∫ +∞

dΛ

EQ[S−K | Λ = λ]dFΛ(λ)
}
.

We shall motivate the choice of Λ and, correspondingly, of dΛ later.

The second term in (13) can be written out explicitly if for all i, (Yi,Λ) is bivariate normally

distributed. Then, Yi | Λ = λ is also normally distributed for all i with parameters µ(i) =

ri
σYi
σΛ

(
λ− EQ [Λ]

)
and σ2(i) =

(
1− r2

i

)
σ2
Yi

, where ri = r (Yi,Λ) = cov(Yi,Λ)
σYiσΛ

is a correlation
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between Yi and Λ, and therefore we easily arrive at

EQ[S | Λ] =
n∑
i=1

aiE
Q [Si(T ) | Λ] d=

n∑
i=1

aiSi(0)e(r−σ
2
i
2
r2
i )T+σiri

√
TΦ−1(V ), (14)

where the random variable V = Φ
(

Λ−EQ[Λ]
σΛ

)
is uniformly distributed on the unit interval and

thus, Φ−1(V ) = Λ−EQ[Λ]
σΛ

is a standard normal variate. Next we apply the equality∫ dΛ

−∞
ebΦ

−1(v)fΛ(λ)dλ = e
b2

2 Φ (d∗Λ − b) , d∗Λ =
dΛ − EQ[Λ]

σΛ
, (15)

where fΛ(·) is the normal density function for Λ, and with b = σiri
√
T , we can express the

second term in (13) in closed-form:

e−rT
∫ +∞

dΛ

EQ[S−K | Λ = λ]dFΛ(λ)

= e−rT
∫ +∞

dΛ

EQ[S | Λ = λ]fΛ(λ)dλ− e−rTK(1− FΛ(dΛ))

= e−rT
n∑
i=1

aiSi(0)e(r− 1
2
σ2
i r

2
i )T

∫ +∞

dΛ

eriσi
√
T Φ−1(v)fΛ(λ)dλ− e−rTK(1− Φ(d∗Λ))

=
n∑
i=1

aiSi(0)Φ(riσi
√
T − d∗Λ)− e−rTKΦ(−d∗Λ). (16)

Next we discuss the choice of the conditioning variable Λ which should not only be normally

distributed but also be chosen such that (Yi,Λ) for all i are bivariate normally distributed.

Hence, we define Λ by

Λ =
n∑
i=1

βiσiWi(T ) (17)

with βi some real numbers. Since the conditioning variable only enters the exact part (16) via

its correlation with the Yi’s, we report these correlations explicitly:

ri =
cov (σiWi(T ),Λ)√

TσiσΛ

=

∑n
j=1 βjρijσj√∑n

i=1

∑n
j=1 βiβjρijσiσj

. (18)

In this paper we consider the following types of conditioning variable Λ, motivated by the idea

that one should put as much available information of S as possible in the conditioning variable.
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Further on, we shall compare these choices to an optimal choice obtained by an optimization

procedure.

• As a first conditioning variable we take a linear transformation of a first order approxi-

mation of S (denoted by FA1):

FA1 =
n∑
i=1

e(r−σ
2
i
2

)TaiSi(0)σiWi(T ), (19)

and the correlation coefficients then read

ri =

∑n
j=1 ajSj(0)e(r−

σ2
j
2

)Tρijσj√∑n
i=1

∑n
j=1 aiSi(0)e(r−

σ2
i
2

)TajSj(0)e(r−
σ2
j
2

)Tρijσiσj

. (20)

• As a second conditioning variable (denoted by FA2), we consider

FA2 =
n∑
i=1

aiSi(0)σiWi(T ). (21)

In this case, the correlation between Yi and Λ is easily found to be

ri =

∑n
j=1 ajSj(0)ρijσj√∑n

i=1

∑n
j=1 aiSi(0)ajSj(0)ρijσiσj

. (22)

Note that FA2 is also a first order approximation of S and in fact of FA1.

• As a third conditioning variable (denoted by GA), we look at the standardized logarithm

of the geometric average G which is defined by

G =
n∏
i=1

Si(T )ai =
n∏
i=1

(
Si(0)e(r−σ

2
i
2

)T+σiWi(T )

)ai
. (23)

Indeed, we can consider

GA =
lnG− EQ[lnG]√

var[lnG]
=

∑n
i=1 aiσiWi(T )√∑n

i=1

∑n
j=1 aiajσiσjρijT

, (24)

since

EQ[lnG] =
n∑
i=1

ai

(
ln(Si(0)) + (r − σ2

i

2
)T
)

(25)

var[lnG] =
n∑
i=1

n∑
j=1

aiajσiσjρijT. (26)
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The correlation coefficients in this case are given by

ri =

∑n
j=1 ajσjρij√∑n

i=1

∑n
j=1 aiajρijσiσj

. (27)

We can determine the integration bound dΛ for each of the three different Λ’s (19), (21) and

(23), such that Λ ≥ dΛ implies that S ≥ K. Bounding the exponential function ex below by its

first order approximation 1 + x with x = σiWi(T ), respectively x =
(
r − σ2

i
2

)
T + σiWi(T ), the

integration bound corresponding to Λ = FA1 given by (19), respectively to Λ = FA2 given by

(21), is found to be

dFA1 = K −
n∑
i=1

aiSi(0)e(r−σ
2
i
2

)T , (28)

respectively, dFA2 = K −
n∑
i=1

aiSi(0)(1 + (r − σ2
i

2
)T ). (29)

When Λ is the standardized logarithm of the geometric average (GA), see (24), we use the

relationship S ≥ G ≥ K and (25)–(26) in order to arrive at

dGA =
ln(K)−

∑n
i=1 ai

(
ln(Si(0)) + (r − σ2

i
2 )T

)
√∑n

i=1

∑n
j=1 aiajσiσjρijT

. (30)

4. Bounds

In Section 3 we decomposed the basket option price into the exact part (16) and the remaining

part. Deriving bounds for the latter according to Section 2, and adding up to the exact part

we obtain the bounds for the basket option price (1).

