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An electric field applied in the direction of propagation of a chemical reaction-diffusion front can
affect the stability of this front with regard to diffusive instabilities. The influence of an applied
constant electric field is investigated by a linear stability analysis and by nonlinear simulations of a
simple chemical system based on the cubic autocatalytic reaction A~+2B~— 3B~. The diffusional
stability of the front is seen to depend on the intensity E and sign of the applied field, and D, the
ratio diffusion coefficients of the reactant species. Depending on E, the front can become more or
less diffusively unstable for a given value of D. Above a critical value of E, which depends on D,
electrophoretic separation of the two fronts is observed. © 2007 American Institute of Physics.

[DOI: 10.1063/1.2566796]

I. INTRODUCTION

Autocatalytic chemical reactions are, in spatially distrib-
uted systems and under relatively unrestrictive initiation con-
ditions, capable of sustaining propagating reaction fronts.
These are self-similar structures that convert a substrate A (at
some uniform concentration a,) fully into an autocatalyst B.
If the diffusion coefficients of the reactants A and B are
sufficiently different, then these reaction fronts can develop
diffusional instabilities. This has been clearly demonstrated
for the cubic autocatalytic reaction,l’2

A+2B— 3B rate koab?, (1)

where a and b, are, respectively, the concentrations of A and
B and k is a constant. The important parameter in determin-
ing whether a diffusional instability will occur is D
=Dg/D,, the ratio of the diffusion coefficients of the auto-
catalyst Dy and substrate D,. If D<D_.=0.424, a linear sta-
bility analysis shows that the reaction front is diffusionally
unstable® (see also Ref. 3). As pointed out in Ref. 3 a, per-
haps unexpected, feature of this stability analysis is that the
linear growth rate has a maximum value at a nonzero value
Dy=0.16 of D, with the growth rate then decreasing to zero
as D is decreased from D,. In the situation when the front is
unstable (D<D,), a planar reaction front, perturbed slightly,
initially develops into an organized cellular structure and, if
allowed to evolve further, irregular spatiotemporal structures
are seen to arise.”

Reaction (1) can be used as a model for the iodate-
arsenous acid (IAA) system in the arsenous acid excess
case,’ with A and B taken, respectively, to represent 105 and
I". Reaction fronts in the IAA system have been shown ex-
perimentally to develop diffusional instabilities.” In these ex-
periments a-cyclodextrin was used to bind with the autocata-
lyst to produce the different mass transport rates for the
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substrate and autocatalyst necessary for the instability. The
diffusive destabilization of planar reaction fronts have also
been observed in the chlorite-tetrathionate (CT) system.é_9

Electric fields, applied in the direction of propagation,
can have a significant effect on the diffusional instability of
reaction fronts. This has been shown theoretically for fronts
based on reaction scheme (1) (Refs. 10 and 11) and for a
model of the CT system,12 with an experimental demonstra-
tion of the instability also being given in Ref. 12. These
studies suggest that, dependent on the strength and orienta-
tion, an applied electric field can destabilize an otherwise
stable configuration and, conversely, can stabilize a system
that would be unstable in field-free conditions. As a conse-
quence, applying an electric field in the direction of propa-
gation can have substantial effects on the stability character-
istics of reaction fronts.

The general derivation presented in Refs. 10 and 11 for
the cubic autocatalytic reaction allows for ions with any
charge, either positive or negative. Here we restrict attention
to the case when the substrate and autocatalyst have the same
ionic charge. This situation was considered only briefly in
this previous work and hence our detailed consideration of
this specific case adds to these previous results. The situation
we have in mind is the TAA system in the arsenous acid
excess case for which both reactants have the same (nega-
tive) charge. This reaction can be represented by, on modi-

fying Eq. (1),
A" +2B" — 3B rate kyab’. (2)

It is reaction (2) that we study. The stability analysis pre-
sented in Refs. 10 and 11 is based largely on by, the (dimen-
sionless) concentration of B~ at the rear of the planar travel-
ing front. In effect, b, cannot be predetermined and arises out
of the solution to the (planar) traveling wave equations. It
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FIG. 1. Schematic representation of the system. The polarity is for the
negative charged ions in Eq. (2) and for a positive value of E, with this
being reversed for a negative value of E.

depends on both D and the (dimensionless) electric field
strength E, which are the physical parameters that can nor-
mally be specified in an experimental setup. Thus to make
our results more readily available for checking against ex-
perimental findings, we modify the approach given in Refs.
10 and 11 and here regard D and E as specifiable with b and
the (dimensionless) wave speed ¢ then being dependent on
these parameters.

