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Viscous fingering �VF� between miscible fluids of different viscosities can affect the dispersion of
finite width samples in porous media. We investigate here the influence of such VF due to a
difference between the viscosity of the displacing fluid and that of the sample solvent on the
spatiotemporal dynamics of the concentration of a passive solute initially dissolved in the injected
sample and undergoing adsorption on the porous matrix. Such a three component system is modeled
using Darcy’s law for the fluid velocity coupled to mass-balance equations for the sample solvent
and solute concentrations. Depending on the conditions of adsorption, the spatial distribution of the
solute concentration can either be deformed by VF of the sample solvent concentration profiles or
disentangle from the fingering zone. In the case of deformation by fingering, a parametric study is
performed to analyze the influence of parameters such as the log-mobility ratio, the ratio of
dispersion coefficients, the sample length, and the adsorption retention parameter k� on the widening
of the solute concentration peak. The results highlight experimental evidences obtained recently in
reversed-phase liquid chromatography. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3200870�

I. INTRODUCTION

Miscible viscous fingering �VF� is an interfacial fluid
flow instability that occurs when a less viscous fluid dis-
places another more viscous miscible one in a porous me-
dium, leading to the formation of fingerlike patterns at the
interface of both fluids.1 VF of one single interface impacts a
variety of practical applications such as oil recovery, filtra-
tion, or hydrology for instance and has been the subject of
numerous investigations over the years since the pioneering
work of Hill2 and Saffman and Taylor.3

VF has also been observed in liquid chromatography,
which is used to separate the chemical components of a
given sample by passing it through a column of porous
medium.4–12 VF also influences the spreading of finite width
samples in localized pollution zones in aquifers.12,13 In the
case of such viscous slices of finite extent, fingering is a
transient phenomenon as the mixing of both sample and car-
rier fluids leads to an effective decrease in time of the log-
mobility ratio. Even though the spreading of the sample may
look like Gaussian at long times when dispersion becomes
again dominant in the transport phenomena, the variance of
the peak is larger than expected because of fingering at ear-
lier time. A quantitative characterization of the contribution
of such VF in the variance of the peaks has been conducted
in the frame work of chromatographic11,12 or pollution
applications.12 This widening has been shown to be of larger
extent when the sample is less viscous than the carrier fluid
than when it is more viscous.14

In chromatography and for problems of transport in

aquifers, the finite size of the viscous sample and the solute
adsorption on the porous matrix can be of importance.10,15,16

Recently, a theoretical model taking into account such ad-
sorption of the species ruling the viscosity of the solution
during miscible VF of finite width samples was developed by
Mishra et al.17 The growth rates of the unstable wave num-
bers of the VF instability have been discussed by means of a
linear stability analysis limited to the initial stage of devel-
opment of the instability. On later stages, nonlinear dynamics
have been analyzed by means of numerical simulations when
the viscosity-modifying component in the sample is retained
or not. When this component is retained, its effect is similar
to that of an unretained solute with a �1+k�� smaller viscos-
ity, where k� is the retention factor. The typical width of the
fingers is also decreased by a factor �1+k��.

In chromatography, this situation can occur for poly-
meric solutes of relatively large molar mass as the intrinsic
viscosity of polymers increases with their molar mass. In
most liquid chromatographic analyses, the sample solutes
have however a relatively low molar mass, hence a too low
intrinsic viscosity to induce a VF phenomenon affecting dis-
persion characteristics. However, in order to increase the
solubility of the components to be analyzed, the solutes are
often diluted in a solvent whose chemical nature and hence
viscosity differ from those of the displacing fluid. Then, VF
may develop at the unstable sample solvent/eluent interface
and affect the retained solute zones. Experimental evidences
that the chromatographic peak shapes of solutes eluted under
reversed-phase liquid chromatographic conditions are sig-
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nificantly dependent on the nature and/or composition of the
sample solvent have been given recently.10 This phenomenon
has been clearly associated with the difference between the
eluent and sample solvent viscosities. To our knowledge,
there is no quantitative study or any modeling of the influ-
ence of VF on the shape of the chromatographic peaks of
solutes in this situation which typically involves three com-
ponents: the eluent �or displacing fluid�, the sample solvent,
and the retained solute.