4.1. Lower bound.

By means of Jensen’s inequality, the first term in (13) can be bounded below as follows:∫ dΛ

−∞
EQ[(S−K)+ | Λ = λ]dFΛ(λ) ≥

∫ dΛ

−∞
(EQ[S | Λ = λ]−K)+dFΛ(λ).
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By adding the exact part (16) and introducing notation (5), we end up with the inequality

EQ[(S−K)+] ≥ EQ[(S` −K)+], (31)

where we recall that S` is in convex order a lower bound of S. When S` is a sum of n comonotonic

risks we can apply the results of Section 2.2. Hereto the correlations ri (22) should all have

the same sign. For the time being we assume that the correlations are positive for all i, we

shall come back to this issue later on. Invoking (7) and (10)-(11), and substituting αi and

the standard deviation of Yi, we find the following lower bound for the price of the basket call

option:

BC(n,K, T ) ≥
n∑
i=1

aiSi(0) Φ
[
σi
√
Tri − Φ−1 (FS`(K))

]
− e−rT K (1− FS`(K)) (32)

which holds for any K > 0 and where FS`(K), according to (6), solves

n∑
i=1

aiSi(0)e(r− 1
2
r2
i σ

2
i )T+ riσi

√
T Φ−1(FS` (K)) = K. (33)

The lower bound (32)-(33) can be formulated as an average of Black & Scholes formulae

with new underlying assets and new exercise prices. The new assets S̃i are with S̃i(0) = Si(0)

and with new volatilities σ̃i = σiri for i = 1, . . . , n. The new exercise prices K̃i, i = 1, . . . , n,

are given by

K̃i = S̃i(0)e(r− σ̃
2
i
2

)T+σ̃i
√
TΦ−1(FS` (K)). (34)

Indeed,

BC(n,K, T ) ≥
n∑
i=1

ai

[
S̃i(0)Φ (d1i)− e−rT K̃i Φ (d2i)

]
(35)

with

d1i =
ln
(
S̃i(0)

K̃i

)
+ (r + σ̃2

i
2 )T

σ̃i
√
T

and d2i = d1i − σ̃i
√
T , for i = 1, . . . , n.

We stress that (7) is an equality and thus the decomposition in a sum of n terms is an optimal

one. Hence also in this sense, given a conditioning variable Λ, (32) or (35) is the best lower
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bound that can be obtained if one wants the lower bound in the form of a linear combination of

Vanilla European call options. However, the conditioning variable is still a free parameter and

its choice can be optimized. Hereby note that the integration bound dΛ is just a technical tool

for making the link between the exact part and the lower bound, but does not appear in the

final expression (32) or (35) of this lower bound because this is based on the inequality (31).

Further remark that the lower bound only depends on the conditioning variable Λ through

the correlations ri. In case ri equals one we obtain the exact price. In practice we did not

find up to now a conditioning variable Λ such that ri = 1 for all i. But we do have that for

the conditioning variables (19), (21) and (24) the lower bound is quite good. Beißer (2001),

who has obtained the same lower bound by using other arguments, chooses along intuitive

arguments the numerator of the standardized logarithm of the geometric average (24). This is

indeed a good choice since the geometric average and arithmetic average are based on the same

information. In this case, the correlation coefficients in the formulae for the lower bound are

given by (27). Note however that these correlation coefficients are independent of the initial

value of the assets in the basket which can lead to a lower quality of the lower bound when

the assets in the basket have different initial values. Beißer (2001) therefore considers also the

conditioning variable Λ given by (21) with correlations ri (22), which depend on the weights,

the initial values and the volatilities of the assets in the basket.

It is easily seen that the lower bound will coincide for the three different choices of Λ when

the initial values as well as the volatilities are equal for the different assets. When only the

volatilities σi are equal for all i then the correlation coefficients (20) and (22) coincide and

hence also the corresponding lower bounds. Similarly, when only the initial values are equal

the correlation coefficients (22) and (27) lead to the same lower bound.

Next we go deeper into the assumption of positiveness for the correlation coefficients ri (18).

This condition is needed for S` (14) to be a comonotonic sum and thus for (7) to hold and to

be applied.
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When the correlations ρij (8) are positive for all i and j then it suffices to take all coefficients

βi also with a positive sign in order to satisfy the assumption. However when a ρij is negative

a general discussion is much more involved. Therefore, we first look at the special case when

n = 2 and ρ12 = ρ21
not= ρ ≤ 0. The conditions r1, r2 ≥ 0 are equivalent to

 β1σ1 − β2σ2|ρ| ≥ 0

β2σ2 − β1σ1|ρ| ≥ 0
⇔ β2σ2|ρ| ≤ β1σ1 ≤ β2σ2

1
|ρ|
, (36)

and imply that β1 and β2 should have the same sign and differ from zero. For simplicity assume

that β1 and β2 are both strictly positive, then the condition (36) can be rewritten as

|ρ| ≤ β1σ1

β2σ2
≤ 1
|ρ|
. (37)

Note that since |ρ| ≤ 1, the second inequality is trivially fulfilled when β1σ1 ≤ β2σ2 while in

the case β1σ1 ≥ β2σ2 the first inequality is trivial. Hence only one of these inequalities has

to be checked. Beißer (2001) made a similar reasoning but only for the particular correlation

coefficients (22).

When ρ is negative, it can happen that for none of the three choices for Λ, namely (19), (21)

and (24), relation (37) is satisfied. However, since we derived a lower bound for any Λ given

by (17) we are not restricted to the three choices. Indeed, it is always possible to find a β1 and

β2 since the interval [|ρ|σ2
σ1
, 1
|ρ|

σ2
σ1

] is non-empty.

In fact, one might search for the β1 and β2 which leads to an optimal lower bound. When we

write ri, i = 1, 2 in function of x = β2σ2

β1σ1
, we find that r1 = 1+xρ√

1+x2+2xρ
and r2 = ρ+x√

1+x2+2xρ
.

If one assumes that r2 6= 1 and if we rewrite the equation defining r2, we find the relation

r1−r2ρ =
√

(1− ρ2)(1− r2
2). As a consequence, the optimal lower bound becomes the solution
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to the optimization program

max
r1,r2

LB(r1, r2) =
2∑
i=1

ai[S̃i(0)Φ(d1i)− e−rT K̃iΦ(d1i)] (38)

such that 0 ≤ r1 ≤ 1, 0 ≤ r2 < 1

2∑
i=1

aiK̃i = K

r1 − r2ρ =
√

1− ρ2

√
1− r2

2,

where we used the notation introduced in (34)-(35). Solving this problem by Lagrange opti-

mization leads to a conclusion of three cases:

1. If r2 = 0 and r1 =
√

1− ρ2, which is only possible if ρ < 0, the lower bound is maximized

under the above conditions if

a2K̃2σ2 + ρσ1(K − a2K̃2) ≤ 0 with K̃2 = S2(0)erT .

2. If r1 and r2 are strictly between 0 and 1, r1 and r2 are solutions to the equations:

e−rTϕ(Φ−1(FS`(K)))a1K̃1σ1

√
T − λ2 = 0

e−rTϕ(Φ−1(FS`(K)))a2K̃2σ2

√
T − λ2

(
−ρ+ r2

√
1−ρ2

1−r2
2

)
= 0

a1K̃1 + a2K̃2 = K

r1 − r2ρ =
√

1− ρ2
√

1− r2
2,

which are four non-linear equations in four unknowns r1, r2, λ2,Φ−1(FS`(K)) and where

ϕ is the density function of the N(0, 1) distribution.