Thus the objective of this article is to study the influence
of an electric field applied in the direction of propagation of
a simple autocatalytic reaction-diffusion front on its diffusive
instabilities. We aim at providing stability properties in a
parameter space spanned by E and D. To do so, we will
analyze both the changes in stability properties and nonlinear
dynamics of the diffusive instabilities as a function of D and
E. The structure of this article is therefore organized as fol-
lows. We start by deriving the equations for our model. We
then discuss briefly the properties of the planar reaction
fronts before examining the (linear) stability of these fronts.
We then describe the results of our numerical simulations
and finally draw some general conclusions.

Il. MATHEMATICAL MODEL

Our model is based on the ionic version of the cubic
autocatalytic reaction (2), which has been shown to be a
good model for the TAA system for experiments conducted in
the arsenous acid excess case.* We limit attention to two-
dimensional spatial geometry, with coordinates x measuring
distance in the direction of propagation and y along the (pla-
nar) reaction front. The electric field, of dimensionless
strength E, is assumed to be planar, constant, and acting in
the direction of propagation of the reaction front, see Fig. 1,
with polarity as indicated in this figure consistent with the
ionic charges in reaction (2) and a positive field strength. The
resulting dimensionless equations that govern our model, on
making the constant field approximation13 and which can be
derived directly from Refs. 14-16, for example, are then

da da <(92a ﬁza) )
— —ab”’,

+E—=|—7F+—
ot ox

x> ay? 3)
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2
Pl +ab”. (4)
To derive Egs. (3) and (4) we scaled the concentrations on
ay, the initial (uniform) concentration of A~, and introduced
the time and length scales Ty=1/koad and Ly=(D,/kad)".
E is related to its dimensional version & by E=(F/RT)
X(Dalkoad)'?E (where R and F are gas and Faraday’s con-
stants, respectively, and T is the absolute temperature, as-
sumed constant) and D=Dg/D, is the ratio of diffusion co-
efficients. We assume that E can take both positive and
negative values.

Initially a=1 and b=0 with a local (strip) input of B~.
This generates a reaction between A~ and B~, which evolves
into two, equivalent counterpropagating reaction fronts
which become separated from each other as time increases.
‘We concentrate on one of these reaction fronts, the base state
for our stability analysis.

lll. TRAVELING WAVES

We introduce the traveling coordinate {=x-ct, where ¢
is the (constant) wave speed, and look for a solution to Egs.
(3) and (4) in the form a=a({), b=b({). This leads to the
traveling wave equations,

a"+(c—E)a’ —ab*>=0, Db"+(c—=DE)b' +ab*=0,
(5)
on —» < (<o, where primes denote differentiation with re-

spect to . Equations (5) are subject to the boundary condi-
tions,
b—0 as{—x, as { — — oo,

(6)

for some constant b, to be found. Eliminating the reaction
terms, and integrating and applying the boundary conditions
as {— give

a' +(c—E)a+Db'+(c-DE)b=c-E. (7)

a—1,

a—0,b— b,

From relation (7), applying the boundary conditions as
{——, we have
c-FE (D-1)E

b, = =1+ s 8
s " DE 8)

giving a relation for by, the dimensionless concentration of
B~ at the rear of the wave, in terms of the wave speed ¢ and
the strength E of the electric field. Equations (5) require (c
—DE)>0 and so expression (8) shows that b,>1 or <1
depending on the signs of E and (D-1); b,=1 only when
E=0or D=1.