In this context, the purpose of the present study is to
understand how a VF instability occurring between the dis-
placing fluid and the �unretained� sample solvent affects the
spatiotemporal distribution of a retained solute initially dis-
solved in the solvent and to study the influence of the extent
of retention on the solute concentration dynamics.

We construct a model for miscible VF of a three com-
ponent system, considering the dynamics of the carrier fluid
and of both a solute and a solvent in the sample, incorporat-
ing a linear adsorption isotherm for the solute. This model
couples Darcy’s law for the evolution of the flow velocity
with an equation describing the evolution of the concentra-
tion of the sample solvent and with a mass-balance equation
for the solute concentration. This solute undergoes
adsorption-desorption processes on the porous matrix. Nu-
merical simulations are performed with a viscosity-
modifying sample solvent and retained solutes. The results
are discussed in terms of a retention parameter k� quantifying
the adsorption phenomena. Theoretical explanations of the
disengagement of solute and sample solvent peak shapes are
also presented for a pure dispersive case.

The article is organized as follows: in Sec. II, we intro-
duce our three component model while in Sec. III, we de-
scribe our numerical integration method. Results are de-
scribed in Sec. IV before conclusions are drawn in Sec. V.

II. THREE COMPONENT MODEL

The system considered �see Fig. 1� is a two dimensional
�2D� porous medium of length Lx and width Ly in which a
sample consisting of a solute or analyte in concentration ca,2

dissolved in a sample solvent of concentration c2 and of vis-
cosity �2 is injected at an initial time t=0. The initial length
of the sample is W. This sample is displaced by another
miscible fluid, the carrier fluid or eluent, different from the
sample solvent which has a viscosity �1��2 and in which
the sample solvent concentration c=0 and the solute concen-
tration is ca,2=0. The displacing fluid is injected uniformly
with a mean velocity U along the x direction.

We assume that the initial solute or analyte concentration
ca,2 in the sample solvent is small and does not influence the

viscosity of the fluids. This viscosity is however assumed to
depend on the concentration of the sample solvent c through
an exponential function,

��c� = �1eR�c/c2�, �1�

where the log-mobility ratio R is defined as R=ln��2 /�1�. If
�2��1, R�0, and the rear interface of the sample where the
less viscous displacing fluid pushes the more viscous sample
is unstable with regard to VF. The frontal interface is on the
contrary stable. As the solute does not impact the viscosity of
the solutions, it will behave as a passive scalar in the flow.
The spatiotemporal dynamics of this solute’s concentration
depends however on adsorption on the porous matrix.

Once the sample is injected in the porous matrix the
solute can adsorb onto the porous matrix following the re-
versible adsorption-desorption reaction:

ca,m�
kd

ka

ca,s. �2�

Here ca,m and ca,s are the concentration of the solute in the
mobile and stationary phases, respectively, while ka and kd

are the adsorption and desorption kinetic constants.
Assuming that the fluid is incompressible and the flow

inside the porous medium is governed by Darcy’s law �4�,
the governing equations for the system are as follows:

�� · u� = 0, �3�

�� p = −
��c�
Kp

u� , �4�

�c

�t
+ u� · �� c = Dx

�2c

�x2 + Dy
�2c

�y2 , �5�

�ca,m

�t
+ F

�ca,s

�t
+ u� · �� ca,m = Dax

�2ca,m

�x2 + Day

�2ca,m

�y2 , �6�

where u� = �u ,v� is the 2D fluid velocity with u and v the
velocity components in the x and y directions, respectively,
Kp is the permeability of the porous medium, and p is the
pressure. Equation �5� is the convection-diffusion equation
for the concentration c of the sample solvent ruling the
viscosity of the solution. Equation �6� is the mass-balance
equation for the solute concentration ca, where F=Vs /Vm

= �1−�tot� /�tot is the phase ratio of the volume Vs and Vm of
the stationary and mobile phases, where �tot is the total po-
rosity or void volume fraction of the porous medium.18 Dx

and Dy are the dispersion coefficients of the sample solvent
in the displacing fluid along the x and y directions, respec-
tively, while Dax

and Day
are those of the solute. Influence of

Korteweg stresses19–21 are here assumed negligible.
Assuming a linear isotherm adsorption dependence be-

tween the concentration ca,s and ca,m as

ca,s = Kca,m, �7�

where K=ka /kd is the equilibrium constant of the adsorption-
desorption equilibrium �2�, Eq. �6� becomes

x

y

L y

L x

W

U µ
2

ca,2

c= c2

µ1

ca = 0
c = 0

µ1

ca = 0

c = 0

FIG. 1. Sketch of the system at initial time.
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�1 + k��
�ca,m