3. If r1 = 0 and r2 =
√

1− ρ2, which is only possible if ρ < 0, the lower bound is maximized

under the above conditions if

a1K̃1σ1 + ρσ2(K − a1K̃1) ≤ 0 with K̃1 = S1(0)erT .
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We now turn to the general case for n ≥ 3 where at least one correlation ρij , defined in (8),

is supposed to be strictly negative. As a conclusion of the following statement we see that a

lower bound can be computed also in a general case. However, the optimization program will

be much more involved when there are more than two assets in the basket.

Theorem 2. There always exist coefficients βi ∈ R, i = 1, . . . , n, in (17) such that all

correlations ri, i = 1, . . . , n, (18) are positive.

Proof. Denoting A for the correlation matrix (ρij)1≤i,j≤n and putting β̃
T

= (β1σ1, . . . , βnσn),

the conditions ri ≥ 0, i = 1, . . . , n are equivalent to Aβ̃ ≥ 0.

As all variance-covariance matrices, this matrix A is symmetric and positive semi-definite.

Moreover it is non-singular and positive definite since we assume that the market is complete.

By a reasoning ex absurdo we show that at least one of the coefficients βi is strictly positive:

Assume that all βi are negative then from Aβ̃ ≥ 0 it follows that β̃
T
Aβ̃ ≤ 0 which is a

contradiction to the positive definiteness of A.

Finally, using the link between the primal and the dual of a linear programming problem, and

again by the positiveness of matrix A the assertion can then be proved. �

For a more detailed discussion we refer to Section 7.

4.2. Upper bounds.

4.2.1. Partially exact/comonotonic upper bound. Recalling that Yi | Λ = λ is normally dis-

tributed for all i with parameters µ(i) and σ2(i), see Section 3, we bound the first term of (13)

above by replacing S | Λ = λ by its comonotonic upper bound ScΛ=λ (in convex order sense),

given by

S
c
Λ=λ = (S | Λ = λ)c =

n∑
i=1

αie
riσYiΦ

−1(v)+
√

1−r2
i σYiΦ

−1(U)

where U and V = Φ
(

Λ−EQ[Λ]
σΛ

)
are mutually independent uniform(0,1) random variables.

Combining (3)-(4) with (10)-(11) and substituting αi and the standard deviation of Yi, the
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comonotonic upper bound for the first term of (13) reads:

e−rT
∫ dΛ

−∞
EQ[(S−K)+ | Λ = λ]fΛ(λ)dλ

≤ e−rT
∫ dΛ

−∞
EQ[(ScΛ=λ −K)+]fΛ(λ)dλ

= e−rT
∫ Φ(d∗Λ)

0
EQ[(ScΛ=λ −K)+] dv

=
n∑
i=1

aiSi(0)e−
1
2
σ2
i r

2
i T

∫ Φ(d∗Λ)

0
eri σi

√
T Φ−1(v)Φ

(√
1− r2

i σi
√
T − Φ−1

(
FScΛ=λ

(K)
))
dv

− e−rTK

(
Φ(d∗Λ)−

∫ Φ(d∗Λ)

0
FScΛ=λ

(K) dv

)
, (39)

where we recall that d∗Λ is defined as in (15), and the cumulative distribution FScΛ=λ
(K) is,

according to (3), determined by

n∑
i=1

aiSi(0) exp
[
(r − σ2

i

2
)T + riσi

√
TΦ−1(v) +

√
1− r2

i σi
√
TΦ−1

(
FScΛ=λ

(K)
)]

= K.

Adding (39) to the exact part (16) of the decomposition (13) results in the so-called partially

exact/comonotonic upper bound for BC(n,K, T ).

For the random variables Λ given by (19), (21) and (24) we derived a dΛ, see (28), (29) and

(30), and thus we can compute this upper bound.

Note that we can rewrite the comonotonic upper bound, applied to the first term in (13), as a

linear combination of Black & Scholes prices for European call options. For this purpose, given

Λ = λ or equivalently given V = v, we introduce some artificial underlying assets S̃i,v having

volatilities σ̃i,v = σi

√
1− r2

i and with initial value

S̃i,v(0) = Si(0)e−
1
2
σ2
i r

2
i T+riσi

√
T Φ−1(v).

We also consider new exercise prices:

K̃i,v = Si(0)e(r−σ
2
i
2

)T+riσi
√
TΦ−1(v)+

√
1−r2

i σi
√
T Φ−1(FSc

Λ=λ
(K))

.
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We also stress here that in view of the equality in (4) and given Λ = λ or equivalently, given

V = v, this linear combination of Black & Scholes prices is the best, i.e. the smallest, upper

bound constructed in this way. As for the lower bound, the choice of the conditioning variable

is an additional parameter to further optimize this upper bound but is limited by the knowledge

of an integration bound dΛ.

4.2.2. Upper bound based on lower bound. In this section we follow the ideas of Rogers and Shi

(1995) in order to derive an upper bound based on the lower bound. By Jensen’s inequality

and according to (12) we can find an error bound to the first term in (13):

0 ≤ EQ
[
EQ[(S−K)+ | Λ]−

(
S
` −K

)
+

]
=

∫ dΛ

−∞

(
EQ[(S−K)+ | Λ = λ]−

(
EQ [S | Λ = λ]−K

)
+

)
fΛ(λ)dλ

≤ 1
2

∫ dΛ

−∞
(var (S | Λ = λ))

1
2 fΛ(λ)dλ

≤ 1
2
(
EQ

[
var (S | Λ) 1{Λ<dΛ}

]) 1
2
(
EQ

[
1{Λ<dΛ}

]) 1
2 , (40)

where Hölder’s inequality has been applied in the last inequality and where 1{Λ<dΛ} is the

indicator function.

Now we shall derive an easily computable expression for (40).

The second expectation factor in the product (40) equals Φ(d∗Λ), where d∗Λ is defined in (15).

