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Abstract 

This paper aims at contributing to the literature on the relationship between 

research efforts and patent counts. It is claimed that the “propensity-to-patent” 

should be split into an “appropriability propensity” and a “strategic propensity”. 

The empirical contribution is based on a unique panel dataset composed of 18 

industries in 19 countries over 19 years, and relies on five alternative patent 

indicators. The results confirm that the distinction between the two types of 

propensity matter. The sharp increase in patenting observed in most patent offices 

seems to be due to greater internationalization of patents rather than to a burst in 

innovations. 
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1. Introduction 
 

Patent-based indicators are increasingly used to assess the rate of technological change, to 

gauge firms’ competitive positions, to measure industrial structure, or to evaluate scientific 

progress and knowledge spillovers. The success of patent statistics is rooted in their wide 

availability, their intrinsic relatedness to inventions, and their relatively homogeneous 

standards across countries. International treaties such as the Paris Convention for the 

protection of industrial property of 1883 or the Patent Cooperation Treaty (PCT) signed in 

1978 have indeed set some degree of legal and quality standards. 

 

The quality of patents as indicators of technological change has however been criticized or 

challenged for several decades (see Griliches, 1990). There are noticeable differences in the 

use of patents across firms, industries and countries, which make patent data rather difficult 

to interpret. It is well known that not all inventions are patentable and that not all patentable 

inventions are actually patented. In addition, patented inventions differ in their quality or 

“inventive step.” This latter shortcoming means that patents vary greatly in their technical 

and economic significance, with a majority of patents apparently mirroring minor 

technological improvements and small economic value. A growing stream of research has 

therefore analyzed the extent to which patents are a reliable indicator of technological 

change. Schmookler (1957) provides what is probably the first formal attempt to investigate 

what patent statistics actually indicate. Since then, the literature has mainly focused on 

correlations between patent counts and one or several other variables that measure either 

innovative input, such as R&D expenditures, or ultimate output measures, such as 

productivity growth or the stock market value of firms.  

 

Studies on the R&D-patent relationship performed on cross-sectional or panel data at the 

firm, region or country level lead to the conclusion that there is a significant correlation 

between R&D inputs and patent counts. However, the estimated elasticity varies greatly with 

the specification of the model. While some authors report a strong impact of R&D efforts, 

other fail to establish a clear link between R&D and patent counts. Patents do react to firm 

changes in R&D expenditures, but much less than expected. Investigations at the industry 

level are scarce and lead to even more inconclusive results, with a weak or almost absent 

correlation between R&D and patents. Some industries have a high propensity to rely on the 

patent system but file much fewer patents than other industries with a weaker orientation 

towards patent protection (Levin et al., 1987). This conundrum is probably what led Zvi 

Griliches (1990) to conclude that it would be “misleading to interpret such [patent] numbers 

as indicators of either the effectiveness of patenting or the efficiency of the R&D process.” 

The tacit convergence amongst research scholars has been that patent data would reflect a 

propensity behaviour, rather than innovation performance or research productivity. This 

belief is reinforced by the strong increase in the number of patent filings observed worldwide 

over the last two decades.  

 

This paper aims at re-visiting the failure to establish a clear empirical link between changes 

in patent filings and changes in R&D expenditures at the industry level. The intended 

contribution to the literature is both conceptual and empirical. In addition to differentiating 

the “research productivity” effect from the “patent propensity” effect, it is claimed that the 

patent propensity should be split into two main components: the “appropriability propensity” 

and the “strategic propensity”. The appropriability propensity relates to the share of 

inventions that are patented by firms, as measured in classical surveys (e.g. Levin et al., 

1987; Arundel and Kabla, 1998 or Cohen et al., 2000). The strategic propensity is defined as 
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the number of patents filed to protect a given invention and has barely been measured so far. 

Not taking into account the two types of patent propensity might partly explain the failure to 

identify a strong relationship between research activities and patent applications at the 

industry level.  