�t
+ u� · �� ca,m = Dax

�2ca,m

�x2 + Day

�2ca,m

�y2 , �8�

where k�=FK. Let us note that at the moment of injection,
all solute or analyte molecules are in the mobile phase of
volume Vm so the concentration of solute ca,2=n /Vm, where
n is the total number of analyte moles injected in the column.
When the sample starts to move in the column at t=0 and
after the adsorption/desorption equilibrium has been reached,
the corresponding analyte concentration in the mobile �ca,2m�
and stationary �ca,2s� phases are

ca,2m = nm/Vm,

ca,2s = ns/Vs,

where ns and nm are the number of analyte moles in the
stationary and mobile phases, respectively. Hence, the con-
servation of the total number of solute moles n=ns+nm along
with ca,2s=Kca,2m implies that

ca,2Vm = ca,2mVm + ca,2sVs = ca,2m�1 + k��Vm,

which leads to

ca,2m = ca,2/�1 + k�� .

Therefore, the mobile phase concentration of the analyte ca,m

varies from 0 in the pure eluent to ca,2m=ca,2 / �1+k�� in the
sample.

To nondimensionalize the governing equations, we
choose the concentration c2 and ca,2 / �1+k�� as the reference
concentration for the solvent and solute concentrations, re-
spectively, and U as the characteristic velocity. Defining a
length scale Lc=Dx /U and a time scale tc=Dx /U2, the non-
dimensional quantities are then obtained as

x̂ =
x

Lc
, ŷ =

y

Lc
, t̂ =

t

tc
, û =

u

U
,

v̂ =
v
U

, p� =
p

�1Dx/Kp
,

�� =
�

�1
, c� =

c

c2
, ca,m

� = �1 + k��
ca,m

ca,2
,

� =
Dy

Dx
, �a =

Day

Dax

, � =
Dax

Dx
.

Introducing a reference frame moving with the injection
speed

x� = x̂ − t̂, y� = ŷ, u� = û − 1, v� = v̂, t� = t̂ ,

the governing Eqs. �3�–�5� and �8� with the concentration-
dependent viscosity Eq. �1� become, after dropping the
superscripts � ��,

�� · u� = 0, �9�

�� p = − ��c��u� + e�x� , �10�

�c

�t
+ u� · �� c =

�2c

�x2 + �
�2c

�y2 , �11�

�1 + k��
�ca,m

�t
+ �u − k��

�ca,m

�x
+ v

�ca,m

�y

= �� �2ca,m

�x2 + �a
�2ca,m

�y2 � , �12�

��c� = eRc. �13�

From the above equations it is clear that Eq. �12� is
decoupled from Eqs. �9�–�11�. Hence, once the velocity field
is determined from Eqs. �9�–�11� and �13� for given R and �,
the transport of the solute concentration ca,m can be analyzed
easily for different values of the analyte parameters
�k� ,� ,�a�. Using this model, our goal is now to analyze the
influence of the viscosity dependence on the sample solvent
concentration c on the spatiotemporal distribution of the sol-
ute’s concentration in the mobile phase ca,m.

III. NONLINEAR SIMULATIONS

Introducing the stream function ��x ,y�, such that
u=�� /�y and v=−�� /�x, and following Tan and Homsy,22

the momentum and concentration equations become

�2� = − R� ��

�x

�c

�x
+

��

�y

�c

�y
+

�c

�y
� , �14�

�c

�t
+

��

�y

�c

�x
−

��

�x

�c

�y
=

�2c

�x2 + �
�2c

�y2 , �15�

�1 + k��
�ca,m

�t
+ � ��

�y
− k�� �ca,m

�x
−

��

�x

�ca,m

�y

= �� �2ca,m

�x2 + �a
�2ca,m

�y2 � . �16�

Equation �14� is obtained by eliminating the pressure gradi-
ent by taking the curl of Darcy’s law. Note that in absence of
adsorption �k�=0� and for a solute dispersing at the same rate
as the sample solvent ��=1 and �a=��, we recover the clas-
sical theoretical model of miscible VF studied previously by
many authors.1,12,22,23 The dynamics of the concentration of
the sample solvent c and of the solute ca,m then evolve ex-
actly the same way and the dynamics of ca,m is merely that of
a passive scalar advected by fingering between the displacing
fluid and the sample solvent of the sample. The objective
here is to analyze the effect of k�, i.e., see how the dynamics
of the sample solvent and of the solute can disentangle be-
cause of adsorption.