Equations (5) and (6) have been discussed in detail in
Refs. 14 and 17. For D> 1, there is a negative lower bound
on E for the existence of traveling wave solutions, whereas
for D<1 there is a positive upper bound E,. on E for exis-
tence. A graph of the wave speed ¢ against E, obtained by
solving Egs. (5) and (6) and numerically, is shown in Fig.
2(a) for D=0.2 and a graph of E. against D is shown in Fig.
2(b). Note that E. increases with D and appears to tend to
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FIG. 2. (a) A graph of the wave speed c¢ of the traveling waves against E,
obtained from a numerical integration of Egs. (5) and (6) with D=0.2. (b) A
graph of E,, the upper bound for the existence of traveling waves (for D
< 1), against D. Electrophoretic separation is observed for E> E, at fixed D.

zero as D decreases. For D=0.2, the upper bound for exis-
tence is E,=0.0698. A point to note from Fig. 2(a) is that the
wave speed first increases in a negative field, reaching a
maximum value of ¢=0.2749 at E=-0.568, before falling to
zero at E=—1/\2D=-3.5355, after which ¢<0 (with E=0,
¢=0.2065 for D=0.2). Results for D=0.5 and D=0.1 have
been given in Refs. 14 and 17, respectively. These show
qualitatively similar behavior, except that for D=0.5 the
wave speed decreases monotonically for E<<0Q. This point
was discussed fully in Ref. 17. For values of the field
strength E for which there are no traveling wave solutions,
there is electrophoretic separation of the reacting species.14
This results in separate concentration profiles for A~ and B~,
propagating with speeds |E| and D|E|, respectively.

IV. LINEAR STABILITY ANALYSIS

To derive the equations for our linear stability analysis
(LSA) we first write Egs. (3) and (4) in terms of the traveling
coordinate ¢ (defined above). We then perturb about the trav-
eling wave solutions a(¢) and b({) as given by Egs. (5) and
(6), setting
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FIG. 3. (a) Dispersion curves (plots of o against k) obtained from a numeri-
cal solution of Egs. (13) and (14), for D=0.1 and £=0.0, -0.25, 0.5, -1.0,
and —1.25. (b) 0y, the maximum value of the growth rate o, plotted
against |E| for D=0.1. Values of o, and k,,, obtained from the integra-
tions of Egs. (3) and (4) are shown by H.

b(£,y,0)=b(0) + B(L,y.1),
)
where A and B are assumed to be small. Applying Eq. (9) in

Eqgs. (3) and (4) and retaining only the leading order terms in
A and B lead to the equations for our LSA as

a(g.y.0)=a(l) +A(L,y.1),

FA  PA JA JA
—+ 5 +(c—E)— -b*A-2abB=—, (10)
ar dy i o
#B &B JB JB
D|\— +— | +(c=DE)— +b*A+2abB=—. (11)
ar dy oL o

We now look for a solution of Egs. (10) and (11) in the form
A(gay’t) = eO’l+l'k)7A0(§)’ B(g’y’t) = eO’l+ik}'BO(§)- (12)
This leads to the eigenvalue problem for (Ay({),By({)) as
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FIG. 4. (a) Dispersion curves (plots of o against k) obtained from a numeri-
cal solution of Egs. (13) and (14), for D=0.3 and E=0.0, 0.05, 0.1, 0.115,
(b) O pax the maximum value of the growth rate o, plotted against E for
D=0.3. Values of 0, and k,,, obtained from the integrations of Egs. (3)
and (4) are shown by H.

A+ (c—E)A)— (0 + k> + b*)Ag - 2abBy =0, (13)

DB} + (¢ — DE)B}, — (0 + Dk* = 2ab)By + b*Ay =0, (14)

in terms of the (linear) growth rate o and the wave number £,
with o=0(k), subject to

Ag—0, By—0 as {— oo (15)

V\Le note in passing that, when D=1, a+b=1, c—-FE
=1/v2, and that there is an analytic solution for a(¢{) and
b(9)."*" From this it follows that, for the LSA, Ay+B,=0
and that o=—k2, with the front being stable for all values of
E. Thus, to obtain a diffusive instability even in the presence
of an electric field, we require D # 1.

We obtained dispersion curves, plots of o against k for
given values of D and E, by solving Egs. (13) and (14)
numerically by a shooting method. This approach required
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the solution to the traveling wave Egs. (5) and (6) [as given
in Fig. 2(a)] and built in the asymptotic forms for the solu-
tion as {— =+ resulting from Eq. (15). One of the arbitrary
constants that appear in this development is being set to
unity to force a nontrivial solution. The resulting (linear)
boundary-value problem was solved using a standard shoot-
ing method (DO2AGF in the NAG library). This method con-
verged easily and enabled the dispersion curves to be readily
calculated.

