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Abstract – We study transversely averaged concentration profiles of fingering dynamics from
numerical simulations. Such profiles are studied here for a comparative fluctuation analysis
between density fingering (DF) and viscous fingering (VF) envolving in a quite similar nonlinear
regime. Although many physical properties influence the fingering pattern formation in miscible
displacements, there are few measurements obtained from the averaged profiles, as the mixing
length, that help to characterize concentration fluctuations due to self-correlations in the interfacial
structure. Besides mixing length, scaling exponents (α) from detrended fluctuation analysis (DFA)
are computed here for DF and VF simulations. The scaling exponent evolution is compared
between DF and VF cases providing a specific signature for each kind of process: DF with
α= 1.93± 0.04 and VF with α= 1.82± 0.04. Our analysis, based on DFA, provides a new approach
for quantifying the fingering pattern formation and, in particular, the fine fluctuations differences
between viscous and density fingering in miscible fluids displacements.

Copyright c© EPLA, 2010

Introduction. – Directional growth characterization
has long been recognized of special interest in pattern
formation theory [1,2]. A typical example may be found
in the study of fingering phenomena that can occur at
the interface between two fluids with different physi-
cal properties. If a less viscous fluid displaces a more
viscous one in a porous medium or Hele-Shaw cell (two
glass plates separated by a thin gap), then the interface
deforms into fingers, hence the name viscous fingering
(VF) [3–8]. Density fingering (DF) due to a Rayleigh-
Taylor instability occurs, on the other hand, when a dense
fluid lies on top of a less dense one under the gravity
field influence [8–10]. These two instabilities provide simi-
lar patterns and several characteristic dynamical features
such as spreading, shielding, coalescence and tip splitting,
are observed in both cases. In principle, a quantitative
comparison of such fingering phenomena can be provided
by both linear stability analysis of relevant models [4,8,9]
and numerical simulations [6,8,9]. In the linear regime,
Manickam and Homsy [8] have already pointed out that
dispersion curves (giving the growth rate of perturbations

(a)E-mail: reinaldo.rosa@pq.cnpq.br

around the interface as a function of their wave numbers)
for miscible DF and VF can be identical for a specific
set of parameters values. They have furthermore discussed
the conditions for which a vertical DF pattern, driven by
buoyancy differences, can be analogous to a horizontal VF
pattern induced by displacement at a fixed speed of one
viscous fluid by a less viscous one. However, as the DF and
VF dynamics follow different evolution equations it is thus
expected, especially in the nonlinear regime, that some fine
fluctuation differences between them should nevertheless
be measurable. Hence, it is the objective of this article
to perform a comparative fluctuation analysis of DF and
VF simulated patterns by computing the scaling expo-
nents from DFA (Detrended Fluctuation Analysis) [11] on
transversely averaged DF and VF concentration fingering
profiles. Before doing so, let us first recall classical models
of DF and VF which were used to perform the respective
fingering patterns simulations.

Miscible density and viscous fingering. – Our
model system is a two-dimensional porous medium or
thin Hele-Shaw cell of length Lx and width Ly in which
two miscible solutions of different physical properties are
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c = 1

ρ1 > ρ0

c = 1

µ1 > µ0

Fig. 1: Schematic of the miscible displacement process for
(a) DF and (b) VF.

put in contact at t= 0. The density or viscosity of these
solutions are supposed to depend on the concentration c
of a given solute. Such an initial condition can be obtained
by placing in contact, at t= 0, one solution of a solute at
concentration c1 with a solution of the same solvent where
c= 0 (see fig. 1).
The system can be described by Darcy’s law for

the incompressible velocity field u= (u, v) coupled to
a convection-diffusion equation for the concentration
c [4,5,8,10]:

∇ ·u= 0, (1)

∇p=−
µ(c)

κ
u+ ρ(c)g, (2)

∂c

∂t
+u ·∇c=D∇2c, (3)

where the permeability κ and the diffusion coefficient
D are constant, while p represents the pressure, µ the
viscosity, ρ the density and g is the acceleration due to
gravity.