Equations �14�–�16� are numerically solved using the
pseudospectral method introduced by Tan and Homsy.22 The
code has been validated here by reproducing the results of
Tan and Homsy22 after reducing the three component system
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to a two component one by choosing k�=0, �=1, and �a=�.
Its convergence has also been tested in the case of finite
sample fingering.12

The boundary conditions are periodic in both x and y
directions. Along the axial coordinate x, this is no problem as
long as the fingers extending to the left do not interact with
the right of the sample by periodicity and vice versa. Period-
icity along y is standard for such pattern formation
studies.12,22 In dimensionless units, the length and width are
L=ULx /Dx and L�=ULy /Dx, respectively, while the dimen-
sionless initial length of the sample is l=UW /Dx. The initial
conditions for both c and ca,m correspond to a convectionless
fluid embedding a rectangular sample of concentration
c=1, ca,m=1 and of size L�� l in a c=0, ca,m=0 back-
ground. The middle of the sample is initially located at
x=4L /5. The lateral sides of the sample correspond to two
back to back step functions between c=0 and c=1 or be-
tween ca,m=0 and ca,m=1 with an intermediate point where
c=ca,m=1 /2+Ar, where r is a random number between 0
and 1 and A is the amplitude of the noise of the order 10−3.
This noise is used to trigger the fingering instability on a
pertinent computing time.12

IV. VISCOUS FINGERING IN THE THREE
COMPONENT SYSTEM

Density plots of ca,m, the concentration of the solute in
the mobile phase are plotted at successive times in Fig. 2 for
L�=512, l=512, �=1, �=1, �a=1, R=2 and different
values of the retention parameter k� on a gray scale from
black to white corresponding to ca,m=1 and ca,m=0, respec-
tively �on color, ca,m=1 to 0 correspond to blue and red�.
The system is shown in a frame of reference moving with
the injection speed of the eluent. The figures are plotted with
a constant aspect ratio. The VF dynamics due to the unfavor-
able contrast between the viscosity of the dis-
placing fluid and that of the sample solvent is shown in
Fig. 2�a�. Such a VF of finite slices in two component sys-
tems has already been studied quantitatively in detail
before.11,12,14,17,24 In absence of any adsorption, i.e., for
k�=0 and ca,s=0 the solute remains in the mobile phase and
follows the dynamics of the flow as a passive scalar. Its
fingering is then the same as that of the sample solvent �Fig.
2�a��. Figures 2�b�–2�f� show the cases when the solute in the
injected sample adsorbs onto the porous matrix �i.e., k��0�.
It is observed that the VF dynamics of the solvent acts upon
the evolution of the solute concentration, ca,m. In the pres-
ence of adsorption the retained solute zone develops fingers
when either one interface or both rear and frontal interfaces
of it come in contact with the unstable interface of the
sample solvent zone �Figs. 2�b�–2�f��. This is in agreement
with experimental observations in chromatography
columns.10 This retained solute zone disengages from the
sample solvent zone without any distortion at any of the two
interfaces for larger values of k�.

These above results can be quantitatively analyzed using
the transversely averaged profiles of the mobile phase con-
centration of the solute defined as12

c̄a,m�x,t� =
1

L�
	

0

L�
ca,m�x,y,t�dy . �17�

c̄a,m�x , t� is plotted in Fig. 3 for different values of the reten-
tion parameter k� at a fixed time t=2000 for the nonlinear
dynamics of Fig. 2. The reference x=0 position along the
x-axis is set such that the center of an unretained analyte

(b)

(a)

(c)

(d)

(f)

(e)

