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The interaction between buoyancy-driven and diffusion-driven instabilities that can develop along a
propagating reaction front is discussed for a system based on an autocatalytic reaction. Twelve
different cases are possible depending on whether the front is ascending or descending in the gravity
field, whether the reactant is heavier or lighter than the products, and whether the reactant diffuses
faster, slower, or at the same rate as the product. A linear stability analysis (LSA) is undertaken, in
which dispersion curves (plots of the growth rate ¢ against wave number k) are derived for
representative cases as well as an asymptotic analysis for small wave numbers. The results from the
LSA indicate that, when the initial reactant is denser than the reaction products, upward propagating
fronts remain unstable with the diffusion-driven instability enhancing this instability. Buoyantly
stable downward propagating fronts become unstable when the system is also diffusionally unstable.
When the initial reactant is lighter than the reaction products, any diffusionally unstable upward
propagating front is stabilized by small buoyancy effects. A diffusional instability enhances the
buoyant instability of a downward propagating front with there being a very strong interaction
between these effects in this case. © 2009 American Institute of Physics. [DOI: 10.1063/1.3077180]

I. INTRODUCTION

Propagating reaction-diffusion fronts can become un-
stable to transverse perturbations in two essentially different
ways. There can be density gradients across the reaction
front caused by the changes in the reactant concentrations,
which can lead to a buoyantly unstable configuration. For
example, in the iodate-arsenous acid (IAA) reaction in the
arsenous acid (AA) excess case,l_&49 the iodide-nitric acid’
and iodate-sulfite reactions,lo’11 as well as commonly in com-
bustion fronts,n’13 the products of the reaction, are less dense
than the unreacted state. Thus any isothermal reaction front
propagating in an upward direction will be buoyantly un-
stable, while the downward propagating one remains stable
and planar. The opposite is the case for other families of
reactions'* such as the chlorite-tetrathionate (CT),'>%
acid-iron(H),M’26 reactions, or polymerization fronts.
Here, in isothermal conditions, the reaction products are
denser and so a downward propagating front will be buoy-
antly unstable featuring density fingering while the upward
moving front remains stable.

An alternative way for reaction-diffusion fronts to be-
come unstable is through the diffusion coefficients of the
substrate and autocatalyst being sufficiently different. This
can lead to a diffusion-driven instability.ZL35 This has been

established theoretically for the autocatalytic
27,28,35

nitric
50,51

cubic
reaction
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A+2B—3B rate kyab?, (1)
for example, where a and b are, respectively, the concentra-
tions of reactant A and autocatalyst B and k, is a kinetic
constant. This cubic scheme has been shown to be a good
approximation for the IAA reaction in the AA-excess case™®
with A=105 and B=1I", and for which cellular deformation
due to a diffusive instability has been observed
experimentally.29 For this case, if D=Dg/D,<D,, with D,
=0.424, a planar reaction front becomes diffusionally
unstable.”®* A similar situation arises in the CT system
where diffusive instabilities have been studied experimen-
tally in detail,!**** where the critical diffusion coefficient
ratio needed in a two-variable model’>** for this reaction is
now D_.=0.45.

As the same autocatalytic chemical fronts can feature
either a hydrodynamic buoyancy-driven fingering due to a
Rayleigh-Taylor (RT) mechanism or cellular deformation
due to a diffusive instability, our goal is to analyze whether
these two different instabilities can interact and, if so, what
will be the resulting dynamics. As well we also wish to un-
derstand in general the influence of simple differential diffu-
sion between the two key species of an autocatalytic reaction
on the RT instability even in the absence of diffusive insta-
bility (i.e., D>D_ but D #1).

Previous work on a model for the isothermal CT system
has already shown that increasing D above unity has a sta-
bilizing effect on the RT instability of descending fronts.””*®
In a similar way, differential diffusion between mass and
heat, i.e., the two key variables in exothermic traveling
fronts, has previously been shown to affect the stability prop-
erties and nonlinear dynamics of exothermic autocatalytic
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fronts in aqueous solutions (see Refs. 16, 39, and 40, and
references therein). However, in these exothermic autocata-
lytic frontal systems, the evolution equation for the tempera-
ture 7 depends explicitly on the concentration ¢, while
changes in T do not feedback on the dynamics of the con-
centration since the temperature changes across the front are
only of the order of 1 K. The coupling between the effects of
the two key species is therefore not the same as the one
operative for a chemical scheme such as Eq. (1), where each
species A and B has a feedback on the other. For combustion
fronts, the interaction between diffusive and RT instabilities
has been addressed and has been shown to yield to modified
dispersion curves and complex dynamics such as periodic or
irregular pulsating flames.*> However in such systems, tem-
perature changes are large enough to affect the kinetic con-
stant. This is only a second-order effect for autocatalytic re-
actions in aqueous solutions, where the temperature changes
across the front are usually in the range of 0.5-2 K.

In this framework it is the objective of this article to
study theoretically the stability properties that result from the
coupling between RT instabilities and the differential diffu-
sion of the reactant and autocatalyst species involved in an
isothermal traveling chemical front. To do so, we consider
reaction (1) as a prototype system to model generic autocata-
lytic fronts. In particular, we concentrate on those parameter
ranges where the different mechanisms for generating a
transverse instability (RT or diffusive instabilities) have com-
parable effects. We set up the model and nondimensionaliza-
tion of the problem, seek traveling wave solutions as a base
state to the problem and perform a linear stability analysis
(LSA) by deriving dispersion curves (giving the growth rate
of the perturbations as a function of their wave number) for
representative values of the parameters. Numerical simula-
tions of the full nonlinear problem are discussed in a follow-
ing paper.43

We find as a result of the LSA that the problem can be
classified into 12 different cases depending whether the den-
sity increases or decreases across the front, whether the front
is ascending or descending in the gravity field, and whether
D=1, D>1, or D<1. In order to demonstrate this, the
present article is organized as follows. In Sec. II, we intro-
duce a two-variable reaction-diffusion-convection model
based on the reaction scheme (1) for species A and B diffus-
ing at different rates and coupled to Darcy’s law to describe
the evolution of the flow field in the system. The LSA is
detailed in Sec. III, where we also consider an analysis for
small wave numbers. Finally we draw some conclusions in
Sec. IV.