The first expectation factor in the product (40) can be expressed as

EQ
[
var (S|Λ) 1{Λ<dΛ}

]
= EQ

[
EQ[S2|Λ]1{Λ<dΛ}

]
− EQ

[
(EQ[S|Λ])21{Λ<dΛ}

]
. (41)

The second term of the right-hand side of (41) can according to (14) be rewritten as

EQ
[
(EQ[S|Λ])21{Λ<dΛ}

]
=
∫ dΛ

−∞
(EQ[S|Λ = λ])2fΛ(λ)dλ

=
n∑
i=1

n∑
j=1

aiajSi(0)Sj(0)e(2r−
σ2
i r

2
i +σ2

j r
2
j

2
)T

∫ dΛ

−∞
e(σiri+σjrj)

√
TΦ−1(v)fΛ(λ)dλ, (42)
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where we recall that Φ−1(v) = λ−EQ[Λ]
σΛ

and Φ(·) is the cumulative distribution function of a

standard normal variable. Applying the equality (15) with b = (σiri +σjrj)
√
T we can express

EQ
[
(EQ[S|Λ])21{Λ<dΛ}

]
as

n∑
i=1

n∑
j=1

aiajSi(0)Sj(0)e(2r+σiσjrirj)TΦ
(
d∗Λ − (riσi + σjrj)

√
T
)
. (43)

To transform the first term of the right-hand side of (41) we can rely on the fact that the

product of two lognormal random variables is again lognormal:

EQ
[
S

2|Λ
]

=
n∑
i=1

n∑
j=1

EQ [aiajSi(T )Sj(T ) | Λ]

=
n∑
i=1

n∑
j=1

aiajSi(0)Sj(0)e(2r−
σ2
i +σ2

j
2

)T+rijσij
√
TΦ−1(V )+ 1

2
(1−r2

ij)Tσ
2
ij , (44)

with σ2
ij = σ2

i + σ2
j + 2σiσjρij and rij = σi

σij
ri + σj

σij
rj , and where V = Φ(Λ−EQ[Λ]

σΛ
) is uniformly

distributed on the interval (0, 1). Next we apply (15) again with b = rijσij
√
T = (σiri +

σjrj)
√
T :

EQ
[
EQ[S2 | Λ]1{Λ<dΛ}

]
=

n∑
i=1

n∑
j=1

aiajSi(0)Sj(0)e(2r−
σ2
i +σ2

j
2

)T+ 1
2(1−r2

ij)σ2
ijT
∫ dΛ

−∞
erijσij

√
TΦ−1(v)fΛ(λ)dλ

=
n∑
i=1

n∑
j=1

aiajSi(0)Sj(0)e(2r+σiσjρij)TΦ
(
d∗Λ − (riσi + σjrj)

√
T
)
. (45)

Combining (43) and (45) into (41), and then substituting Φ(d∗Λ) and (41) into (40) we get the

following expression for the error bound, shortly denoted by ε(dΛ)

ε(dΛ) =
1
2
{Φ(d∗Λ)}

1
2


n∑
i=1

n∑
j=1

aiajSi(0)Sj(0)e(2r+σiσjrirj)TΦ
(
d∗Λ − (riσi + σjrj)

√
T
)
×

×
(
eσiσj(ρij−rirj)T − 1

)}1/2
. (46)
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The upper bound for the basket option price BC(n,K, T ) is then given by adding the lower

bound (32) (which contains the exact part (16)) and the error term (46) multiplied with the

discount factor e−rT .

5. Approximations

In this section we investigate approximations to the option price by using a moment matching

method.

From Section 3 we know that S | Λ = λ is a sum of n lognormal random variables with

parameters µ(i) + ln(αi) and σ2(i), i = 1, . . . , n. We approximate this sum by assuming that it

is also lognormally distributed with parameters µ and σ (depending on Λ = λ or equivalently

on V = v = Φ(λ−E
Q[Λ]

σΛ
)) and having the same first two moments as the sum itself:

eµ+ 1
2
σ2

= EQ[S | Λ = λ] (47)

e2(µ+σ2) = EQ[S2 | Λ = λ]. (48)

Explicit expressions for the right-hand sides are given by (14) and (44) for V = v.

Taking the logarithm of both sides of (47)-(48) and solving for σ2 yields

σ2 = 2(µ+ σ2)− 2(µ+
1
2
σ2) = lnEQ[S2 | Λ = λ]− 2 lnEQ[S | Λ = λ].

Then, the integrand of the first integral in (13) can be approximated by a European call option

price for which the standard Black & Scholes formula (10)-(11) applies, leading to:∫ dΛ

−∞
EQ[(S−K)+ | Λ = λ]dFΛ(λ) ≈

∫ dΛ

−∞

[
EQ[S | Λ = λ]Φ(d1(λ))−KΦ(d2(λ))

]
dFΛ(λ),

with

d1(λ) =
1
2 lnEQ[S2 | Λ = λ]− ln(K)

σ
, d2(λ) = d1(λ)− σ.

Instead of approximating S | Λ = λ when Λ is given by (19) or (21), we consider the difference

H between the sum S and its approximation Λ +K − dΛ (as in the derivation of dΛ):

S−K = (S− (Λ +K − dΛ))− (K − (Λ +K − dΛ)) not= H− K̃,
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and approximate H | Λ = λ by a lognormal with parameters µH and σ2
H (depending on Λ = λ,

or equivalently on V = v) using a moment matching method:

eµH+ 1
2
σ2
H = EQ[H | Λ = λ] = EQ[S | Λ = λ]− (λ+K − dΛ)

e2(µH+σ2
H) = EQ[H2 | Λ = λ]

= EQ[S2 | Λ = λ]− 2(λ+K − dΛ)EQ[S | Λ = λ] + (λ+K − dΛ)2,

where the right-hand sides are expressed in terms of the expectations (14) and (44) for V = v.

Note that K̃ = dΛ − Λ is known and positive for a given Λ = λ with λ ≤ dΛ.

An approximation to the first integral in (13) then reads∫ dΛ

−∞
EQ[(H− K̃)+ | Λ = λ]dFΛ(λ)

≈
∫ dΛ

−∞

[
(EQ[S | Λ = λ]− (λ+K − d))Φ(d1(λ))− (dΛ − λ)Φ(d2(λ))

]
dFΛ(λ)

=
∫ Φ(d∗Λ)

0

[
(EQ[S | V = v]− (σΛΦ−1(v) + EQ[Λ] +K − dΛ))Φ(d1(v))

−(dΛ − σΛΦ−1(v)− EQ[Λ])Φ(d2(v))
]
dv

with d∗Λ defined in (15) and with, recalling that λ = σΛΦ−1(v) + EQ[Λ],

d1(λ) = d1(v) =
µH + σ2

H − ln(σΛΦ−1(v) + EQ[Λ] +K − dΛ)
σH

, d2(v) = d1(v)− σH.

We can further approximate this result by assuming that the parameters µH and σ2
H are

independent of λ and thus are constant. Since the main contribution to this integral comes

from values λ close to dΛ (for λ � dΛ, (S −K)+ | Λ = λ equals zero by definition of dΛ), we

now put

µH + σ2
H =

1
2

lnEQ[H2 | Λ = dΛ]

σ2
H = 2(µH + σ2

H)− 2 lnEQ[H | Λ = dΛ].