FIG. 2. �Color online� Density plots of the mobile phase concentration of
the solute ca,m at successive times in a frame moving at the injection veloc-
ity with L�=512, �=1, �=1, �a=1, l=512, and R=2; �a� k�=0, the dynamics
corresponds to the VF dynamics of the sample solvent concentration, �b�
k�=0.2, �c� k�=0.3, �d� k�=0.5, �e� k�=1, and �f� k�=2. From top to bottom:
t=0,500,1000,2000,4000,5000,7000.
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c̄a,m
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sample solvent

k′ = 0.2

k′ = 0
k′ = 0.5

k′ = 1

k′ = 2

k′ = 5

FIG. 3. Transversely averaged concentration profiles of the solute c̄a,m at
t=2000 for different values of k� and simulations of Fig. 2.
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zone would occupy at that position in absence of VF. If R
=0, no fingering occurs and c̄a,m evolves only via dispersion.
If R=2 but k�=0 the curve corresponding to this nonadsorp-
tive case shows the characteristic bumps and the broadening
due to the VF dynamics induced by the difference in viscos-
ity of the sample solvent and of the displacing fluid.12,14,17

When adsorption is occurring �k��0� it is observed that as
k� increases, the solute zone is retarded with regard to the
sample solvent zone. For some k�, both the rear and frontal
interfaces get distorted �see the dotted curve for k�=0.2�
since both rear and frontal interfaces of the solute concentra-
tion field are affected by VF of the sample solvent zone
given by the curve with k�=0. For larger values of k� both
rear and frontal interfaces of the solute plug remain nonde-
formed. This occurs when the solute plug gets disengaged
from the solvent plug before VF has had time to disperse the
sample solvent. The solute transversely averaged profiles
feature then the standard error function characteristic of
simple dispersion.

To understand the conditions for a disengagement with-
out distortion of the retained solute zone from the solvent
zone, let us discuss in Sec. IV A a simplified model for three
component systems.

A. Dispersive model of disengagement of solute zone
from sample solvent zone

The three component system is here considered in the
case of isoeluotropic sample solvents for which the retention
factor k� of the solute is the same in both the sample solvent
and the eluent. It is assumed that a rectangular plug of a
given sample solvent containing a dissolved solute occupies
initially a length Linj of the porous medium. Because the
solute is retained on the porous matrix, it moves along the
column more slowly than the zone of the unretained sample
solvent concentration distribution. From Eqs. �14�–�16�, it
is clear that, for the case of a stable displacement obtained
when R=0 and �=0, the center of mass of the solute plug
propagates toward the left of the sample plug with a speed
k� / �1+k�� in the nondimensional moving frame of reference
and with a speed 1 / �1+k�� in the nondimensional steady
frame of reference �which corresponds to the dimensional
speed U / �1+k���. It is of interest to find the critical time, tcrit,
at which the solvent zone and the solute zone will cease to
overlap. This time can be obtained analytically in the pure
dispersive case, in the absence of VF.

In that case indeed, the solute and solvent concentration
distributions will cease to overlap when the position of the
rear interface of the sample solvent, xs,r, will be ahead of the
frontal interface of the solute zone, xa,f. In a pure dispersive
regime, the widths of the solute as well as of the sample
solvent zones change in time from their initial dimensional
width W to their corresponding dispersive widths. By assum-
ing that all the values of the normal distribution in the pure
dispersive displacement lie within two standard deviations
�2�� of the mean, the upstream end of the rear interface of
the sample solvent zone is lagging, by a distance 2�s�t�,
behind the mean position of this rear interface. The down-
stream end of the frontal interface of the solute zone is

ahead, by a distance 2�a�t�, of the mean position of the fron-
tal interface. Here �s�t� and �a�t� are the spatial standard
deviations that the sample solvent zone and the analyte zone,
respectively, would have at time t for vanishing W �Dirac
injection pulse�.

Assuming that the rear of the sample, at time t=0, is at
position x=0, one has in the steady frame of reference with
dimensional quantities,

xs,r = Ut − 2�s�t� , �18�

xa,f = W +
U

1 + k�
t + 2�a�t� , �19�

where t is the time elapsed since sample injection and U is
the displacing fluid �and sample solvent� velocity. Noting

that �s�t�=
2Dxt and �a�t�=
2 �

1+k�
Dxt, then tcrit is the time

at which xs,r=xa,f, i.e.,

Utcrit − 2
2Dxtcrit = W +
U

1 + k�
tcrit + 2
2

�

1 + k�
Dxtcrit.