Results for D=0.1 are shown in Fig. 3(a) for a range of
(negative) field strengths to compare with the field-free E
=0 case. For this value of D, traveling waves exist for only
very small positive field strengths, with the upper bound on
E for the existence of a traveling wave being EC=0.O321.3
Figure 3(a) shows that small negative fields make the system
more unstable, having higher growth rates and a wider range
of unstable wave numbers. This can be seen, for example, by
comparing the dispersion curves for £=0.0 and E=-0.5 in
Fig. 3(a) and more clearly in Fig. 3(b), where we plot oy,
the maximum value of o obtained from these dispersion
curve calculations, against |E|. Figure 3(b) shows that o,y
achieves its greatest value at E£=-0.25 for D=0.1. The effect
of increasing the field strength further is to make the system
more stable, as in the curves for E=-1.0 and E=-1.25
(lower maximum growth rates). For a sufficiently large nega-
tive field the system becomes fully stable. Integration of Eqs.
(13) and (14) with E=-1.5 gave o<0 for all k>0.

We next considered a higher value for D, namely, D
=0.3, which still made the system unstable in field-free con-
ditions but which gave a greater range of positive field
strengths for the existence of traveling waves, here E.
=0.115. Our aim now is to examine the influence of a posi-
tive field on the stability of a diffusionally unstable reaction
front. Dispersion curves are shown in Fig. 4(a) for positive
fields and values of o,,,, are given in Fig. 4(b). These figures
show that the system becomes more unstable in a positive
field through higher growth rates, though the range of un-
stable wave numbers does not vary significantly. In negative
fields the system becomes more stable with lower growth
rates and becomes fully stable at a relatively low field
strength. Calculations with E=—-0.25 had o<<0 for all k> 0.

For values of D>D_=0.424 a planar reaction front is
stable in field-free conditions. The results shown in Fig. 4
suggest that a sufficiently strong positive field might make
the front unstable when D>D,.. To examine this point we
took D=0.5 with some corresponding dispersion curves be-
ing shown in Fig. 5, note that E.=0.251 for D=0.5. This
figure clearly shows that a positive field does make the front
unstable even when D>D,, though this requires a field
strength greater than E=0.12 (approximately). For field
strengths smaller than this our LSA calculations show that
the front remains fully stable.

Further information about how the electric field influ-
ences the LSA can be obtained from the solution for small k,
as was seen for the field-free case.’

A. Solution for k<1

Here we follow Ref. 3 and look for a solution of Egs.
(13) and (14) valid for k<<1 by expanding
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FIG. 5. Dispersion curves (plots of o against k) obtained from a numerical
solution of Egs. (13) and (14), for D=0.5 and E=0.175, 0.2, and 0.225.

ALk =Ag(O) + AL (DR + -+,

Bo(L:k) = Bo(D) + B (DK + ..., (16)
with
ok)=ogk® + ... . (17)

The leading order solution can be expressed in terms of the

traveling wave solution as Ay=a’, E():b’. We can write the
terms of O(k?) in the form

d - - _
d—g(evlgAi)—(b2A1+2abBl)e”lg=(0'0+l)evlga’, (18)

d - - -
d—g(Devng{ )+ (b?A, + 2abB,)e" = (0o + D)e"?*b’

(19)

where v;=c—E and v,=(c—DE)/D (v,>0,v,>0) subject
to the boundary conditions

A —0, B—0 as {(— xo. (20)

Now Egs. (18) and (19) have a solution (a’,b’) to the
homogeneous problem which satisfies all the required
boundary conditions. Thus, for the nonhomogeneous prob-
lem to have a solution again satisfying boundary conditions
(20), the right-hand sides of Eqgs. (18) and (19) must satisfy
some compatibility condition. To determine this condition
we construct the corresponding adjoint problem for U({) and
V({), following directly from Ref. 3, as

d
d—g(evlfU’)—bz(ev14U—ev24V)=0, (21)

d
d—g(De”Z{V’) —2ab(e"15U - ¢v2%V) =0, (22)

with
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FIG. 6. Plots of oy, obtained from Eq. (24), against E for D=0.1, 0.2, 0.3,
and 0.4 (diffusionally unstable for E=0) and for D=0.5 (diffusionally stable
for E=0), o~ oyk® for k<1.