Note that d1 and d2 however remain dependent on λ through the term − ln(λ+K − dΛ) in de

numerator.
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In case Λ = GA = lnG−EQ[lnG]√
var[lnG]

(24), we follow the approach of Curran (1994) and consider

the difference between the sum S and the geometric average G:

S−K = (S−G)− (K −G) not= H− K̃,

where H = S − G and K̃ = K − G, and approximate H | G by a lognormal variable using a

moment matching method. Note that we have a new strike price K̃ = (K−G) which is known

once G (or equivalently Λ) is known, and which is positive for G = g and g ≤ K. The latter is

also equivalent with Λ = λ and λ ≤ dGA. Hence the first integral in (13) can be transformed

to: ∫ dGA

−∞
EQ [(S−K)+ | Λ = λ] dFΛ(λ) =

∫ K

0
EQ [(S−K)+ | G = g] dFG(g).

Thus we assume that H | G = g is lognormal with parameters µH and σ2
H (depending on G = g)

which are such that

eµH+ 1
2
σ2
H = EQ[H | G = g] = EQ[S | G = g]− g, (49)

e2(µH+σ2
H) = EQ[H2 | G = g]

= EQ[S2 | G = g]− 2gEQ[S | G = g]− g2, (50)

where the first two moments of S | G = g are given by (14) and (44) with Φ−1(v) = ln g−EQ[lnG]
var[lnG]

((25)-(26)). Taking the logarithm of both sides of (49)–(50) and solving for σ2
H, we find

σ2
H = 2(µH + σ2

H)− 2(µH +
1
2
σ2
H)

= lnEQ[H2 | G = g]− 2 lnEQ[H | G = g].

By assuming that the distribution of H | G = g is lognormal, the integrand of the first integral

in (13) can be approximated by a European call option price for which the standard Black &

Scholes formula (10)-(11) applies, leading to:∫ K

0
EQ [(S−K)+ | G = g] dFG(g)

≈
∫ K

0

[
(EQ[S | G = g]− g)Φ(d1(g))− (K − g)Φ(d2(g))

]
dFG(g)
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with

d1(g) =
µH + σ2

H − ln K̃
σH

=
1
2 lnEQ[H2 | G = g]− ln(K − g)

σH

and

d2(g) = d1(g)− σH.

Note that the moments depend in fact on g and have to be recomputed for each value that

g takes. One could avoid this by assuming that the moments are constant and equal to the

moments for G = K. Thus the first integral in (13) is in that case approximated by∫ K

0

[
(EQ[S | G = K]− g)Φ(d1(g))− (K − g)Φ(d2(g))

]
dFG(g) (51)

with

d1(g) =
1
2 lnEQ[H2 | G = K]− ln(K − g)

σH

and

d2(g) = d1(g)− σH,

where σ2
H = lnE[H2 | G = K]− 2 lnE[H | G = K].

In the formulas (14) and (44) we then have that Φ−1(v) = lnK−EQ[lnG]
var[lnG] = dGA. Fixing the

moments on G = K is motivated by the fact that the main contribution to the integral comes

from values of g close to K since for g � K it holds that (S−K)+ | G = g equals zero.

The appearing integrals have to be computed by means of numerical quadrature. Numerical

experiments are carried out for the different conditioning variables and we consider both cases

of variable moments and of constant moments.

6. General remarks

In this section we summarize some general remarks:

• The price of the basket put option with exercise date T , n underlying assets and fixed

exercise price K, given by BP (n,K, T ) = e−rTEQ
[
(K − S(T ))+

]
satisfies the put-call
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parity at the present: BC(n,K, T )−BP (n,K, T ) = S(0)− e−rTK. Hence, we can derive

bounds for the basket put option from the bounds for the call. These bounds for the put

option coincide with the bounds that are obtained by applying the theory of comonotonic

bounds or the Rogers and Shi approach directly to basket put options. This stems from

the fact that the put-call parity also holds for these bounds.

• The case of a continuous dividend yield qi can easily be dealt with by replacing the

interest rate r by r − qi.

• For n = 1 there is only one asset in the basket and hence the comonotonic sums ScΛ=λ

and S` coincide with the sum S which consists of only one term: this asset. In this case,

the comonotonic upper and lower bound reduce to the well-known Black & Scholes price

for an option on a single asset. This is also true for the bound based on the Rogers &

Shi approach since the error bound is zero.

• As for the Asian options (see Vanmaele et al. (2002)), we can easily derive the hedging

Greeks for the upper and lower bounds as well as for the approximations of a basket

option since we found analytical expressions for them. Moreover the expressions are in

terms of Black & Scholes prices.

7. Numerical illustration

In this section we give a number of numerical examples on basket options in the Black &

Scholes setting. We first concentrate on the bounds proposed in Section 4 and afterwards on

the approximations in Section 5. Therefore, we first discuss Tables 1, 3 and 5 and secondly,

Tables 2, 4 and 6.

We introduce the following notations where Λ can be FA1, FA2, GA: LBΛ for lower bound,

PECUBΛ for partially exact/comonotonic upper bound, and UBΛ for upper bound based on
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lower bound.

The first set of input data was taken from Arts (1999). Note that we consider here the

forward-moneyness, which is defined as the ratio of the forward price of the basket and the

exercise price K. The input parameters correspond to a two-dimensional basket. We first

consider equal weights and afterwards, unequal weights. The spot prices are first assumed to

be equal to 100 units, and then allowed to vary. The risk-free interest rate is fixed at 5% and we

assume no dividends. Moneyness ranges from 10% in-the-money to 10% out-of-the-money. For

the time to maturity T two cases are considered (T = 1, 3 years). For the correlation (8), two

values are considered, representing low and high correlation respectively. We consider equal

volatilities (high and low) for both individual assets in the basket.

Concerning the upper bounds, we present only the results that lead to the best upper bound

together with the corresponding type of the bound. That is, the upper bound given in the

Tables 1, 3 and 5 is the bound which satisfies min(UBΛ, PECUBΛ), where the bounds were

computed for all three choices FA1, FA2 and GA of the conditioning variable Λ. The detailed

numerical results for all bounds are available upon request. Notice that, in general, the Monte

Carlo (MC) price is closer to the best lower bound than to the best upper bound. One can also

note that the relative difference between the best lower and upper bound is smaller for higher

correlation. We start by discussing Table 1 which corresponds to the case of equal weights,

spot prices and volatilities for both assets. In this case the lower bound (32)-(33) applied with

Λ given by (19), (21) and (24), which are denoted by LBFA1, LBFA2 and LBGA, are equal.

The optimized lower bound LBopt, which is obtained by solving the optimization program (38),

gave practically the same values, therefore it is not reported in the table. From all the upper

bounds considered, UBGA uniformly performs the best.