Density fingering. To analyze fingering due to a
Rayleigh-Taylor instability, we assume that the viscosity
µ is constant and that only the density ρ(c) is varying
according to the local concentration c of the solute [10].
For dilute solutions, the density depends on c to first order
of a Taylor series expansion in c as ρ(c) = ρ0+(ρ1− ρ0)

c
c1
,

where ρ1 = ρ(c= c1) and ρ0 = ρ(c= 0) with ρ1 > ρ0. The
gravity field g is oriented downwards along x as shown
on fig. 1(a) and there is no injection in the system. At
initial time, a solution of c in concentration c1 (i.e. of
dimensionless concentration c/c1 = 1) is put on top of
another solution where c= 0 [9].
Let us then use a characteristic geometric length h

(such as the gap of a Hele-Shaw cell for instance) as
characteristic length scale and define the characteristic
time τ = h2/D and speed U = h/τ =D/h. The pressure,
density and concentration are scaled by µDκ , ρ0 and c1,
respectively. The dimensionless evolution equations for
density fingering become then

∇ ·u= 0, (4)

∇p=−u+Ra c ex, (5)

∂c

∂t
+u ·∇c=∇2c, (6)

where ex is the unit vector along x, p contains now
the hydrostatic pressure and the Rayleigh number Ra is
defined as

Ra =
∆ρgκh

νD
, (7)

where ∆ρ= (ρ1− ρ0)/ρ0 and ν = µ/ρ0 is the kinematic
viscosity. The dimensionless domain width and length
of the system become, respectively, L′y =Ly/h and L

′

x =
Lx/h. Taking the curl of eq. (5) and introducing the
stream function ψ(x, y) such that u= ∂ψ∂y and v=

−∂ψ
∂x ,

we obtain the final dimensionless equations describing DF
formation:

∇2ψ=Racy, (8)

∂c

∂t
+ cxψy − cyψx =∇

2c. (9)

Viscous fingering. Viscous fingering occurs when a
less viscous fluid of viscosity µ0 displaces a more viscous
one of viscosity µ1 >µ0 in a porous medium at a constant
speed U (see fig. 1(b)). To model such VF, here ρ is a
constant and the viscosity depends on the concentration
c of the solute. The constant buoyancy term is absorbed
in the hydrostatic pressure. Switching to a frame moving
with the injection speed U , we use now U as characteristic
speed, Lh =D/U and τ =D/U2 as length and time scales.
Pressure, viscosity and concentration are scaled by µ0D/κ,
µ0 and c1, respectively. Dimensionless equations become

∇ ·u= 0, (10)

∇p=−µ(u+ ex), (11)

∂c

∂t
+u ·∇c=∇2c. (12)

The dimensionless viscosity is assumed to change expo-
nentially with concentration as

d(lnµ)

dc
=+R, (13)

where R= ln(µ1/µ0) corresponds to the log-mobility ratio.
VF occurs as soon as R> 0. In terms of the stream
function, the final dimensionless equations are given by [6]

∇2ψ=−R(cxψx+ cyψy + cy), (14)

∂c

∂t
+ cxψy − cyψx =∇

2c. (15)

Comparing the final dimensionless equations (8), (9)
for DF and eqs. (14), (15) for VF, it can be seen that
differences exist in the vorticity term w(x, y) =−∇2ψ
between VF and DF, which should lead to different
dynamics.

Numerical simulations. To perform our comparative
analysis, we have obtained typical DF and VF evolution by
direct numerical simulations for R=Ra = 3, often inves-
tigated as a canonical unstable case [6,8,12]. The final
dimensionless equations (8), (9) and (14), (15) are numer-
ically solved using the pseudo-spectral method introduced
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Fig. 2: (a) Evolution of DF (t= 250, 500, 1000, 1500, 1750,
2000) obtained from numerical integration of eqs. (8), (9) with
Ra = 3. (b) Example of corresponding transversely averaged
profiles.