UV—0 as (— xo. (23)
The compatibility condition is derived, again following Ref.
3, by multiplying Eq. (18) by U({), Eq. (19) by V({), and
integrating. This gives the condition

(o + 1)f eV1%a’ Udl + (00+D)f e"2b'Vd{ = 0.

(24)

Equations (21)—(23) have to be solved numerically, which
was done using the same approach as was used for the equa-
tions for the dispersion curves. Having determined U({),
V(), these can be applied in the integrals and Eq. (24) then
used to find o, which will depend on both D and E. The
system will be unstable, at least for some range of wave
numbers, if 07>0.

Plots of oy against E for a range of D, obtained from Eq.
(24), are shown in Fig. 6. This figure shows that oy is posi-
tive at E=0 for the values of D <D, plotted in the figure and
that 0y<0 at E=0 for D=0.5>D,, in line with the results
given in Ref. 3. Note that, when E=0, 0y=0 at D=D,
=0.4236.>" The values of o, increase rapidly as E ap-
proaches the saddle-node bifurcation at E., where traveling
wave solutions cease to exist. When D <D,, the values of oy
decrease as the (negative) field strength is increased, consis-
tent with Fig. 3(a). For D=0.5, o, changes sign from nega-
tive to positive at a positive field strength £=0.119, with
0y >0, and the reaction front then being unstable, for values
of E greater than this. At some value E, of E (dependent on
D) 0,=0 and is negative for field strengths E < E,. Values of
E, obtained from our calculations for determining o are
shown in Fig. 7. For small values of D, E| is negative and
|Ey| is relatively large. Note that, for D=0.1, E,=—1.447, in
agreement with the results shown in Fig. 3. The value of E,
gets closer to E=0 as D is increased, as can be seen in Fig. 4.
For example, for D=0.4, 0y=0 at E=-0.0049. For D>D,,
E, is positive with E( increasing as D increases from D..
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FIG. 7. The values of E,, where 0,=0, plotted against D.

The question remains as to whether there are sufficiently
strong fields to make the front unstable as D is increased
indefinitely. We find that this is not the case, with there being
an upper bound on D for an instability. There is a trade-off
between requiring a sufficiently large field strength to make
the front unstable while having a small enough field strength
for a traveling wave to exist, i.e., we need E.>E, for an
instability. We have already seen that D=1 is an upper
bound; however, this appears not to be the limiting value for
an instability. Our numerical calculations of oy, suggest that,
when D==0.81, the values of E, and E. are approximately
the same, i.e., we need a value of D less than this for a
traveling wave to exist which can be made unstable by ap-
plying an electric field. We summarize our results in Fig. 8§,
where we plot both E, and E,. to show the region (between
the two curves) where, when D> D,, traveling waves exist
(E<E,) and are unstable if a field of strength E>E|, is ap-
plied.

V. BEHAVIOR NEAR THE TURNING POINTS

We have seen, for D <1, that there is a positive upper
bound E, on E for the existence of a traveling wave solution
[Fig. 2(a)] with two solution branches for 0< E<E_."*'” We
now examine the nature of the solution to the traveling wave
Egs. (5) when |[E-E,.|<1 and the consequences for the LSA.
We set

E=E.-5, 0<d&<I, (25)

and look for a solution of Egs. (5) and (6) valid for & small
by expanding

c=co+c; 8+ b+ ...,
a(Z:8) = ag(Q) +¢1a,(9) 87 + ay() o+ ..., (26)

b(£;6) =by({) + Clb1(§)51/2 +by(o+ ... .

The leading order problem for (ag,b,) is given by Egs. (5)
and (6) with E and ¢ replaced by E. and ¢, respectively. The
corresponding value for b, is given by Eq. (8).

At O(5"?) we have the linear problem
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1.0+

0.8

0.6

Non-existence
of t.w.
0.4
0.2+ =
Eo
unstabie
D
0.0 T T T ] T T T
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8

FIG. 8. Plots of E, and E, against D to show the region where traveling
waves exist (E<E,) and are unstable if a field of strength E> E|, is applied.

al +(co— Eaj — (bya, + 2apbob,) = — aj,

(27)
Db/ + (cy— DE.)b| + (bla, + 2agbob;) = — b},
subject to
a—0, by—0 as (— =,
(28)
— —_— - — — 0,
“ C (co—-DE,)? .