Table 3 refers to the case of unequal weights and spot prices with equal volatilities. From

Table 3, we notice that LBFA1 = LBFA2 gives sharper results than LBGA. The lower

bound LBopt only slightly improves the lower bound LBFA1. However, for high volatilities,
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small correlation ρ and long maturity, the improvement is significant. As for the upper

bounds, we could observe some pattern, namely for out- and at-the-money options, and in-

the-money options with the maturity of three years, the upper bound UBFA1 performs the

best for smaller volatility (0.2), whereas UBFA2 is the best for larger volatility (0.4) with

the exception of three years to maturity out-of-the-money option. In the latter case the

partially exact/comonotonic upper bound PECUBGA based on the standardized logarithm

of the geometric average outperforms the other bounds for larger volatility. For in-the-money

options with the maturity of one year, the pattern is reversed compared to that of in-the-money

options with three years to maturity. The second set of input data was taken from Brigo et

al. (2002). Here we consider two assets with weights 0.5956 and 0.4044, and spot prices of

26.3 and 42.03, respectively. Maturity is equal to 5 years. The discount factor at payoff is

0.783895779. This example refers to a realistic basket, for which we allow the volatilities and

correlations of individual assets to vary in order to facilitate the comparative price analysis.

From Table 5 we see that the optimized lower bound gives the best value, and that the lower

bound LBGA leads to the closest values to LBopt. The lower bound LBFA2 led to the worst

results and is therefore not reported. For this example the partially exact/comonotonic upper

bound PECUBFA2, i.e. with Λ given by FA2 (21), turns out to be the sharpest upper bound,

except for very high correlation when PECUBGA is to be preferred, and for σ1 = 0.1, σ2 = 0.3

(for both ρ = 0.2 and ρ = 0.6) when UBGA is the best.

As mentioned before for a negative correlation between the assets in the basket the lower

bound (32) is not applicable if any of the correlations r1 and r2 is negative. If this happens,

one should turn to the optimization procedure which enables to choose the coefficients β1

and β2 such that r1 and r2 would be positive. Consider a case where σ1 = 0.3, σ2 = 0.6,

and ρ = −0.6. In this instance we have that the correlations r1 and r2 are positive for the

conditioning variables FA1 and GA and therefore we can find the lower bounds based on those

variables: LBFA1 = 29.39746493, LBGA = 29.77084284. The optimization procedure (38)
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gives LBopt = 29.773172314, which shows again that the geometric average is a fairly good

choice for a conditioning variable when a1 = a2, and S1(0) = S2(0).

We now turn to the discussion of the approximations. In Tables 2 and 4, we used as in Tables

1 and 3 the dataset of Arts respectively with equal weights and spot prices and with different

weights and spot prices, but in both cases with equal volatility. The numerical results clearly

show that the approximations improve for shorter maturities and this for in-the-money, at-the-

money as well as for out-of-the-money, and always lie between the corresponding bounds.

For long maturities (3 year) and high volatility (0.4), the approximation by usingH and constant

moments turns out to be disappointing. However, the other approximation methods seem to

deliver approximating prices with an equivalent level of high quality.

In Table 6, we discuss the approximations for the dataset of Brigo et al. (2002) used in

Table 5 with different weights, different spot prices and different correlations. The numerical

results for a very high correlation (0.99) are excellent since in that case, the proportion of the

exact part in the price is more than 99%. We have attempted to prove this fact analytically

by using the derivative of the exact part with respect to the correlation, but the expression of

the derivative is too long and too complicated to obtain straightforward general conclusions.

For this dataset, the moment matching method with the first order approximation FA1 and with

fixed moments turns out to be somewhat poor, especially for high volatility and low correlation.

For the first order approximation FA2 and with fixed moments, nearly all approximation values

are close to the MC value but are smaller than the lower bound LBopt. In general, all moment

matching methods with variable moments superperform the methods with fixed moments and

deliver approximating prices which are close to the Monte Carlo estimates. Since nowadays even

quite simple PC’s can treat numerical quadratures with high speed, we therefore recommend

to use moment matching approximations with variable moments.
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8. Asian basket options

An Asian basket option is an option whose payoff depends on an average of values at different

dates of a portfolio (or basket) of assets, or which is equivalent on the portfolio value of an

average of asset prices taken at different dates. The price of a discrete arithmetic Asian basket

call option at current time t = 0 is given by

ABC(n,K, T ) = e−rTEQ

 n∑
`=1

a`

m−1∑
j=0

bjS`(T − j)−K


+


with a` and bj positive coefficients. For T ≤ m − 1 we call this Asian basket call option in

progress and for T > m− 1, we call it forward starting.

Remark that the double sum S =
∑n

`=1 a`
∑m−1

j=0 bjS`(T − j) is a sum of lognormal distributed

variables:

S =
mn∑
i=1

Xi =
mn∑
i=1

αie
Yi

with

αi = ad i
m
eb(i−1) mod mSd i

m
e(0)e

(r− 1
2
σ2

d im e
)(T−(i−1) mod m)

and

Yi = σd i
m
eWd i

m
e(T − (i− 1) mod m) ∼ N

(
0, σ2

Yi = σ2
d i
m
e(T − (i− 1) mod m)

)
for all i = 1, . . . ,mn, where dxe = inf{k ∈ Z | x ≤ k}.

Hence, we can apply the general formulae for lognormals from Section 3 (see also Vanmaele et

al. (2002)).

9. Conclusion

We derived lower and upper bounds and approximations for the price of the arithmetic basket

call options by decomposing the option price into an exact and an approximating part, and
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applying different techniques to the latter, such as firstly results based on comonotonic risks

and bounds for stop-loss premiums of sums of dependent random variables as in Kaas, Dhaene

and Goovaerts (2000), and secondly, conditioning on some random variable as in Rogers and

Shi (1995), and finally using a moment matching method. Notice that all bounds and approx-

imations have analytical and easily computable expressions. For the numerical illustration it

was important to find and motivate a good choice of the conditioning variables appearing in the

formulae. We also managed to find the best lower bound through an optimization procedure.
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Table 1: Comparing bounds, equal weights and spot prices.

Data T corr vol MC LBFA1=LBFA2=LBGA UB Type
n = 2 10%OTM 1 0.3 0.2 2.90 2.8810 3.2428 UBGA
r = 0.05 K = 115.64 0.4 9.12 9.0280 10.2168 UBGA
a1 = a2 = 0.5 0.7 0.2 3.72 3.7172 3.8605 UBGA
S1(0) = S2(0) = 100 0.4 10.88 10.8647 11.3373 UBGA

10%OTM 3 0.3 0.2 7.39 7.3290 8.2487 UBGA
K = 127.80 0.4 18.85 18.4242 21.6818 UBGA

0.7 0.2 8.92 8.9054 9.2733 UBGA
0.4 21.66 21.5913 22.8329 UBGA

ATM 1 0.3 0.2 6.44 6.4245 6.6658 UBGA
K = 105.13 0.4 12.90 12.8088 13.7572 UBGA

0.7 0.2 7.35 7.3445 7.4447 UBGA
0.4 14.64 14.6281 15.0098 UBGA

ATM 3 0.3 0.2 11.17 11.1071 11.8210 UBGA
K = 116.18 0.4 22.41 21.9985 24.8118 UBGA

0.7 0.2 12.69 12.6885 12.9784 UBGA
0.4 25.12 25.0568 26.1324 UBGA

10%ITM 1 0.3 0.2 12.37 12.3620 12.4836 UBGA
K = 94.61 0.4 17.88 17.8093 18.5009 UBGA

0.7 0.2 13.08 13.0861 13.1412 UBGA
0.4 19.47 19.4565 19.7426 UBGA

10%ITM 3 0.3 0.2 16.34 16.2843 16.7788 UBGA
K = 104.57 0.4 26.62 26.2563 28.5970 UBGA

0.7 0.2 17.71 17.6942 17.9022 UBGA
0.4 29.19 29.1130 30.0151 UBGA

Table 2: Comparing approximations, equal weights and spot prices.