Il. MODEL

Our model is based on reaction scheme (1) taking place
within a porous medium or a thin Hele-Shaw cell. This
choice of geometry is made, in part, because a Hele-Shaw
setup has been used in many experimental studies into the
instabilities of reaction fronts and because it simplifies, to
some extent, the basic fluid dynamics. In the latter regard, it
allows for the assumption that the system is effectively two-
dimensional. We assume that the Hele—Shaw reactor is
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mounted in the vertical direction, with the x-axis measuring
distance in the upward direction and y normal to x across the
cell. The equations for our two-dimensional model system
are derived from the standard thin film equations (lubrication
theory) (see Ref. 44 for example) for the fluid flow together
with reaction-diffusion-advection equations for the concen-
trations, also derived using the thin film approximation,
namely,

du oJv

s, )
dx dy

ap  p

—=——u- ,b), 3
PRt gpla,b) 3)
1%

—p:—ﬁv, (4)
ady K

E-F &_yz> —koabz, (5)

b db b #b Pb 5
=Up ﬁ-i-(?_yz +k0ab, (6)

where we made the standard Boussinesq approximation. The
density p is given by an “equation of state,”

pla,b) = py+ yia+ y:b, (7)

where po=p(0,0) is the fluid density in the absence of A and
B and v, , are the solutal expansion coefficients of species A
and B. We assume that y; and v, are of the same sign and
without any loss in generality we can take them both as
positive. In the above, the pressure p is independent of the
distance across the gap. The velocity components # and v (in
the x and y directions, respectively) and the concentrations a
and b are their values averaged across the gap, following the
standard derivation of the equations for a Hele-Shaw cell. p
is the density, g is the effective acceleration due to gravity, u
is the viscosity of the fluid, and K the permeability, which,
for Hele—Shaw cells, is related to the thickness % of the cell
by K=h%/ 12. D, and Dy are the diffusion coefficients of
reactants A and B.

Initially, ahead of the reaction front, there is only A
present, at uniform concentration a,. This is converted fully
into B by reaction (1), hence the reaction product is also at
the same uniform concentration a,. We make Egs. (2)—(7)
dimensionless by introducing the time T}, length L, and ve-
locity U, scales, all based on reaction (1),

1 DA 1/2 )
Ty="—"">, Lo= <_2) s U0=(DAkoao)”2- (8)
koao k()ao
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We then write

(M,U) = UO(ﬁ’ﬁ)’ (x’y) = LO()?’)_))’ = TOZ
©)
=LA (@ b) = a@h).
poK

In addition, we scale the density as p=p/Ap, where Ap
=(y,—v»)ay. This leads to the dimensionless equations for
our model as, on dropping the bars for convenience,

P P d b

—I£j+—f:— Ra_a+Rb_ > (10)
ax*  dy dy dy

da dpda Ipda [Pa P
_a+_¢f_a__¢f_a=<_j+_‘;)_ab2, (11)
at  dydx dxdy \dx* dy

b b P db Pb  Pb
_+_$__—¢—: (—2+—2>+ab2, (12)
at  dy dx  Ix dy ax=  dy

where we introduced the stream function ¢, defined such that
u=3dy/ dy, v=—0ai/dx and eliminated the pressure from the
equations. Here

D
D=3’3, (13)
A
Kga K
R, Y1884g "1 81/2’ (14)
rUy (D yko)
K K
R, = 84y VAL (15)

pUy — m(Dyke)"?

For families of reactions like the TAA reaction, the density of
the product after the passage of the wave is less than that of
the initial reactants.”” From this it follows that Y>>, and
we have, from Egs. (14) and (15), that R,>R;. This means
that upward propagating fronts will become buoyantly un-
stable through a RT instability. If, however, we take y; < y,,
as in the CT reaction case for instance, the reaction products
are denser than the unreacted state and R, <R,

For a given autocatalytic reaction, vy, and 7, are fixed
and the Rayleigh numbers in Egs. (14) and (15) can be var-
ied by changing the gap width &, (which alters the perme-
ability K) or g. Modifying g can be achieved by varying the
angle 6 of the experimental setup with the vertical."” Tt is
interesting to note, at least for the cubic autocatalytic scheme
given by (1), that the Rayleigh numbers are independent of
ay. For kinetics of orders different to this, the Rayleigh num-
bers will also depend on the initial concentrations. The angle
0, the gap width h, the viscosity u, and the initial concen-
tration a are then the quantities that can be varied experi-
mentally so as to affect the properties of the RT instability. In
parallel, to obtain a diffusive instability, we can slow down
the diffusion of the autocatalytic species Dy by binding B
with large molecules.”’ By changing these various param-
eters appropriately, the time scales of the buoyancy and dif-
fusive instabilities can be made of the same order of magni-
tude, thus allowing them to interact.

J. Chem. Phys. 130, 114502 (2009)

lll. LINEAR STABILITY ANALYSIS

We first derive the traveling waves that are the base state
of our LSA before analyzing the various stability scenarios.

A. Planar traveling waves

Initially a=1, =0, and =0 (no flow) with a local input
of B applied across the reactor to start the reaction. This
leads to a pair of counter-propagating reaction-diffusion
fronts, one propagating upwards and the other one
downwards.” It is these reaction fronts that can be modified
by buoyancy-driven and diffusion-driven instabilities. We
start by describing the planar traveling waves that our system
can support, the base state for our LSA.

To consider the planar propagating reaction fronts, we
introduce the traveling coordinate {=x-cf, where c is the
constant wave speed, and look for a solution of Egs. (11) and
(12) in the form a=a({), b=b({). This leads to the traveling
wave equations, in the absence of flow,

d"+ca —ab*=0, Db"+cb' +ab*=0, (16)

on —% < (<%, subject to

a—1, b—0 as {—», a—0, b—1

as [ — — o, (17)

where primes denote differentiation with respect to . The
solution to the traveling wave [Egs. (16) and (17)] deter-
mines the wave speed ¢, which depends on the ratio of dif-
fusion coefficients D, with ¢ decreasing to zero as D is de-
creased. The solution to Eqgs. (16) and (17) is discussed fully
in Refs. 45 and 46.

To consider the stability of the reaction fronts to a
buoyancy-driven instability, we perturb about the planar trav-
eling wave solution given by Egs. (16) and (17) by putting

a(gy,0)=a({) +A(L.y.1), b(Ly.t)=b()+B(Ly,1),
(18)
where A, B, and =y({,y,t) are assumed small. We then

look for a solution of the resulting linearized equations in the
form

(A,B, 1) = e™ ™M (A0(0).Bo(D). (D). (19)

This leads to an eigenvalue problem for (A, By, ¢) in terms
of the growth rate o and the wave number k as

Af+cAy— (b* + K> + 0)Ag— 2abBy - a'ug =0, (20)
DB} + cB— (DK* = 2ab + 0)By + b*Ag— b'ug=0, (21)

uf — kK*ug — k*(R,Ag+ R,B,) =0, (22)
where ug=ikiy, subject to

Ay—0, By—0, uy—0 as {— = oo, (23)

i.e., the perturbations must decay far away from the front.
We obtained dispersion curves, plots of o against k for
given values of R,, R,, and D by solving Egs. (20)—(22)
numerically by a shooting method. This required the solution
to the traveling wave [Egs. (16) and (17)] and built in the
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TABLE 1. Summary of the stabilizing (+) and destabilizing (—) influences of the buoyancy effects (buoy) of the
differential diffusive effects (diff.) and the fact that D>1 (D<1) is making the RD base state front faster or
slower than for D=1 (RD) in the case when R,>R;. In the stability properties, “monotonous” and “nonmo-
notonous” refer to the dependence of o, on D for each case as seen on Figs. 3(b) and 4(b), respectively.