The equations for (a;,b;) are essentially the same as those
that arose in the small wave number analysis [Egs. (18) and
(19)]. We notice, as before, that these equations have a
complementary function (a(,b() that satisfies homogeneous
boundary conditions. This leads to a compatibility condition
and to construct this we use the adjoint problem given by
Egs. (21) and (22), with E now replaced by E.. The resulting
condition [see expression (24)] is that

II(EC) + IZ(EC) = O, (29)
where
L(E,)=| e"alUdl, L(E)=| e"2*bivae,

and where we have now set v,=cy—E,, v,=(cy—DE,)/D.

It is condition (29), taken with the traveling wave Egs.
(5) and (6), that fixes E,, as well as ¢;. As a check, we
examined the values of I;(E)+1,(E) obtained from the small
wave number analysis (for the construction of Fig. 6) and
found that I;(E)+1,(E)—0 as the turning points, E— E_, in
the ¢~ E curves were approached.

The equations at O(J) are

dy+ (co— E.)ab — (biay + 2agbob,)

=— (1 + cy)ay+ cia) + ci(agh + 2bga,by),
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FIG. 9. Nonlinear simulation for D=0.1 and |E|=0.25 shown at time r=2400, the nondimensional width and length are 300 and 1500, respectively. The
vertical lines indicate the positions where the fronts were initiated. The upper and lower panels represent a and b, respectively.

Dby + (co— DE.)b} + (bias + 2agbob,)

—(c+ D)by+ b} — ci(aght + 2bga,b,). (30)

The compatibility condition arising from Egs. (30) gives,
with Eq. (29),

., (1=-D)I(E,)

)

L(E) = | (aght +2boa b)) (Ue”t - Ve')d(.

—o0

Expression (31) shows the emergence of two solution
branches at E=FE, from the * signs on taking the square
root.

We now examine the consequences for the LSA. We
have seen that the analysis for small k, in particular, whether
0y is positive or negative, can determine the overall (linear)

a= L(E,) + L(E,) (D#1), (1) stability of the system. Now o is found from expression
(24), which we can write as
1, + DI
where oy=— M, (32)
(I + 1)
w where [, and [, are as defined above but now for a general
L(E,) = (a|Ue"1c+ b Ve'2d)d¢, field E<E,. At E=E,, the denominator in Eq. (32) is zero
—o from Eq. (29), and, for D # 1, the numerator remains non-
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FIG. 10. Average transverse concentration profiles for a and b as a function of y, D=0.1 and E=-0.25. The bold line corresponds to the concentration shown
at time 1=2400, and the two other ones are taken at r=2500 and 2600, respectively.
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FIG. 11. Nonlinear simulation for D=0.3 and |E|=0.1 taken at time #=4000, the nondimensional width and length are 300 and 2500, respectively. The vertical
lines indicate the positions where the fronts were initiated. The upper and lower panels represent a and b, respectively.

zero. Thus o becomes unbounded as E— E,, as can be seen
in Fig. 6. Also, as the integrals /; and I, are smooth in E,
having I, +1, pass through zero means, from Eq. (32), that oy
will change sign at E=E,_ from the upper to the lower branch.
This indicates that the lower branch could be transversely
stable when the upper branch is unstable. However, these
lower branch solutions appear to be longitudinally unstable,
as is seen in one-dimensional numerical simulations of the
corresponding reaction-diffusion problem.

Furthermore, condition (29) makes the O(k?) problem
[Egs. (18) and (19)] in the small k analysis degenerate. This
requires a modification to the expansion at E. to an expan-
sion in powers of k (rather than previously in k), with now

o= wk+w k> + ..., (33)
and corresponding expansions for Ay and B,. The leading
order problem still has the solution (ag,b(). At O(k) we ob-
tain essentially Egs. (27) with now the factor w, multiplying
the right-hand sides. From Eq. (27) the compatibility condi-
tion [analogous to Eq. (24)] is satisfied identically. At O(k?)
we have

AY+ (o= E)AY = A, = 2a4boB, = 0o + (o, + aj,

807 T

DE; + (CO - DEC)Eé + bégz + zaobogz
= wogl + ((,01 + D)b(,) (34)

It is this problem that determines w, the compatibility con-
dition at this stage giving, on using Eq. (29),

wols(E) + I|(E.) + DI,(E,) =0, (35)
where
ISE)=| (AUe"'%+ B Ve*)dL.