S|FA1=λ H|FA1=λ S|FA2=λ H|FA2=λ S|G=g H|G=g

λ λ λ λ λ λ g g g
K T corr vol MC variable variable = dFA1 variable variable = dFA2 variable variable = K

115.64 1 0.3 0.2 2.90 2.8993 2.9010 2.9045 2.8995 2.9010 2.9082 2.8982 2.900 2.9008
0.4 9.12 9.1186 9.1215 9.1853 9.1168 9.1178 9.1697 9.1110 9.1146 9.1426

0.7 0.2 3.72 3.7190 3.7191 3.7205 3.7190 3.7190 3.7226 3.7187 3.7190 3.7191
0.4 10.88 10.8800 10.8818 10.8939 10.8797 10.8815 10.8889 10.8780 10.8796 10.8820

127.80 3 0.3 0.2 7.39 7.3874 7.3915 7.4248 7.3900 7.3968 7.4865 7.3824 7.3865 7.4008
0.4 18.85 18.8980 18.8366 19.7958 18.8819 18.8072 19.4074 18.8526 18.8025 19.1520

0.7 0.2 8.92 8.9153 8.9165 8.9232 8.9154 8.9160 8.9534 8.9140 8.9152 8.9163
0.4 21.66 21.6703 21.6755 21.8864 21.6683 21.6698 21.7629 21.6599 21.6609 21.6956

105.13 1 0.3 0.2 6.44 6.4350 6.4355 6.4369 6.4353 6.4361 6.4377 6.4349 6.4359 6.4368
0.4 12.90 12.8929 12.8880 12.9207 12.8917 12.8859 12.9139 12.8908 12.8907 12.9143

0.7 0.2 7.35 7.3461 7.3463 7.3465 7.3462 7.3465 7.3466 7.3461 7.3464 7.3464
0.4 14.64 14.6420 14.6429 14.6465 14.6416 14.6421 14.6453 14.6413 14.6425 14.6447

116.18 3 0.3 0.2 11.17 11.1616 11.1599 11.1766 11.1656 11.1670 11.1977 11.1606 11.1620 11.1741
0.4 22.41 22.4383 22.3577 22.8886 22.4224 22.3375 22.6925 22.4102 22.3521 22.6520

0.7 0.2 12.69 12.6975 12.6981 12.6999 12.6984 12.6994 12.7055 12.6971 12.6980 12.6991
0.4 25.12 25.1308 25.1312 25.2160 25.1270 25.1236 25.1702 25.1229 25.1229 25.1538

94.61 1 0.3 0.2 12.37 12.3707 12.3702 12.3696 12.3703 12.3700 12.3701 12.3700 12.3702 12.3708
0.4 17.88 17.8828 17.8748 17.8884 17.8835 17.8755 17.8858 17.8826 17.8793 17.8973

0.7 0.2 13.08 13.0876 13.0876 13.0872 13.0875 13.0875 13.0875 13.0874 13.0876 13.0876
0.4 19.47 19.4685 19.4682 19.4699 19.4688 19.4683 19.4694 19.4684 19.4693 19.4711

104.57 3 0.3 0.2 16.34 16.3318 16.3276 16.3333 16.3318 16.3283 16.3401 16.3312 16.3302 16.3392
0.4 26.62 26.6469 26.5613 26.8472 26.6383 26.5553 26.7548 26.6372 26.5741 26.8217

0.7 0.2 17.71 17.7021 17.7020 17.7026 17.7021 17.7024 17.7039 17.7019 17.7026 17.7034
0.4 29.19 29.1779 29.1735 29.2125 29.1735 29.1689 29.1950 29.1746 29.1737 29.2005



Table 3: Comparing bounds, different weights and spot prices.

LBFA1
Data T corr vol MC LBGA =LBFA2 LBopt UB Type

n = 2 10%OTM 1 0.3 0.2 2.57 2.4677 2.5611 2.5611 2.8737 UBFA1
r = 0.05 K = 101.76 0.4 8.07 7.7665 7.9855 7.9855 9.0400 UBFA2
a1 = 0.3 0.7 0.2 3.28 3.2381 3.2788 3.2788 3.4057 UBFA1
a2 = 0.7 0.4 9.61 9.4864 9.5767 9.5767 9.9963 UBFA2
S1(0) = 130 10%OTM 3 0.3 0.2 6.53 6.2970 6.4823 6.4823 7.3026 UBFA1
S2(0) = 70 K = 112.47 0.4 16.65 15.8604 16.2771 16.2772 18.9776 PECUBGA

0.7 0.2 7.84 7.7706 7.8478 7.8478 8.1762 UBFA1
0.4 19.07 18.8624 19.0234 19.0234 20.0905 PECUBGA

ATM 1 0.3 0.2 5.69 5.5582 5.6750 5.6750 5.8848 UBFA1
K = 92.51 0.4 11.39 11.0722 11.3112 11.3113 12.1387 UBFA2

0.7 0.2 6.47 6.4267 6.4724 6.4724 6.5595 UBFA1
0.4 12.90 12.7972 12.8889 12.8889 13.2216 UBFA2

ATM 3 0.3 0.2 9.89 9.6011 9.8066 9.8066 10.4308 UBFA1
K = 102.24 0.4 19.76 18.9795 19.4182 19.4186 21.9157 UBFA2

0.7 0.2 11.18 11.0985 11.1778 11.1778 11.4310 UBFA1
0.4 22.12 21.9132 22.0729 22.0729 23.0263 UBFA2

10%ITM 1 0.3 0.2 10.90 10.7924 10.8905 10.8906 10.9984 UBFA2
K = 83.26 0.4 15.78 15.4667 15.7025 15.7027 16.3073 UBFA1

0.7 0.2 11.52 11.4815 11.5195 11.5195 11.5680 UBFA2
0.4 17.13 17.0467 17.1329 17.1329 17.3822 UBFA1

10%ITM 3 0.3 0.2 14.41 14.1593 14.3585 14.3586 14.7923 UBFA1
K = 92.02 0.4 23.46 22.7133 23.1587 23.1598 25.2074 UBFA2

0.7 0.2 15.58 15.5092 15.5827 15.5827 15.7644 UBFA1
0.4 25.69 25.4874 25.6415 25.6416 26.4286 UBFA2

Table 4: Comparing approximations, different weights and spot prices.