by Tan and Homsy [6]. The boundary conditions are peri-
odic in x and y directions while the initial condition is
ψ= 0 for all (x, y) and two back to back step functions
between c= 1 and c= 0 with intermediate point where
c= 1/2+Ar. Here, r is a random number between 0 and
1, and A is the amplitude of the noise of order 10−3.
All simulations are started with exactly the same noise
and performed in a typical system of length L′x = 4096
and width L′y = 1024. The spatial discretization uses a
ratio of 4 between the number of spectral modes and
the dimensionless width and length, hence the computa-
tional domain has here 1024× 256 nodes. Therefore, the
1D spatial profiles that will be analyzed in the next section
are discretized on 1024 points. The corresponding time
step is dt= 0.2. The dynamics of the fingering instability
is computed up to a dimensionless time t= 2000 which
allows to follow the system up to a well developed nonlin-
ear regime for which large values of the mixing length are
produced. It has been checked that the fingering dynamics
remains the same with spatial and time step refinements.
Examples of density and viscous fingering simulated for
our comparative analysis are shown in figs. 2(a) and 3(a),
respectively.

Fig. 3: (a) Evolution of VF (t= 250, 500, 1000, 1500, 1750,
2000) obtained from numerical integration of eqs. (14), (15)
with R= 3. Note that, for visualization purposes, there is a
long time delay between each frame so that we are missing
the intermediate dynamics whereby the longer finger grows
and the neigbouring ones change direction to merge with the
most advanced one. (b) Example of corresponding transversely
averaged profiles.

Analysis of averaged concentration profiles. –
Nonlinear dynamics of VF and DF are followed by exam-
ining the evolution of 2D concentration fields c(x, y, t)
in the course of time, such as shown in figs. 2 and 3.
At successive times, these 2D concentration fields can
be spatially averaged along either the longitudinal, x, or
transverse, y, coordinate to yield one-dimensional (1D)
averaged profiles. The longitudinally averaged profiles
〈c(y, t)〉 provide an insight into the temporal evolution
of the number of fingers, while the transversely averaged
profiles 〈c(x, t)〉 feature the characteristics of the time
evolution of the length of the fingering zone between two
miscible solutions bringing more structural information on
the mixing between the two fluids. Therefore, such trans-
versely averaged concentration (TAC) profiles 〈c(x, t)〉 will
provide the data used here for a comparative analysis
between DF and VF pattern formation. The TAC profile
is given by

〈c(x, t)〉=
1

L′y

∫ L′
y

0
c(x, y, t)dy (16)

and is related to standard 1D curves measured through
detectors placed along porous columns, for instance [7,13].
In the absence of any fingering, such 1D profiles feature the
standard error function characteristic of the time evolu-
tion of an interface between two miscible solutions when
starting from an anticorrelated step function. In the pres-
ence of fingers, these transversely averaged profiles feature
bumps expressing the presence of concentration fluctu-
ations across the transverse direction along the fingers.
Figures 2(b) and 3(b) show transversely averaged profiles
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Fig. 4: Representative values of variance of 〈c(x, t)〉 for DF
(dot) and VF (star) as a function of fingering evolution time.
The error bars were calculated from an average over fifteen
runs, for DF and VF, using different initial random seed in
each simulation.

for different times in the nonlinear evolution of DF and
VF patterns, respectively. Quantitatively this nonlinear
spatiotemporal fingering can be characterized statistically
using the variance of TAC fluctuation growth through-
out time. The result is reported in fig. 4 where we depict
the log of 〈c(x, t)〉 variance for four representative average
snapshots (t= 500, t= 1000, t= 1500 and t= 2000) over
fifteen runs of DF and VF numerical schemes. It must be
noted that the linear increase of log10V ar[〈c(x, t)〉] along
time is evident from a least-square fitting and represent
the typical increase of fluctuations due to the fingering
pattern formation processes. It is also worth noting that
the result showed in fig. 4 indicates that the fluctuations
of DF and VF do not show any statistically significant
difference between them. Hence to generate more detailed
information about the DF and VF differences an alterna-
tive comparative analysis of typical DF and VF fingering
fluctuation properties is then performed using the follow-
ing structural measurements:

Mixing length. Transversely averaged profiles can be
used to define the tip and rear of the fingered zone. The
tip is chosen arbitrarily as the location along the x-axis in
front of which the averaged concentration 〈c(x, t)〉 is larger
than 0.99. The rear corresponds, on the other hand, to the
location behind which 〈c(x, t)〉 is smaller than 0.01. For
VF, these points represent the most and least advanced
locations of the fingered zone (fig. 3). For DF, they are
the highest and lowest points of the fingered zone in the
gravity field, respectively (fig. 2). The mixing length, L, is
defined as the distance between the tip and the rear of the
fingers and gives information of the spatial extent of the
mixing zone in which the two fluids are intertwined [7]. As
shown in figs. 2(b) and 3(b), nonlinear fingering growth is
characterized by the presence of bumps in the transversely
averaged concentration profiles and an increase in the
mixing length (see fig. 6(a)). However, although mixing

length is commonly used to obtain such a structural
signature of the fingering pattern formation it does not
reveal any statistical property of fingering fluctuation.
Next we introduce the method which provides a quan-

titative measure of the correlation between concentration
values over spatial scales along the fingering transversely
averaged concentration profiles.

Detrended fluctuation analysis. DFA measures scaling
exponents from non-stationary fluctuations profiles. It is
useful for characterizing fluctuation patterns that appear
to be due to long-range spatial or/and temporal correla-
tions. DFA has been used in several analysis from biolog-
ical and physiological data to signals in econometry and
physics (e.g., [14–18]).
The DFA algorithm, introduced by [14], is composed

of four main computational operations starting here on a
discrete series of amplitudes {Ci}:

1) Discrete integration and windowing : Calcu-
late the cumulative representation of {Ci} as

y(k) =
∑k
i=1 (Ci−〈C〉), with k= 1, 2, . . . , N , where

〈C〉=
∑N
i=1 C is the average of {Ci}. Using an

arbitrary local window of length n, divide y(k)
into non-overlapping Nn = int(N/n) sub-interval yj
(j = 1, 2, . . . , Nn). Note that each sub-interval yj has
length n and N may not be the integer multiple
of n. Then, the series y(k) is divided once more
from the opposite side to make sure all points are
addressed, performing at the end of this operation
2Nn sub-intervals on each profile.

2) Fitting and variance: Get, in each sub-interval,
the least-square fits pmj (k) where m is inter-
preted as the order of the detrended trend, and
compute the cumulative deviation series in every
sub-interval, where the trend has been subtracted:
yj(k) = y(k)− pmj (k). Then, calculate the variance of
the 2Nn sub-intervals for j = 1, 2, . . . , Nn and j =Nn
+1, Nn+2, . . . , 2Nn.

3) Fluctuation: Calculate the average of all the variances
and the square root. Then get the fluctuation function
F (n):

F (n) =





1

2Nn

2Nn
∑

j=1

F 2(j, n)





1/2

. (17)

4) Scaling exponent : Perform again, recursively,
computation from windowing to calculation of corre-
sponding F (n) with different n([N/4]>n= 2m+2)
box lengths. In general, in the presence of fluctua-
tions in the form of power law: F (n) =Knα, F (n)
increases linearly with increasing n. Then, using the
linear least-square regression on the double-log plot,
logF (n) = logK +αlogn, one can get the slope α.

The slope α which is the scaling exponent of the DFA
method characterizes the long-range power-law correlation
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Fig. 5: Two snapshots for t= 100 (a) and t= 2000 (b) of
transverse averaged profiles 〈c(x, t)〉 for a VF simulation with
R= 3. (c) and (d) show the respective scaling exponents
computed from DFA.

properties of the fingering average profile: if α= 0.5
the fluctuations are uncorrelated and for α> 0.5 the
correlation in the profile is persistent. Note that, due to the
growing persistence of TAC fluctuations, here the expected
values for α are always greater than 0.5. Then in the
present application α works as a characteristic measure
varying during the fingering evolution and its behaviour
along this evolution is used to characterize the fingering
pattern formation by means of the spatial correlation of
average concentration profile evolving in time. Figure 5
depicts examples of two snapshots and their respective
scaling exponents from DFA where we observe that the
value of α increases as the spatial correlated fluctuation
increases.
Let us consider, for DF and VF comparison, the respec-