�20�

Using Lc=Dx /U and tc=Dx /U2 as a characteristic length and
time as defined before, the dimensionless form of Eq. �20�
becomes

k�

1 + k�
tcrit − 2
2�1 +
 �

1 + k�
�
tcrit − l = 0, �21�

where l=W /Lc as before. Equation �21� gives two roots for

tcrit. It can easily be shown that Eq. �21� has a unique solu-
tion for all the values of � only by considering the root with
positive sign of square root of discriminant of Eq. �21� and
hence the corresponding critical time is

tcrit = �1 + k�

k�
�2�
2�1 +
 �

1 + k�
�

+
2�1 +
 �

1 + k�
�2

+
k�

1 + k�
l�2

. �22�

In Fig. 4 plotting tcrit as a function of k� shows that the larger

0 1 2 4 6 8 10
0

500

1000

1500

2000

2500

3000

k′

tcrit

l = 512

256

128

FIG. 4. Dimensionless critical time tcrit at which the solute concentration
distribution ceases to overlap with the sample solvent one in absence of
fingering as a function of k� for different sample lengths l with �=1.
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the retention parameter k�, the smaller tcrit. Moreover, tcrit

saturates to an asymptotic value equal to �
2+
2+ l�2 at
larger values of k�. When increasing the initial width of the
sample l this asymptotic tcrit increases. For k�=1, �=1, and
l=512 in this pure dispersive case, one can obtain from Eq.
�22� that the disengagement of the retained solute and sol-
vent zones occurs at t=1383. However, in the presence of
VF, this disengagement occurs at a time close to t=5000 �see
Fig. 2�e��, which is much larger than for the pure dispersive
displacement. The presence of VF induces thus a delay in the
disengagement of the solute plug from the solvent plug. It
means that the unaffected solute zone can be obtained at a
later time in the presence of VF than for pure dispersion of
sample solvent.

B. Variance of the transverse averaged profile

To quantify the influence of VF on the distortion of the
concentration peak of the solute plug, we next compute the
variance �a

2 of the transversely averaged profiles of concen-
tration c̄a,m�x , t� as12,14,17

�a
2�t� =

�0
Lc̄a,m�x,t��x − m�t��2dx

�0
Lc̄a,m�x,t�dx

, �23�

where m�t�=�0
Lxf�x , t�dx is the first moment of f�x , t�

= c̄a,m�x , t� /�0
Lc̄a,m�x , t�dx which is the probability density

function of the continuous distribution c̄a,m�x , t�. Similarly a
variance �2 can be calculated for the solvent plug for trans-
versely averaged profile c̄�x , t� defined along the line above.
From Eqs. �15� and �16� the variance �o

2 of a stable �R=0�
solvent peak and the variance �a,o

2 of the mobile phase solute

peak can be calculated to be �o
2= l2 /12+2t and �a,o

2 = l2 /12
+2�� / �1+k���t, respectively. The term l2 /12 corresponds to
the contribution due to the initial width l of the sample, while
the term linear in t is due to a dispersive mixing. As done in
previous studies of VF of finite slices,12 when fingering takes
place, we can extract the quantity � f

2=�2−�o
2 and �a,f

2 =�a
2

−�a,o
2 , which gives the contribution to the total variance �2

and �a
2 due to VF.

The effects of the adsorption parameter k� on the total
variance �a

2 are plotted in Fig. 5�a� for the simulations pre-
sented in Fig. 2. Similar to the case of VF in two component
systems,12 the variance �a

2 increases more in time than �a,o
2

because of the widening of the peak due to fingering contri-
butions. However, in the presence of adsorption, the variance
reduces as k� increases even if, for small values of k��0.3,
the variance does not have a significant different value as the
effects of the sample solvent VF are large and the peaks are
more distorted. It is clearly observed from Fig. 5�b� that the
variance for k�=1 or 2 increases only due to dispersion after
the time when the solute plug has disengaged from the
sample solvent one. Indeed, after a transient increase due to
VF the shape of �a

2 is again the same as for pure dispersion,
i.e., directly proportional to �a,o

2 = l2 /12+2�� / �1+k���t. The
numerical simulation for R=0, k�=1,2 and the theoretical
observation exactly coincide �Fig. 5�b�� which can be con-
sidered as a further validation of the present numerical
method.