Case Direction D Buoy Diff. RD Stability Figure
1 Up D=1 - Neutral Neutral RT unstable 2
2 Up D>1 - = + Monotonous 3
3 Up D<1 — + - Nonmonotonous 4 and 5
4 Down D=1 + Neutral Neutral Always stable
5 Down D>1 + + + Always stable
Enhanced diffusional
6 Down D<1 + - - instability if D<D,. 7 and 8

asymptotic forms for the solution as {— = oo resulting from
Eq. (23). One of the arbitrary constants that appeared in this
development is put to unity to force a nontrivial solution.
The resulting (linear) boundary-value problem was solved
using a standard shooting method (DO2AGF in the Numeri-
cal Algorithms Group library53 ). This method converged eas-
ily and enabled the dispersion curves to be readily calcu-
lated. The same general approach was used to solve the
traveling wave problems (16) and (17).

We need to consider how to choose the parameters R,
and R;,. We have from Egs. (14) and (15) that

Ry 7 _

a, (24)
Ra "1

since for a given chemical system, we can expect the ratio
>/ to be a constant. Our results are based on this ratio
being fixed at some given value «, i.e., we take R,=aR,
throughout. We treat two separate cases. For the IAA system
experimental results suggest that v,/ y; =0.5, which leads us
to take @=0.5 or R,=0.5R, for our first case. For our second
case we consider the situation when R, is less than R, as in
the CT system, taking «=2.0, i.e., R,=2.0R,,.

The change in density Ap=p,—p, across the reaction
front is given by, from Eq. (7),

_ u(Dyko) ' Pay

AP:(')’l—)’z)ao— (Ra_Rh):(l—Ol)'}’lao,

(25)

in our case. Keeping the ratio a=R,/R, fixed is, from Eq.
(24), the same as keeping the ratio y,/7, fixed. In our first
case @<l and, from Eq. (25), this means that there is a
decrease in density across the front (for a given initial con-
centration a of reactant A). In this case upward propagating
fronts have an inherent buoyant instability with downward
propagating fronts being buoyantly stable. The converse is
true for our second case.*’ Here x> 1, giving an increase in
density across the front. Consequently it will now be the
downward propagating fronts that have the inherent buoyant
instability with upward propagating fronts being buoyantly
stable. Our main aim is to see to what extent these inherent
stability characteristics arising from density changes across
the reaction front are altered by having differential diffusion
of the reacting species. In order to do so, we analyze the two
cases a<<1 and a>1 separately.

B. Dispersion curves for R,>R,

This case is motivated by those chemical reactions for
which the products of the reaction are lighter than the initial
reactants, a typical example being the IAA system for which
reaction scheme (1) is a good model. This system has
v,/ v1<1 and hence R,>R,. In the absence of differential
diffusion between reactant A and product B (i.e., for D=1),
the only source of an instability is that related to buoyancy
effects arising whenever R,# R,. We start by taking R,
>R, ie., «a<l and D=1, for which upward propagating
waves are the buoyantly unstable ones (case 1, Table I), the
descending fronts remaining planar48 (case 4, Table I) for
D=1. We now examine what new physical mechanisms
come into play when D # 1.

If D>1, i.e., if the product B diffuses faster than the
reactant A, then differential diffusion has a destabilizing in-
fluence on the RT instability for ascending fronts while it
stabilizes descending fronts.*! This can be understood from
the displacement particle argument shown in Fig. 1. Consider
a stratification of a species A on top of B (upper part of Fig.
1). In a concave perturbation around a planar front, as shown
in Fig. 1, the upper species A diffuses out of the concave part
and is thus diluted. This decreases the density difference
across the front and stabilizes the RT instability with regard

FIG. 1. Displaced particle argument for D>1 (i.e., Dz>D,). The fact that
the product B diffuses faster than reactant A has a destabilizing effect on the
RT instability of ascending fronts (upper part), while it stabilizes buoyantly
stable descending ones (lower part) even more. The long and short arrows in
the front perturbation indicate the differential intensity of diffusion of B and
A, respectively, while the arrow in the planar part indicates the direction of
propagation of the front.
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to the planar situation. On the contrary, the lower species B is
concentrated into the concave part, which increases the den-
sity difference and enhances the RT destabilization. A reverse
reasoning operates in convex perturbations. Hence enhance-
ment of the RT instability wins for ascending fronts (for
which B lies underneath A) if D> Dy, i.e., the lower species
diffuses faster than the upper species. These differential dif-
fusion effects come into play as soon as there is a local
change in curvature of the front and are independent of the
values of the Rayleigh numbers. Thus there is enhancement
of the RT instability if D>1 for ascending fronts for both
R,>R, (case 2) and R,>R, (case 8). A similar argument
shows that, for descending fronts, differential diffusion en-
hances the RT instability if the species on top diffuses faster
than the lower one, i.e., if D<1 for both R,>R;, (case 6) and
R, <R, (case 12).

This influence is, however, competing with the fact that
reaction-diffusion (RD) fronts also travel faster when D> 1
because faster diffusion of B gives an excess of autocatalytic
species ahead of the front, which is speeding it up. The fact
that the front then travels faster makes it more difficult for
the RT instability to develop.37 These various trends are sum-
marized in Table I, where we mention whether the buoyancy
effects, the differential diffusivity effects, and the fact that
the RD speed depends on the value of D have a stabilizing
(positive sign in the table) or destabilizing (negative sign in
the table) influence on the dynamics. We now consider the
dispersion curves, which result from the combination of
these three effects.

1. Upward propagating fronts

We start by taking R,=0.5R, and focus on the case
where A and B diffuse at the same speed (D=1). Figure 2(a)
shows dispersion curves for R,=2.0,5.0 (R,=1.0,2.5) (case
1, Table I) for this case. Both the range of unstable wave
numbers and the maximum growth rate o, increase as R,
(and hence R,) is increased. This is to be expected as the
density difference across the front, given by Eq. (25), is then
increasing. This is made clearer in Fig. 2(b) where we plot
Omax against R,. The rate of increase in o,,,, with R, appears
almost linear for the larger values of R,. When R,=0, 0.
=0 as the system is then buoyantly marginally stable while
the diffusive instability cannot set in as D=1. (In this and
subsequent figures,  corresponds to values of parameters
used for the numerical integrations.)

For D> 1 (case 2, Table I and Fig. 3), both the range of
unstable wave numbers and the maximum growth rates de-
crease for a given value of R,, as can be seen in Fig. 3(a),
comparing the dispersion curves for D=1.0 and 2.0 at fixed
Rayleigh numbers. In Fig. 3(b), the plot of o, against D,
again for R,=5.0, R,=2.5, shows that o,,,, decreases mono-
tonically as D is increased from D=1. There is also an asso-
ciated decrease in the range of unstable wave numbers as D
is increased. Thus the stabilizing effects of increased propa-
gation speeds outweigh the destabilizing effect of differential
diffusion (at least for these parameter values).