S|FA1=λ H|FA1=λ S|FA2=λ H|FA2=λ S|G=g H|G=g

λ λ λ λ λ λ g g g
K T corr vol MC variable variable = dFA1 variable variable = dFA2 variable variable = K

101.76 1 0.3 0.2 2.57 2.5699 2.5712 2.5743 2.5700 2.5712 2.5774 2.5639 2.5718 2.5762
0.4 8.07 8.0619 8.0648 8.1182 8.0604 8.0616 8.1049 8.0381 8.0463 8.1024

0.7 0.2 3.28 3.2803 3.2804 3.2816 3.2803 3.2803 3.2835 3.2797 3.2805 3.2904
0.4 9.61 9.5897 9.5913 9.6017 9.5895 9.5910 9.5974 9.5854 9.5870 9.6194

112.47 3 0.3 0.2 6.53 6.5315 6.5352 6.5631 6.5337 6.5396 6.6163 6.5128 6.5239 6.5586
0.4 16.65 16.6792 16.6303 17.4395 16.6655 16.6048 17.1084 16.6410 16.5471 16.9490

0.7 0.2 7.84 7.8563 7.8573 7.8631 7.8564 7.8568 7.8895 7.8534 7.8549 7.8785
0.4 19.07 19.0910 19.0956 19.2774 19.0892 19.0907 19.1703 19.0777 19.0689 19.2126

92.51 1 0.3 0.2 5.69 5.6838 5.6842 5.6854 5.6841 5.6848 5.6861 5.6829 5.6815 5.6857
0.4 11.39 11.3825 11.3787 11.4058 11.3814 11.3768 11.4001 11.3729 11.3605 11.4132

0.7 0.2 6.47 6.4738 6.4740 6.4741 6.4739 6.4741 6.4742 6.4741 6.4736 6.4849
0.4 12.90 12.9007 12.9015 12.9045 12.9004 12.9008 12.9035 12.8988 12.8974 12.9286

102.24 3 0.3 0.2 9.89 9.8527 9.8515 9.8654 9.8561 9.8577 9.8833 9.8454 9.8388 9.8717
0.4 19.76 19.7930 19.7267 20.1726 19.7793 19.7090 20.0060 19.7904 19.6592 20.0299

0.7 0.2 11.18 11.1854 11.1860 11.1875 11.1862 11.1871 11.1923 11.1845 11.1835 11.2067
0.4 22.12 22.1363 22.1368 22.2092 22.1330 22.1302 22.1698 22.1275 22.1141 22.2466

83.26 1 0.3 0.2 10.90 10.8979 10.8975 10.8969 10.8976 10.8973 10.8973 10.8956 10.8914 10.8944
0.4 15.78 15.7650 15.7585 15.7697 15.7656 15.7591 15.7674 15.7680 15.7366 15.7825

0.7 0.2 11.52 11.5208 11.5207 11.5204 11.5207 11.5207 11.5206 11.5215 11.5198 11.5296
0.4 17.13 17.1432 17.1429 17.1444 17.1434 17.1430 17.1439 17.1433 17.1392 17.1671

92.02 3 0.3 0.2 14.41 14.3989 14.3955 14.4002 14.3989 14.3962 14.4060 14.4012 14.3784 14.4066
0.4 23.46 23.4933 23.4217 23.6611 23.4859 23.4162 23.5825 23.5271 23.3639 23.6957

0.7 0.2 15.58 15.5895 15.5893 15.5899 15.5895 15.5898 15.5910 15.5900 15.5866 15.6074
0.4 25.69 25.6972 25.6936 25.7267 25.6947 25.6895 25.7116 25.6950 25.6774 25.7963



Table 5: Comparing bounds, different weights and spot prices, different correlations.

Data σ1 σ2 corr MC LBFA1 LBGA LBopt UB Type
n = 2 0.1 0.3 0.2 26.2824 26.2206 26.2346 26.2380 26.7612 UBGA
T = 5 years 0.6 27.4454 27.4304 27.4321 27.4356 27.7353 UBGA
K = 32.661 0.99 28.5055 28.5083 28.5083 28.5084 28.5213 PECUBGA
r = 4.8696% 0.1 0.6 0.2 34.0869 33.9755 34.0185 34.0233 34.7658 PECUBFA2
a1 = 0.5956 0.6 35.5348 35.4995 35.5172 35.5206 35.9272 PECUBFA2
a2 = 0.4044 0.99 36.8755 36.8709 36.8713 36.8714 36.8829 PECUBGA
S1(0) = 26.3 0.3 0.6 0.2 39.8587 38.8396 38.9627 38.9640 42.6078 PECUBFA2
S2(0) = 42.03 0.6 42.5568 42.2886 42.3316 42.3318 43.9641 PECUBFA2

0.99 45.1953 45.1919 45.1926 45.1926 45.2273 PECUBGA

Table 6: Comparing approximations, different weights and spot prices, different correlations.

S|FA1=λ H|FA1=λ S|FA2=λ H|FA2=λ S|G=g H|G=g

λ λ λ λ λ λ g g g
σ1 σ2 corr MC variable variable = dFA1 variable variable = dFA2 variable variable = K
0.1 0.3 0.2 26.2824 26.2747 26.2776 26.2542 26.2699 26.2742 26.2350 26.2828 26.2812 26.2979

0.6 27.4454 27.4451 27.4457 27.4400 27.4427 27.4449 27.4355 27.4465 27.4460 27.4520
0.99 28.5055 28.5084 28.5084 28.5080 28.5084 28.5084 28.5080 28.5084 28.5084 28.5085

0.1 0.6 0.2 34.0869 34.1239 34.0882 34.3969 34.0687 34.0865 33.9912 34.0729 34.1170 34.0761
0.6 35.5348 35.5478 35.5380 35.6267 35.5315 35.5380 35.4984 35.5342 35.5464 35.5348
0.99 36.8755 36.8713 36.8714 36.8753 36.8715 36.8715 36.8652 36.8714 36.8714 36.8714

0.3 0.6 0.2 39.8587 40.3488 39.7310 42.7168 39.9498 39.6478 39.6556 40.0362 39.7428 41.0706
0.6 42.5568 42.6382 42.5399 43.2703 42.5406 42.4922 42.5142 42.5692 42.5429 42.7702
0.99 45.1953 45.1931 45.1932 45.2111 45.1927 45.1927 45.1917 45.1927 45.1927 45.1928