In order to understand the influence of VF of the sample
solvent on the broadening of the solute plug, Fig. 6 shows
the contribution to the standard deviation due to fingering,
�a,f, as a function of time for different values of the retention
parameter k�. We know from Ref. 12 that for the solvent plug
� f starts to deviate from zero at the onset time of VF and
next increases with time before saturating to an asymptotic
value after some time when dispersion takes over again.
Similarly the variance of the solute plug deviates from the
same initial constant � f of the solvent plug when the solute
distribution is deformed by fingering. It saturates to an
asymptotic value after some time when the effects of the VF
are weakening because of the complete disengagement of the
solute and solvent plugs. It is seen from Fig. 6�a� that the
time interval between the onset time of fingering and the
time of saturation is decreasing with increasing k�. For k�
=0,0.2,0.5 saturation occurs at a time larger than 10 000
whereas for k�=1,2 ,3 saturation occurs at a time close to
3000, 1500, and 1000, respectively. It shows that the larger
k�, the quicker the disentanglement between solute and sol-
vent plugs. The onset time of the broadening of the solute
plug in presence of VF increases and reaches a maximum for
a critical value of k� �here close to k�=0.5, see Fig. 6�b��
then starts decreasing for further increasing of k�. It can how-
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FIG. 5. �a� Variance �a
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ever not be smaller than the onset time of the solvent VF or,
in other words, than the onset time for the non adsorptive
solute displacement.

It is observed that for some cases, for example, Fig. 2�e�
at t�4000, a distortion at the frontal interface, which can be
due to the interaction of that interface with VF at an earlier
time, can remain for quite a long time before being smoothed
out by dispersion. This phenomenon can also be seen in Fig.
6�a� for k�=1 where the saturation of the variance to an
asymptotic value is already achieved at t=4000, i.e., the
broadening is only due to the dispersion.

C. Spreading length of solute zone

The mixing length which is nothing else but the length
of the fingering zone is an important measure in the study of
VF as it gives information on the length of the zone where
the two miscible fluids mix with each other.12,17 Similarly, in
order to understand the length of the displacement of the
solute zone due to VF, we quantify the spreading of solute
fingers by the length ld of the interval in which c̄a,m�x , t�
�10−3. The evolution of the spreading length of the solute
defined as Ld= ld− l is plotted for different retention param-
eters k� in Fig. 7�a�. It shows that at lower k�, the length of
the solute displacement zone have similar trends whereas at
large k�, the length Ld decreases for increasing k�. Figure
7�b� depicts the evolution of Ld normalized by 
2� / �1+k��
for different k� without the effects of VF �i.e., for pure dis-

persion when R=0� through a log-log plot. It shows that in a
pure dispersion regime, the displacement length is the same
for all k�. The normalized length 
2�t / �1+k�� is the stan-
dard deviation of the solute concentration profile which can
be found by solving the linear part of Eq. �12�. It is seen that
the displacement length evolves then proportionally to 
t.
Figure 7�b� shows that for R=2, k�=1 and 2, after the solute
band interacted with VF and completely disentangled from
the VF zone the displacement of the solute is dominated
again by dispersion. However this dispersion of the solute
band is not directly proportional to 
t like in a pure disper-
sive case, rather it moves with a power of t which is less than
0.5. It is interesting to note that the effects of VF reduce the
power-law relationship of the dispersion length of the solute
with time.

D. Parametric study

It is well known that the larger the value of the log-
mobility R, the more intense VF and the faster the fingers
travel.12,14,22 From Fig. 8�a� we find that VF with R=3 af-
fects the broadening of solute plug for larger values of the
retention parameter k� than for R=2 �shown in Fig. 6�, i.e.,
the time needed for a disengagement process reduces for
larger values of k�. So, at fixed R, there is a critical k� above
which the broadening of the solute plug is not affected by
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VF. This critical k� increases with increasing R. As a corollar,
the time during which the solvent and solute plugs interact
increases for a fixed k� as R increases. The onset of fingering
on the solute plug occurs early for large R, which is seen
from Fig. 8�b�, as for k�=0.5 the onset time of solute fingers
for R=2 is close to t=900 �see Fig. 6�b�� and for R=3 it is
nearer to t=400. For R=3, the onset time of fingering of the
solute plug first increases with increasing k�, then reaches a
maximum for a critical k� close to 1. This critical k� is larger
than in the R=2 case �see Fig. 6�b�� where it was found to be
close to 0.5. Furthermore, it is observed that for larger R, the
fingering variance takes a longer time to reach an asymptotic
value for a fixed k�, which reveals that fingers travel faster
for large R.