For D<1 (case 3, Table I), we again have two compet-
ing effects, differential diffusion for D<<1 has a stabilizing
influence on the RT instability (see Fig. 1), however, the RD
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FIG. 2. Stability results for the pure RT instability of ascending fronts
obtained for D=1.0. (a) Dispersion curves for R,=2.0,5.0, (R,=1.0,2.5).
Expression (41) for k small is shown by the broken line. (b) A plot of &y,
the maximum value of the growth rate o, against R, (with R,=0.5R,).

fronts are also moving slower, which is favoring the destabi-
lizing buoyancy effects. The competition between these ef-
fects leads to a nonmonotonous dependence of the dispersion
curves on D (see Fig. 4). When D is reduced from D=1, the
range of unstable wave numbers and the maximum growth
rates increase, at least initially, probably because the RD
front moves slower allowing the buoyancy effects to be more
operative than when D=1. However, there is a value of D at
which both the range of unstable wave numbers and the
maximum growth rates start to decrease as D is decreased
further. This is due to the fact that the stabilizing influence of
differential diffusion then takes over. This is illustrated in
Fig. 4(a), showing dispersion curves for varying D at fixed
R,=0.5 and more clearly in Fig. 4(b), where o, is plotted
against D. This figure suggests that o, achieves its greatest
value at D=0.35 (for these values of R, and R,). In Fig. 4
and some other subsequent figures, we also plot as A growth
rates obtained by following the early time linear growth of
the transverse modulation of the interface as a function of
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FIG. 3. Stabilizing influence of D>1 on the RT instability of ascending
fronts for R,=5.0, R,=2.5. (a) Dispersion curves for D=1.0,2.0. (b) A plot
of 0 the maximum value of the growth rate o, against D.

time in the full nonlinear simulations of Egs. (10)—(12).
Good agreement between the results from the LSA and from
the nonlinear simulations are obtained.*

At the smaller values of D, the system is also diffusion-
ally unstable, diffusional instability requiring D <D,
=(.424 for the cubic kinetics [Eq. (1)]. Figure 5(a) compares
dispersion curves of the purely diffusional instability case
(D=0.15, R,=R,=0) to those obtained for parameters
such that the system is both diffusionally and buoyantly un-
stable. For R,=0.5 the growth rates are comparable with
those for the R,=0 case, though the range of unstable wave
numbers is somewhat less. As R, (and hence R) is increased
the maximum growth rate increases, though the range of un-
stable wave numbers does not appear to change significantly.
In Fig. 5(b) 0, is plotted against R, for D=0.15, which
shows that o, has a minimum value at R,=0.2 before
increasing with R,. For larger values of R,, o,, increases
rapidly, soon becoming much larger than the diffusional in-
stability value of 0,,,,=0.004 34 obtained for R,=0. Also
plotted in Fig. 5(b) are the values of oy, for D=1.0 for
smaller values of R, [highlighting the small R, part of Fig.
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FIG. 4. Influence of D<1 on the RT instability of ascending fronts for R,
=0.5, R,=0.25. (a) dispersion curves for D=1.0,0.5,0.3,0.15. (b) A plot of
Opnax» the maximum value of the growth rate o, against D. The values of
Omax Obtained directly from the growth of fingers at early times in full
nonlinear simulations are shown by A.

2(b)] to compare with the values for D=0.15. For small val-
ues of R, the system is more unstable with D=0.15, arising
mainly from the fact that the system is also diffusionally
unstable for this value of D (0,,,>0 at R,=0), whereas with
D=1.0, it is stable at R,=0 (0,,,,=0 at R,=0). However, the
system with D=1.0 becomes the more unstable one (greater
values of o,,,) at R,=0.9.

To understand the nonmonotonous character of the de-
pendence of o on R, when D <D, we refer to the displaced
particle argument of Fig. 6. The unstable diffusive character
of the front when R,=0 is usually understood as follows:* in
the concave part of the perturbation as seen on Fig. 6 (upper
part), A is diluted out of the perturbation. There is thus less
reactant A ahead of the front, which slows down its progres-
sion favoring the growth in amplitude of the perturbation and
destabilizing the front. On the contrary, the autocatalyst B
gets concentrated ahead of the perturbation speeding up the
front that tends to go back to its planar form, thus stabilizing
the system. A diffusive instability is observed when the de-
stabilizing diffusion of A wins over the stabilizing diffusion
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FIG. 5. Stability results for the diffusionally unstable case for ascending
fronts. (a) Dispersion curves for D=0.15, R,=0.5,0.75 (with R,=0.5R,).
The pure diffusionally instability dispersion curve is shown by the broken
curve (D=0.15, R,=0). (b) 0na the maximum value of the growth rate
o, plotted against R, for D=1.0 and 0.15. The values of o,,,, obtained from
nonlinear simulations are shown by A.

of B, i.e., when D, > Dy and in practice when D <D.. How-
ever, if R,>R,,, A is denser than B, which then counteracts
the diffusive growth of the perturbation. This stabilizing
buoyancy effect decreases the growth rate of the diffusive
instability for moderate values of R,. However, when R, is
further increased, the standard RT instability takes over and
the growth rate again becomes an increasing function of R,
[see Fig. 5(b)]. The transition from density effects stabilizing
the diffusive instability at moderate values of R, and desta-
bilizing buoyancy effects at larger R, lead to the nonmonoto-
nous character of the curve for D=0.15 seen in Fig. 5(b).

A comparison with a similar curve for D=1 in Fig. 5(b),
for which there are no diffusive instabilities, shows, as ex-
pected, that the larger values of o,, for small R, and D
<1 are clearly related to the differential diffusivity of A and
B. For R,=0.9, the system is more unstable for D=1 than
for D=0.15 as D<1 has a stabilizing effect on the RT insta-
bility as explained in Fig. 1. Below R,=0.2, the diffusive
instability takes over so that the curve of o, against R,
increases until the pure diffusive instability threshold is
reached at R,=0.

J. Chem. Phys. 130, 114502 (2009)

A Ra:5

FIG. 6. Displaced particle argument for D <1 showing how the fact that
R,> R, stabilizes the differential diffusive instability at least for small Ray-
leigh numbers as seen on Fig. 5.

The dispersion curves shown in Figs. 2(a), 3(a), and 4(a)
have a similar form for small values of k. This leads us to
obtain a solution of the LSA [Egs. (20)—(22)] valid for small
k.

2. Solution for small k

To obtain a solution of Egs. (20)—(22) valid for small k,
we expand

A0=A~0+kg]+k2A~2+ Ty,
B0=§0+kEI+k2§2+"', (26)

M():kU1+k2U2+"', G'Zk(T()+k20'1+"'.

The equations for A, and B, have the solution (A,,B,)
=(a’,b’), where (a,b) is the traveling wave solution given
by Egs. (16) and (17).