-0

VI. NUMERICAL SIMULATIONS

Equations (3) and (4) were solved numerically using an
explicit second-order finite-difference method along with a
fourth-order Runge-Kutta scheme. We integrated the equa-
tions on a domain of width L, and length L, with no-flux
boundary conditions applied along both the x and y direc-
tions. The simulations were started using as initial conditions
a small rectangle of products for which (a,b)=(0,1) embed-
ded in a bulk of fresh reactant where (a,b)=(1,0) with an
intermediate line where the concentration is a=b=1/2 modi-
fied with a random noise of 0.1% amplitude. We checked the

Vo UVaVaVa U We \Ja
[l 1 1 1 i | i
025 % 700 150 0 25 300

FIG. 12. Average transverse concentration profiles as a function of y for @ and b with D=0.3 and E=+0.1. The bold line corresponds to the concentration
shown at time 1=4000, and the two other ones are taken at 1=4100 and 4200, respectively.
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FIG. 13. Average longitudinal concentration profiles for b as a function of x. On the left D=0.1 and |E \ =0.25, at times r=0,2400 (bold), 2500, and 2600. On

the right D=0.3 and |E|=0.1 at times t=0,4000, (bold), 4100, and 4200.

precision of the code, refining the space and time steps as
necessary. Typical values of effective spatial discretization
steps were Ax=Ay=0.5 while for the time discretization step
we take Ar=0.01. We checked that, for different values of D
and E, we recover the reaction-diffusion speed of diffusively
stable fronts as well as the electrophoretic separation be-
tween a and b. The concentration fields are visualized on a
gray scale ranging from white for a=b=0 to black for a=1
and b=b,, respectively.

Numerical simulations were first performed for D=0.1
and for various field strengths. These calculations confirmed
the general conclusions obtained from the LSA. From these
results we were able to estimate the growth rate from the
initial development of the instability, in effect o,,,,, with
these values also being plotted in Fig. 3(b) (shown by H).
There is good agreement with the values determined from
the LSA, again acting as confirmation for our stability analy-
sis. To compute these most unstable growth rates, we follow
during time the average transverse concentration profiles de-
fined as (b(y,t)y=(1/L,)[5b(x,y,)dx for b, with a similar
definition for a. We then Fourier transform this profile and
identify the most unstable wave number as the one with the
largest power in the Fourier spectrum. At early times, the
amplitude A of the modes grows exponentially. The growth
rate of the most unstable mode is then obtained as a linear fit
to the curve log A as a function of time. The related most
unstable wave numbers k=k,,. and growth rates o, are
plotted in Figs. 3(a) and 4(a) (shown by H). Good agreement
between the cellular properties of the front predicted by the
LSA and those observed numerically is obtained in both
cases. In the same spirit, we have checked that, for D=0.1
and E<-1.5, any noise even of large amplitude added ini-
tially to the planar front decreases in time, confirming the
stability predicted in Fig. 3(b).

To illustrate the nonlinear dynamics, Fig. 9 shows the
effect of an electric field |E|=0.25 on the diffusional insta-
bility for D=0.1. The initial location of the two counter-
propagating fronts is given by the two bars in between the
upper and lower figures representing a and b, respectively.
The front propagating to the right feels a positive electric

field E while the one traveling to the left evolves in the
equivalent of a negative electric field —F of the same mag-
nitude. Hence one nonlinear simulation with two counter-
propagating fronts allows us to visualize at the same time the
effect of positive and negative electric fields of the same
magnitude for a given value of D. We see in Fig. 9 that for
D=0.1 and E=+0.25, the effect of a positive field is to lead
to an electrophoretic separation between a and b with no
diffusive instability. This is consistent with Fig. 2(b) showing
that these values of D and E correspond to a point above the
upper bound for the existence of traveling waves. The front
propagating to the left feels a negative field E=-0.25 for
which a traveling front exists and is diffusively unstable.
This features a regular cellular structure, the wavelength of
which is in agreement with the linear stability analysis
shown in Fig. 3(b). The stationary character of the diffu-
sively unstable structure can be appreciated from Fig. 10
which represents the average transverse concentration pro-
files for a and b from r=2400 to r=2600, with time ¢
=2400 shown in bold.