On the other hand, decreasing the ratio of dispersion
coefficients �=Dy /Dx for a fixed value of R has a destabiliz-
ing effect and the sample solvent VF is more intense.12 As a
consequence decreasing � leads to a stronger influence of VF
on the displacement of the solute zone. Since small trans-
verse dispersion Dy favors longitudinal growth of VF by al-
lowing the fingers to survive for a longer time, the solute
zone needs a longer time to disentangle from the solvent
plug and be unaffected by VF. This can be seen from a com-
parison of Figs. 6 and 9 for different values of k�. For
k�=2 the critical time tcrit�3000 when �=0.2 as compared
to tcrit=1500 for �=1 in Fig. 6. So, for small dispersion ratio
�, the critical k� above which the solute plug is unaffected by
VF at anytime increases. Similarly this critical k� will in-
crease for larger L� as the VF is then more intense too.

Figure 10 shows the influence of the initial sample
length l on the broadening of the solute zone in presence of
sample solvent VF. The larger the initial extent of the
sample, the larger the mixing zone between the sample sol-
vent and the displacing fluid. Hence the VF zone interacts
longer with the solute zone thereby increasing the broaden-
ing of �a,f. The smaller l for a fixed k�, the faster the solute
zone disentangles from the sample solvent zone, hence the
faster the temporal dependence of �a,f reaches a plateau, as
seen in Fig. 10. The critical k� for the disengagement of both
zones increases with increasing sample length l.

Eventually, Fig. 11 shows the influence on �a,f of the
ratio of the longitudinal dispersion coefficients �=Dax

/Dx of
the solute in the mobile phase and of the sample solvent. For
larger values of �, VF of the solvent affects �a,f during a
longer time. Saturation of �a,f occurs therefore at a later time
for increasing �. The onset of the broadening of the solute
zone due to VF occurs quicker for increasing � as seen in
Fig. 11�b�. This is due to the fact that a larger value of �
implies larger axial dispersion of the solute zone favoring the
longitudinal growth of the solute concentration distribution.
This allows the solute to interact on longer distances and for
a longer time with the VF of the sample solvent.

In spite of this augmented duration of the interaction
between the analyte and sample zones, which allows more
time for the analyte zone to be affected by the VF process on
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the upstream side of the sample solvent zone, the saturation
value of �a,f is observed to decrease on increasing delta in
Fig. 11�a�. In fact, as the axial dispersion of the analyte in-
creases, its transverse dispersion also increases since �a is
here kept equal to 1. This promotes a faster merging of the
fingers of the analyte zone and a resulting lower VF contri-
bution to the standard deviation of this zone. This finding
illustrates the significant role played by transverse dispersion
for limiting the VF effect.

V. CONCLUSION

When a passive solute undergoing adsorption on the po-
rous matrix is initially dissolved in a solvent which is more
viscous than the displacing fluid, its transport properties can
be affected by VF phenomena taking place at the interface
where the carrier fluid displaces the sample solvent. The dy-
namics of the solute concentration has been characterized
here in such conditions on the basis on numerical simulations
of a three component model consisting in Darcy’s law
coupled to the evolution equation for the solute and solvent
concentrations, this latter one controlling the viscosity of the
solution. If the solute is unretained and diffuses at the same
rate as the solvent, the solute is merely a passive scalar fol-
lowing the fingering taking place between the displacing
fluid and the solvent. If the solute is, on the contrary, retained
on the porous matrix, its dynamics can more or less disen-
tangle from the fingering area depending on the strength of

the retention factor k�. The concentration peak of the solute
can, in that case, feature deformations due to the fingering
processes either on its back, on both frontal and rear inter-
faces, or only on the frontal part depending whether k� is
small, of intermediate value or large. Nondeformed peaks of
solute distribution are obtained above a critical value of k�
when the solute plug rapidly disentangles from the solvent
one before fingering has had time to act. The critical time at
which this disentanglement takes place has been calculated
analytically in the pure dispersion case and has been shown
to be smaller than the disentanglement time when fingering
takes place. A parametric study furthermore shows that this
critical time is an increasing function of the log-mobility
ratio R and of the initial length l of the sample but a decreas-
ing function of the ratio of dispersion coefficients � of the
solvent. Moreover if the ratio � between the axial dispersion
coefficient of the solute and that of the solvent is increased,
the solute interacts on longer distances with the fingering
which increases therefore the broadening of the solute peak.
These results are in agreement with recent experimental find-
ings in chromatography columns.10
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