At O(k) we have U{=0 and we take U, to be a, as yet
undetermined, constant. The equations for (g | ,E ,) are then

AU+ cA| —b*A, - 2abB, = (oo + U,)a’, (27)

DB + cB| + b*A| +2abB, = (oo + U,)b’. (28)

Now Egs. (27) and (28) have a complementary function
(a’,b"), which satisfies the (homogeneous) boundary condi-
tions given in Eq. (23). Thus, any solution to Egs. (27) and
(28), which satisfies homogeneous boundary conditions,
must also satisfy a compatibility condition. To determine this
condition we follow” and construct the adjoint problem
(U(), V() for Egs. (27) and (28), namely,

d
—dg(eﬂ'?u’) - b3 (U - eYPV) =0,
(29)

d
%(Decg/DV’) —2ab(etU - e““PV) = 0,

subject to
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UV—0 as {— * o, (30)

A full derivation of this adjoint problem is given in Ref. 35.
The compatibility condition is then, again from Ref. 35,

(oo+ U +1,) =0, (31)
where

I, = f eba'Udl, I,= f Py Vd( .

—0

It was seen in Ref. 35 that I1+1,#0 except when D=1,
which is a degenerate case for the present analysis. Expres-
sion (31) then gives

op+U,;=0, and hence (XI,EI)=K1(a’,b’) (32)

for some constant K.
At O(k?) we then have

Ul=Ra' +Ryb’, (33)

A+ A} = b?Ay - 2abB, = (00K, + 1 + 0y)a’ +a' Uy,
(34)

DB} + cB) + b*Ay + 2abB, = (0K, + D + 0)b' + b U,.
(35)
Equation (33) gives
Us=Ra+Rb+L, (36)

for some constant L,. Clearly this does not satisfy the bound-
ary conditions as {— = for any choice of L,. This means
that outer regions are required in which these conditions are
attained. We construct two outer regions, both with indepen-
dent variable Y=k, one in Y >0 and the other in ¥ <<0. In
these regions Ag=0 and B,=0 (at least to the order we are
working) and in which we put ug=kw, where w satisfies

w—-w=0 in0<Y<o% and in —o <Y <0,
(37)
subject to the matching conditions, from Eq. (36), that
w~U +(R,+Ly)Y+ ---as Y — 0",
(38)

w~U+(R,+L)Y+ -+ as Y—0.

The solutions to Eq. (37), which satisfies Eq. (38), are
w=Ue? in Y>0, w=Upe' in Y<0. (39)
Applying the matching conditions (38), at O(Y), in (39)
gives
Ra+L2=—U1, Rb+L2=U1. (40)
From Egs. (32) and (40) it follows that oy=(R,—R)/2 and
hence

R,—R
o~ Mk_i_

> for k small, (41)

independent of D, as is seen in Figs. 3(a) and 4(a). Expres-
sion (41) shows that upward propagating fronts are always

J. Chem. Phys. 130, 114502 (2009)

buoyantly unstable, at least for sufficiently small wave num-
bers.

The problem for D=1 is somewhat simpler to deal with
as the order of the system can be reduced since now a+b
=1, Ag+By=0. An expansion analogous to that described
above can be carried out, the end result still being Eq. (41).
Expression (41) for k small is plotted in Fig. 2(a) (shown by
a broken line) for the R,=5.0, R,=2.5 case, and shows good
agreement, at least for small k, with the numerically deter-
mined values of o.

Result (41) holds for upward propagating fronts. To con-
sider downward propagating fronts, we need only change the
sign of the terms on the right-hand side of Eq. (10), corre-
sponding to a change in sign of the buoyancy force term in
Eq. (3). Consequently for the LSA, there is a change in sign
for the final terms in Eq. (22). The result is that

R,-R
N_(a h)k+

5 for k small, (42)

showing that o is negative for small wave numbers for
downward propagating fronts, a situation which we now con-
sider in more detail.

3. Downward propagating fronts

Relation (41) between o and k for k small indicates that
upward propagating fronts will always be unstable for R,
>R, (cases 1-3, Table 1), at least for sufficiently small wave
numbers. For downward propagating fronts, the values of o
given by Eq. (42) will be negative for small wave number .
This is readily understood for D=1 for which the system is
buoyantly stable featuring a stable density stratification of
lighter products B over heavier reactant A (case 4, Table I).
For D>1 and R,>R,, (case 5, Table I), the stabilizing effect
of differential diffusion and the fact that the base state reac-
tion front travels faster for D> 1 (which is unfavorable to the
development of the RT instability) both make descending
fronts even more stable than for D=1.

However, when D <1, differential diffusion and the
slower RD speed both act to destabilize the favorable density
stratification (case 6, Table I) and for D<D,, the system is
also diffusionally unstable. It may then be possible to desta-
bilize the system and thus have o>0 over a finite range of
nonzero wave numbers. This possibility can be seen in Fig.
7(a), where we give dispersion curves for R,=0.25,0.5 (with
D=0.15 and a=0.5) for downward propagating fronts. For
both values of R,, there is a finite range of wave numbers
over which >0 and the system is unstable, even though
o<0 for small k. Note that the maximum growth rates in
this case are somewhat greater than those for the upward
propagating reaction fronts [compare the value of o, for
R,=0.5 in Fig. 7(a) with that in Fig. 5(a)] and are also
greater than for the pure diffusional instability case (R,=0),
shown in Fig. 5(a) by a broken line. The system becomes
more unstable with increased values for o,,,, and a greater
range of unstable wave numbers as R, is increased (at least
for the values of R, tried). This can be seen in Fig. 7(b),
where we plot o, against R, for D=0.15. This figure shows
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FIG. 7. Stability results for the diffusionally unstable case for descending
fronts. (a) Dispersion curves for D=0.15, R,=0.25,0.5 (with R,=0.5R,).
The pure diffusionally instability dispersion curve is shown by the broken
curve (D=0.15, R,=0). (b) 0 the maximum value of the growth rate

o, plotted against R,. The values of o,,,, obtained directly from nonlinear
simulations are shown by A.

that oy, 1S somewhat greater in this case than for the up-
ward propagating fronts [compare with Fig. 5(b)].

The result that downward propagating fronts, which are
buoyantly stable, can become more unstable than their buoy-
antly unstable ascending equivalent when they are diffusion-
ally unstable is perhaps unexpected. The reason for this in-
stability can be explained by the displaced particle argument
described above and in Fig. 1 and results from the fact that
having D<<1 gives a destabilizing influence on buoyancy
effects for descending fronts when Ra>Rb.41 A related ef-
fect, seen when the buoyancy forces result from both con-
centration and temperature gradients, has already been
shown to be able to destabilize a stratification of solute-light
and hot products on top of solute-heavy and cold reactants in
exothermic fronts.*’

We examined this enhanced instability of downward
propagating fronts in a little more detail. In Fig. 8(a) we plot
Omax against D for R,=0.5 and descending fronts. The figure
shows that o, increases as D is decreased. oy, becomes

J. Chem. Phys. 130, 114502 (2009)
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FIG. 8. Influence of D<<1 on the RT instability of descending fronts for
R,=0.5, R,=0.25. (a) 0y, plotted against D. The values of o, obtained
directly from nonlinear simulations are shown by A. (b) The values of R, at
which the system changes from being unstable to being stable plotted
against D. (¢) O plotted against R, (with R,=0.5R,) for D=0.28<D,,
illustrating that the system remains unstable for all R, when D<D,.