tive transversely averaged profiles 〈c(x, t)〉 simulated
from t= 0 to t= 2000. By computing the two structural
measures L(t) and α(t) for every single 〈c(x, t)〉 of the
time sequence, we can characterize the DF and VF differ-
ences from the very beginning up to the final snapshot.
The time (t0,d(%)) from where the structural differences
between DF and VF was captured through each char-
acteristic measure is given as a percentage of the whole
evolution from t= 1 (0%) to t= 2000 (100%). The average
behaviour, over fifteen runs, of each structural measure
for DF and VF is shown in fig. 6 where t0,d = 13.4% for
L and t0,d = 9.6% for α. Therefore, the results show that
the fine differences due to the mean interface fluctuations
(mixing length) start slightly later than the differences
due to the long-range correlated nonlinear coarsening
(scaling exponent) during the averaged concentration
profile evolution. Except for the small range around
t= 950, the values of mixing length for DF are greater
than the values for VF. A similar behaviour is observed
for values of α(t) giving αDF /αV F > 1 for t > t0,d. Both

Fig. 6: Typical fluctuation measurements averaged over fifteen
runs, computed for DF and VF patterns: Mixing length (a);
DFA scaling exponents (b). On both figures the dash-dotted
vertical line on the left indicates the time when the DF/VF
difference starts, namely, t0,d. The standard deviation of each
measure, over fifteen runs, is of 2%.

measurements are showing that fluctuations due to the
Rayleigh-Taylor instability (DF) are slightly stronger
than those due to viscosity (VF). In fig. 6(b) we observe
that the most different fingering patterns, comparing
DF and VF, appear during the last 50% of the pattern
formation processes after snapshot t= 1000 having a
maximum from snapshot t= 1500 (75%) to snapshot
t= 2000 (100%).
The scaling exponent α for all simulations (2000× 15 =

30× 103 measurements for each kind of fingering: DF and
VF), using a polynomial fitting of the order of 1, gave
rise to the histograms showed in fig. 7. An automatic
analysis of these histograms, considering a generalized
extreme value distribution [19], provides the mean αDF =
1.93± 0.04 and αV F = 1.82± 0.04. Such scaling exponents
averages on DF and VF simulations provide a new finger-
ing pattern characterization, therefore they can play an
important role in fluid fingering data analysis. Hence,
their possible universal property should be investigated.
A similar interpretation can be drawn on the values of
t0,d reported above. A question might arise concerning
the capability of each fluctuation measure to localize and
detect how the correlation evolves along the growth of
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Fig. 7: Histograms for the scaling exponents α: DF (a) and
VF (b).

fingering patterns. Our results have shown that the mixing
length has no sensitivity in detecting the expected corre-
lation relaxation due to the stabilization of the nonlinear
regime. However, as shown in fig. 6(b), the DFA scaling
exponent works as a high sensitive probe for that. Indeed,
we believe this is a remarkable property allowing more
accurate fingering characterization and modeling valida-
tion when facing results from real experiments.
In summary, the present fluctuation analysis strongly

supports the signature of the underlying density or viscos-
ity process on the fingering pattern formation. Taking into
account our results, one can say that DF and VF finger-
ing patterns are indeed slightly different. More precisely,
at least for the canonical case R=Ra = 3, DFA allows
to have complementary information to those obtained
just from mixing length. The behavior of α, computed
on transversely averaged concentration profiles, is a new
diagnostic for the structural correlation evolution due to
processes like spreading, shielding or splitting of fingers
in fluid interfaces. In particular, DFA provides therefore
a new complementary measure in the study of finger-
ing dynamics, characterizing the instantaneous self-affinity
of the fingering pattern throughout the evolution of
concentration averaged profiles. A major challenge we
are currently considering in using DFA to characterize
fingering pattern formation is the comparison of 〈c(x, t)〉
fluctuation between fingering simulation and some exper-
imental observations in miscible displacements. Such a
procedure will allow for either a validation of the finger-
ing mechanism and provide insights into where and which
types of system modifications affect the fingering pattern
formation. Finally, a complementary study which does
include more sensitive measures, as those from the so-
called gradient pattern analysis [20–22], is currently in
progress.
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