For some other values of the parameters, both the fronts
propagating to the right and to the left give traveling waves
and no electrophoretic separation. This is the case, for ex-
ample, with D=0.3 and |E|=0.1, as shown in Fig. 11, where
we see that on both sides the fronts travel as reaction-
diffusion fronts. The one on the right feels a positive electric
field and is in the region of existence of traveling waves. It is
moreover diffusionally unstable and develops a cellular pat-
tern with a wavelength =50 (see Fig. 12), i.e., a most un-
stable wave number k,,,,=0.126 in good agreement with the
linear stability analysis. The front propagating to the left in a
negative electric field is stable.

Figure 13 shows the average longitudinal concentration
profile of b defined as (b(x,t))=(1/Ly)féyb(x,y,t)dy for the
values of the parameters used for Figs. 9 and 11, respec-
tively. We see here that, starting from an initial small reacted
zone where b is set equal to 1, the front evolves in the pres-
ence of an electric field to a fully reacted concentration by
larger than unity and given by Eq. (8) for a given propaga-
tion speed c¢. As an example for D=0.1 and E=-0.25 (left
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part of Fig. 13), we have ¢=0.187 (Ref. 17) which gives b,
=2.06 for both a and b traveling together to the left. In a
positive electric field E=+0.25 the electrophoretic separa-
tion occurs and a travels at speed c=|E|=0.25 while b travels
slower at a speed ¢c=D|E|=0.025. For D=0.3 and |E|=0.1
(right part of Fig. 13), the predicted front propagation speed
for the front traveling to the right in a positive E is ¢
=0.235 which gives a concentration b;=0.658 also in line
with the nonlinear simulation obtained values of ¢=0.234
and b,=0.66.

VIl. CONCLUSIONS

We have shown that applying a constant electric field in
the direction of propagation can change the stability charac-
teristics of reaction-diffusion (RD) fronts. We have consid-
ered the specific case of a cubic autocatalytic reaction in
which both the reactants have the same (negative) ionic
charge. We have analyzed the influence on the diffusive in-
stabilities of RD fronts in this system of an applied electric
field in terms of two parameters, namely, the intensity E of
the applied field and D the ratio of diffusion coefficients of
the two important chemical species. Our main conclusions
for this case are that if the RD front is diffusionally stable in
field-free conditions, then there is a sufficiently strong posi-
tive field that can make the front transversely unstable. Con-
versely, we find that if the RD front is diffusionally unstable
in field-free conditions, then a sufficiently strong negative
field can make it stable.

We find good agreement between the predictions of a
linear stability analysis and the corresponding numerical
simulations of the full nonlinear model. Consequently, the
results obtained from the LSA for the present configuration
are a very good indicator of the behavior of the full nonlinear
model. Moreover, since the dispersion curves calculated
from the LSA have a “parabolic” appearance [see Figs. 3(a),
4(a), and 5], the calculation of oy in the small wave number
asymptotics [as in Eq. (24)] can fully determine whether the
system is stable or not, though this calculation does not give
the most unstable wave number or the corresponding maxi-
mum growth rate.

We have predicted the values of E,, the upper bound on
E for the existence of traveling waves for our model as well
as E, the lower bound on E for diffusive instabilities of the
front, both as functions of D. This then gives, in the (E,D)
parameter space, the location of existence of diffusive insta-
bilities affected by electric fields, as summarized in Fig. 8.

J. Chem. Phys. 126, 104504 (2007)

Qualitatively similar behavior was reported in Ref. 10 for a
case when the chemical species had opposite ionic charges,
showing, as in Fig. 8, parameter regions where there are
stable fronts, lateral instabilities, and nonexistence of travel-
ing wave solutions. There are differences between this case
and ours, in that Té6th et al.'’ report that reaction fronts can
exist and can be unstable for increasingly greater values of E
as the parameter D (in our notation) is decreased. The oppo-
site is true in our case, see Fig. 8. Téth et al."® also give
results for a case when both reactant species have ionic
charges of the same sign, with that of B being twice that of
A. For this case they find essentially the same behavior, as is
seen in Fig. 8, except that they find two disjoint regions of
(E,D) parameter space for D<<1 where the reaction front is
unstable. This is not seen in our case, where the ionic charges
are the same.
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