zero at D =(.285, with the system then being fully stable at
larger D for this value of R, i.e., has <0 for all k>0. This
latter point raises the question as to how the change in sta-
bility depends on the value of R,. In Fig. 8(b) we plot the
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TABLE II. Same as Table I in the case when R, <R,

J. Chem. Phys. 130, 114502 (2009)

Case Direction D Buoy Diff. RD Stability Figure

7 Up D=1 + Neutral Neutral Stable

8 Up D>1 + - + Stable

9 Up D.<D<1 + + - Stable

Lowered diffusional

9b Up D<D, + - - instability if D<D., 10

10 Down D=1 - Neutral Neutral RT unstable 9

11 Down D>1 - + + Unstable 11

12 Down D<1 - - - ST chaos 12 and 13

values of R, at which the system changes from being un-
stable to being fully stable against D, still with R,=0.5R,,.
This figure shows that the region of instability (as labeled on
the figure) decreases as D is increased and strongly suggests
that having D<D,, i.e., having the system diffusionally un-
stable, is a necessary requirement for downward propagating
fronts to become unstable through buoyancy effects when the
products are lighter than the reactants (R, <R,).

Figure 8(b) also shows that there is a value D, of D, with
D,=0.284 such that, for D<<D,, the system is always un-
stable for all values of R,. Thus stability can be restored by
making R, sufficiently large (i.e., increasing the stabilizing
effect of having light B over heavy A) only for D in the range
D, <D<D,. To illustrate this point further, o,, is plotted
against R, in Fig. 8(c) for D=0.28, a value just below D;.
This figure shows that o, >0 for all R,, having a minimum
value of o,,,,=5X 107* before increasing for larger values
of R,. For values of D> D,, we find that o,,,, decreases to
zero for increasing R, at the values shown in Fig. 8(b) and
remains zero thereafter.

C. Dispersion curves for R,>R,

We now consider those families of reactions where the
products are heavier than the reactant, as in the CT system
for example. For this situation we take a=2.0, i.e., R,=2R,,.

1. Upward propagating fronts

In this case, when D=1, it is the downward propagating
fronts that are buoyantly unstable (case 10, Table II), with
the upward propagating fronts being buoyantly stable (case
7, Table II), as can also be expected from Egs. (41) and (42).
In all the cases tried for D=1, the LSA does indeed show that
upward propagating fronts are stable and that downward
propagating fronts are unstable. We illustrate this by the dis-
persion curves for D=1.0 and R,=1.0,2.5,5.0 shown in Fig.
9. A point to note from this figure is that, for a given value of
R,, the growth rates are somewhat higher than in the previ-
ous case where R,=0.5R,, [Fig. 2(a)]. This might be expected
as, from Eq. (25), the same value of R, corresponds to a
greater change in density across the front in the present case,
where a=2 than in the one depicted in Fig. 2(a), where «
=0.5. If we consider values of R, and «, which give the same
density change across the front, for example, R,=1.0,@=2 in
Fig. 9 with R,=2.0, but a=0.5 in Fig. 2(a), then we see
comparable growth rates, as might be expected.

We now examine what happens to ascending fronts
when D # 1. A displaced particle argument similar to the one
given in Fig. 1 suggests that upward propagating fronts will
be even more stable (i.e., have growth rates even more nega-
tive) for D<1 as differential diffusion is now a stabilizing
mechanism (case 9, Table II). However, when D<D,, the
diffusional instability becomes operative, at least for small
values of R, and R;, (small density changes across the front).
Hence we might expect that the dispersion curves for upward
propagating fronts will have, at least for small R, (where the
buoyantly stabilizing influence of light A over heavy B is not
too important), a range of unstable wave numbers where o
>0, though they will start with <0 from expression (41).
We illustrate this possibility in Fig. 10 where we give disper-
sion curves for upward propagating fronts with D=0.15. For
R,=0.05 (R,=0.1) the LSA suggests that the front is stable.
However, for R,=0.025 (R,=0.05) there is a range of wave
numbers for which >0, indicating that the front is un-
stable. The transition from stability to instability is at R,
=0.0365. If we compare, for example, the maximum growth
rate o, for R,=0.025 with that for the purely diffusional
instability [Fig. 5(b)], we see that it is somewhat smaller, by
a factor of approximately 0.3. This emphasizes the fact that
the stabilizing effect of the buoyancy forces has here a much
stronger influence than the destabilization due to differential
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FIG. 9. Dispersion curves for D=1.0 and descending fronts for the case
R,>R, (R,=2R, with R,=1.0,2.5,5.0).
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R,=0.025, 0.0365, 0.05 (with R,=2R,) for ascending fronts.
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diffusion. This is in sharp contrast with the previous R,
>R, case for buoyantly stable descending fronts (case 6,
Table 1) illustrated in Figs. 7 and 8.

2. Downward propagating fronts

We now consider descending fronts for R,>R, and D
# 1. In this case, the front is RT unstable as heavy products
are lying on top of lighter reactants. If D> 1 (case 11, Table
1), differential diffusion has a stabilizing influence on the RT
instability. Both o,,,, and the range of unstable wave num-
bers decrease as D is increased from D=1.0, as is illustrated
in Fig. 11.

The most unstable case is the one for which all three
effects (buoyancy, differential diffusion and influence of D
#1 on the RD speed) are destabilizing (case 12, Table II)
and this most unstable configuration occurs for descending
fronts when R,>R, and D<1. This is confirmed in Fig.
12(a) featuring dispersion curves for descending, buoyantly

001 Oy
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D
0.003 T T T T T \

1.0 1.2 1.4 1.6 1.8 2.0 2.2

FIG. 11. 0, the maximum value of the growth rate o, plotted against D
for D=1 and for downward propagating fronts and the case R,>R, with
R,=0.5, R,=1.0.
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FIG. 12. Stability results for descending fronts when the system is both
diffusionally and buoyantly unstable. (a) dispersion curves for D=0.15 and
R,=0.05,0.1,0.2 (with R,=2R,). (b) 0., the maximum value of the
growth rate o, plotted against R,,. The values of o, obtained directly from
the nonlinear simulations are shown by A.

and diffusively unstable fronts for D=0.15 and R,
=0.05,0.1,0.2. Values of oy,,, as a function of R, are plotted
in Fig. 12(b), showing a rapid (apparently linear) increase in
Omax S R, 1s increased. In this particular case, we found it
more difficult to compute the dispersion curves than previ-
ously (in all other cases the calculations proceeded very eas-
ily). Even when taking very small increments in the wave
number, we were unable to get the numerical scheme to con-
verge, especially for small values of k. This might be ex-
plained by the much larger values of o found in this case
than for the R,>R,, case. For R,=0.2 (R,=0.4), Fig. 12(a),
we find 0,,,,=0.0383 compared to a value of o,
=(.0033 [Fig. 5(b)]. Even allowing for the different changes
in density, o, =0.0040 for R,=0.4 in Fig. 5(b). In general,
the values of o, appear to be at least an order of magnitude
greater for this case. Further to this point, the range of un-
stable wave numbers is considerably greater for this case
(compare Fig. 12(a) with Fig. 5(a) or Fig. 7(a)).

The strong destabilizing effect of the differential diffu-
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FIG. 13. 0y, the maximum value of the growth rate o, plotted against D
for D=1, downward propagating fronts in the case R,> R, with R,=0.25,
R,=0.5. The values of o,,,, obtained directly from the nonlinear simulations
are shown by A.

sion instability on downward propagating fronts when R,
<R, can clearly be seen in Fig. 13, where we plot oy,
against D for R,=0.25, R;,=0.5 («=2.0). This figure shows a
sharp increase in oy, around the point where D=D,. The
range of unstable wave numbers is also greatly increased
from 0<k<<0.096 for D=1.0 to 0<k<0.731 for D=0.2.

IV. CONCLUSIONS

In autocatalytic reaction fronts where there is more than
one key chemical species, it is common for the reactant A
and autocatalytic product B of the reaction to have different
diffusion coefficients (i.e., D=Dg/D, # 1) and also to have
different densities. Here we examined by a LSA the mutual
influence of such differential diffusion and RT fingering in-
stabilities of chemical fronts due to an unfavorable density
stratification in a gravity field. We have shown that the prob-
lem can be classified into 12 different cases (Tables I and II)
depending whether the front is ascending or descending in
the gravity field, whether the Rayleigh number R, of the
reactant is smaller or larger than the Rayleigh number R;, of
the products, and whether D=1, D<1, or D> 1. If the reac-
tant diffuses sufficiently faster than the product (D <D,), the
system can also be unstable through a diffusive instability
giving rise to a cellular deformation of the front.

The stability properties can be understood as the result
of three effects: (i) fronts are buoyantly unstable when
heavier solution lies on top of a lighter one in the gravity
field, (ii) D>1 (D<1) is having a destabilizing (stabilizing)
effect on buoyantly unstable ascending fronts while destabi-
lizing (stabilizing) the descending fronts when R,>R,, (the
reverse is true when R, <R,), and (iii) fronts travel faster for
increasing values of D, which is unfavorable to the RT insta-
bility. As a corollary, slower fronts obtained when D is de-
creased below one are more prone to favor the RT instability.
As a consequence of the competition or cooperation between
these three effects, various stability scenarios have been
highlighted from the LSA (giving dispersion curves i.e., the

J. Chem. Phys. 130, 114502 (2009)

growth rate of the perturbation o as a function of their wave
number k, for various values of the parameters), as well as
from analytical results for small k. This allowed to under-
stand what kind of stability properties are to be expected if a
pair of counter-propagating fronts are generated in the
middle of a Hele-Shaw cell when differential diffusion phe-
nomena are present in addition to possible buoyancy-driven
instabilities.

When the reactants are heavier than the products, as in
the IAA reaction for example, then, for D=1, only the as-
cending front is buoyantly unstable and no diffusive instabil-
ity can take place. If D> 1, the RT instability of the ascend-
ing fronts will be less efficient as D>1 has a stabilizing
influence, the descending front remaining stable. The most
striking effect of differential diffusion comes however when
D <1. In this case, for ascending fronts, the most unstable
growth rate o,,,, varies nonmonotonically with D when D is
decreased below one while descending fronts have their dif-
fusive instability magnified when D <D,. Buoyancy effects
in this case enhance the cellular deformation due to a diffu-
sive instability.

When the products are heavier than the reactants, as in
the CT reaction, the stability scenarios are quite different.
For D=1, the ascending front is now buoyantly stable while
the descending one features a hydrodynamic RT fingering
instability. If D> 1, differential diffusion cannot destabilize
an ascending front but can reduce the strength of the RT
instability of descending fronts. When D <D, the diffusive
instability of ascending fronts is lowered by buoyancy ef-
fects. The most interesting situation occurs on descending
fronts when D <D_.<1, in which case all effects combine to
strongly destabilize the front.

The classification given in this article should allow us to
predict all possible stability conditions of autocatalytic fronts
where the density either decreases or increases across the
front and the two key species diffuse at different rates. In
order to give insight into the spatiotemporal dynamics that
might be observed experimentally in the various stability
scenarios studied here, numerical simulations of the full non-
linear problem have been performed and are detailed in a
companion paper.*

ACKNOWLEDGMENTS

A.D. thanks A. T6th and D. Horvith for fruitful discus-
sions and acknowledges financial support from FNRS, Pro-
dex and the Communauté franaise de Belgique (ARC pro-
gram). J.D. benefitted from a FRIA Ph.D. fellowship.

1. AL Pojman, 1. R. Epstein, T. J. McManus, and K. Showalter, J. Phys.
Chem. 95, 1299 (1991).

25, Masere, D. A. Vasquez, B. FE. Edwards, J. W. Wilder, and K. Showalter,
J. Phys. Chem. 98, 6505 (1994).

M. R. Carey, S. W. Morris, and P. Kolodner, Phys. Rev. E 53, 6012
(1996).

“M. Bockmann and S. C. Miiller, Phys. Rev. Lett. 85, 2506 (2000).

3. Martin, N. Rakotomalala, D. Salin, and M. Béckmann, Phys. Rev. E
65, 051605 (2002).

®M. Bickmann and S. C. Miiller, Phys. Rev. E 70, 046302 (2004).

M. C. Rogers and S. W. Morris, Phys. Rev. Lett. 95, 024505 (2005).

8L Sebestikova, J. D’Hernoncourt, M. J. B. Hauser, S. C. Miiller, and A.
De Wit, Phys. Rev. E 75, 026309 (2007).

Downloaded 18 Mar 2009 to 164.15.128.33. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp


http://dx.doi.org/10.1021/j100156a049
http://dx.doi.org/10.1021/j100156a049
http://dx.doi.org/10.1021/j100077a014
http://dx.doi.org/10.1103/PhysRevE.53.6012
http://dx.doi.org/10.1103/PhysRevLett.85.2506
http://dx.doi.org/10.1103/PhysRevE.65.051605
http://dx.doi.org/10.1103/PhysRevE.70.046302
http://dx.doi.org/10.1103/PhysRevLett.95.024505
http://dx.doi.org/10.1103/PhysRevE.75.026309

114502-13  Buoyancy and diffusion instabilities

L P Nagy, A. Keresztessy, J. A. Pojman, G. Bazsa, and Z. Noszticzius, J.
Phys. Chem. 98, 6030 (1994).

N Keresztessy, I. P. Nagy, G. Bazsa, and J. A. Pojman, J. Phys. Chem.
99, 5379 (1995).

7. A Pojman, A. Komlési, and I. P. Nagy, J. Phys. Chem. 100, 16209
(1996).

>M. Matalon and B. J. Matkowsky, Combust. Sci. Technol. 34, 295
(1983).

*N. Vladimirova and R. Rosner, Phys. Rev. E 67, 066305 (2003).

'4J. D’Hernoncourt, A. Zebib, and A. De Wit, Chaos 17, 013109 (2007).

5p. Horvath, T. Bansagi, Jr., and A. Téth, J. Chem. Phys. 117, 4399
(2002).

1T, Bénsdgi, Jr., D. Horvéth, A. Téth, J. Yang, S. Kalliadasis, and A. De
Wit, Phys. Rev. E 68, 055301 (2003).

"'T. Bansagi, Jr, D. Horvith, and A. Téth, Phys. Rev. E 68, 026303
(2003).

'8T. Bansdgi, Jr., D. Horvith, and A. T6th, Chem. Phys. Lett. 384, 153
(2004).

T, Bénségi, Jr., D. Horvéth, and A. Téth, J. Chem. Phys. 121, 11912
(2004).

T Rica, D. Horvith, and A. Téth, Chem. Phys. Lett. 408, 422 (2005).

2'D. Horvith, S. Téth, and A. Téth, Phys. Rev. Lett. 97, 194501 (2006).

2T, Té6th, D. Horvéth, and A. T6th, Chem. Phys. Lett. 442, 289 (2007).

2T, Téth, D. Horvith, and A. Téth, J. Chem. Phys. 127, 234506 (2007).

*G. Bazsa and 1. R. Epstein, J. Phys. Chem. 89, 3050 (1985).

By, Nagypidl, G. Bazsa, and 1. R. Epstein, J. Am. Chem. Soc. 108, 3635
(1986).

27, A. Pojman, 1. P. Nagy, and I. R. Epstein, J. Phys. Chem. 95, 1306
(1991).

p. Horvith, V. Petrov, S. K. Scott, and K. Showalter, J. Chem. Phys. 98,
6332 (1993).

28 A. Malevanets, A. Careta, and R. Kapral, Phys. Rev. E 52, 4724 (1995).

*D. Horvith and K. Showalter, J. Chem. Phys. 102, 2471 (1995).

D, Horvith and A. Téth, J. Chem. Phys. 102, 2471 (1995).

SUA. Téth, 1. Lagzi, and D. Horvéth, J. Phys. Chem. 100, 14837 (1996).

J. Chem. Phys. 130, 114502 (2009)

32 A. T6th, B. Veisz, and D. Horvéth, J. Phys. Chem. A 102, 5157 (1998).

3D, Horvith and A. Téth, J. Chem. Phys. 108, 1447 (1998).

M. Fuentes, M. N. Kuperman, and P. De Kepper, J. Phys. Chem. A 105,
6769 (2001).

], H. Merkin and 1. Z. Kiss, Phys. Rev. E 72, 026219 (2005).

363, H. Merkin and H. Sev&ikovd, Phys. Chem. Chem. Phys. 1, 91 (1999).

37J. Yang, A. D’Onofrio, S. Kalliadasis, and A. De Wit, J. Chem. Phys.
117, 9395 (2002).

D, Lima, A. D’Onofrio, and A. De Wit, J. Chem. Phys. 124, 014509
(2006).

9y, D’Hernoncourt, A. De Wit, and A. Zebib, J. Fluid Mech. 576, 445
(2007).

03, D’Hernoncourt, A. Zebib, and A. De Wit, Phys. Rev. Lett. 96, 154501
(2006).

#13. D’Hernoncourt, J. H. Merkin, and A. De Wit, Phys. Rev. E 76, 035301
(2007).

3. Yuan, Y. Ju, and C. K. Law, Combust. Flame 144, 386 (2006).

8. D’Hernoncourt, J. Merkin, and A. De Wit, J. Chem. Phys. 130, 114503
(2009).

“A. B. Tayler, Mathematical Models in Applied Mechanics (Oxford Ap-
plied Mathematics and Computing Science Series, Clarendon Press, Ox-
ford, 1986).

7. Billingham and D. J. Needham, Philos. Trans. R. Soc. London, Ser. A
334, 1 (1991).

#J. Billingham and D. J. Needham, Dyn. Stab. Syst. 6, 33 (1991).

47, D’Hernoncourt, J. Merkin, and A. De Wit, J. Chem. Phys. 126, 104504
(2007).

“8 A. De Wit, Phys. Rev. Lett. 87, 054502 (2001).

“D. A. Vasquez, J. W. Wilder, and B. F. Edwards, J. Chem. Phys. 104,
9926 (1996).

M. Garbey, A. Taik, and V. Volpert, Q. Appl. Math. 56, 1 (1998).

g, McCaughey, J. A. Pojman, and C. Simmons, Chaos 8, 520 (1998).

2Y. Wu, D. A. Vasquez, B. F. Edwards, and J. W. Wilder, Phys. Rev. E 51,
1119 (1995).

3 Numerical Algorithms Group, Web address: http://www.nag.co.uk/.

Downloaded 18 Mar 2009 to 164.15.128.33. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp


http://dx.doi.org/10.1021/j100074a033
http://dx.doi.org/10.1021/j100074a033
http://dx.doi.org/10.1021/j100015a022
http://dx.doi.org/10.1021/jp9613910
http://dx.doi.org/10.1080/00102208308923696
http://dx.doi.org/10.1103/PhysRevE.67.066305
http://dx.doi.org/10.1063/1.2405129
http://dx.doi.org/10.1063/1.1497163
http://dx.doi.org/10.1103/PhysRevE.68.055301
http://dx.doi.org/10.1103/PhysRevE.68.026303
http://dx.doi.org/10.1016/j.cplett.2003.12.018
http://dx.doi.org/10.1063/1.1814078
http://dx.doi.org/10.1016/j.cplett.2005.04.083
http://dx.doi.org/10.1103/PhysRevLett.97.194501
http://dx.doi.org/10.1016/j.cplett.2007.05.085
http://dx.doi.org/10.1063/1.2804426
http://dx.doi.org/10.1021/j100260a020
http://dx.doi.org/10.1021/ja00273a015
http://dx.doi.org/10.1021/j100156a050
http://dx.doi.org/10.1063/1.465062
http://dx.doi.org/10.1103/PhysRevE.52.4724
http://dx.doi.org/10.1063/1.468676
http://dx.doi.org/10.1063/1.468676
http://dx.doi.org/10.1021/jp961277h
http://dx.doi.org/10.1021/jp980880s
http://dx.doi.org/10.1063/1.475355
http://dx.doi.org/10.1021/jp0037192
http://dx.doi.org/10.1103/PhysRevE.72.026219
http://dx.doi.org/10.1039/a807837h
http://dx.doi.org/10.1063/1.1516595
http://dx.doi.org/10.1063/1.2145746
http://dx.doi.org/10.1017/S0022112007004673
http://dx.doi.org/10.1103/PhysRevLett.96.154501
http://dx.doi.org/10.1103/PhysRevE.76.035301
http://dx.doi.org/10.1016/j.combustflame.2005.08.002
http://dx.doi.org/10.1098/rsta.1991.0001
http://dx.doi.org/10.1063/1.2566796
http://dx.doi.org/10.1103/PhysRevLett.87.054502
http://dx.doi.org/10.1063/1.471720
http://dx.doi.org/10.1063/1.166333
http://dx.doi.org/10.1103/PhysRevE.51.1119