 

The empirical contribution of the paper is twofold. It first consists in evaluating the R&D-

patent relationship with a unique panel dataset covering 18 industries in 19 countries over 

19 years (1987-2005). Most studies on the determinants of patent performances are 

performed at the firm, regional or country levels but rarely at the industry level.
1
 Yet, patent 

practices are known to vary widely across industries. Second, it relies on five patent-based 

indicators – including new ones – to test the robustness of the results: priority filings, 

“regional” filings and triadic filings.
2
 Priority filings are first applications at national patent 

offices, which can be converted into regional patents later on (such as the European patent 

office (EPO) for Belgian applicants or the US Patent Office (USPTO) for Canadian 

applicants) or into triadic patent applications (patents filed simultaneously at the USPTO, the 

EPO and the Japanese Patent Office (JPO)). The average quality or value of patent indicators 

is low for priority filings and high for triadic applications, as witnessed by a larger 

geographical coverage and higher expenses due to legal and attorney fees, as well as 

translation costs. 

 

The paper is structured as follows. The next section summarizes the results of key empirical 

studies on the R&D-patent relationship and introduces the two components of the propensity 

to patent. Section 3 presents the empirical model, the five patent indicators and the 

explanatory variables. The empirical results are presented and interpreted in Section 4. 

Section 5 concludes and puts forward policy implications. 

 

The results confirm, first, that the research productivity dimension matters and explains part 

of the variation in the patent-to-R&D ratio. The long-term elasticity of patents with respect to 

R&D is of about 0.12. Second, taking into account the two components of the propensity to 

patent – appropriability propensity and strategic propensity – helps to refine the relationship 

between R&D and patents at the industry level. These two components have a positive and 

highly significant impact on patent counts and shed light on the strong variability in the 

patent-to-R&D ratio across industries.  

 

The results also allow to better understand the current boom in patent applications. A few 

specific industries (computers and communication technologies) and countries (South Korea, 

Spain and Poland) have strongly increased their propensity to file patents, regardless of the 

patent indicator that is used. Generally, however, the propensity to file patents has been 

roughly constant for priority filings but has strongly increased for regional applications 

(filings at the USPTO or at the EPO). The results therefore suggest that the patent explosion 

observed in large regional patent offices is more the result of a globalization process than of a 

burst in productivity or a particularly stronger strategic propensity to file patents. 

 

 

 

                                                
1 To the best of our knowledge, the study of Meliciani (2000) is the only panel-based industry level analysis. It 

is performed for 15 industries in 12 countries over 20 years.  
2
 “Regional” filings are filings at either the EPO or the USPTO or a mix of both indicators as explained in 

Section 3.2. These two patent offices, indeed, attract a large number of applications from non-domestic 

applicants, about half of the total number of filings in the two offices. 
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2. A missing link at the industry level? 
 

The estimated elasticity of patents with respect to R&D is generally found to be positive and 

highly significant but its amplitude varies greatly depending on the econometric 

specifications and the level of analysis. Table A1 in Appendix 1 presents a non-exhaustive 

literature review on the R&D-patent relationship. The variation is illustrated in most firm-

level analyses (see e.g. Hausman et al., 1984; Hall et al., 1986; Jaffe 1986; Cincera, 1997; 

Duguet and Kabla, 1998; Crépon et al., 1998; Blundell et al., 2002 or Czarnitzki et al., 2009) 

as well as in more “aggregate” level analyses (see for instance de Rassenfosse and van 

Pottelsberghe, 2009 at the country level and Bottazzi and Peri, 2003 at the regional level). 

The strong fluctuation of the elasticity questions the relevance of patent measures as 

indicators of innovative output. Three potential explanations can be put forward to explain 

the discrepancy. First, R&D indicators encompass much more than the very activity that 

consists in generating new ideas and inventions. In other words, R&D might not be a good 

indicator of innovative efforts. Second, R&D expenditures represent only a fraction of the 

total resources a firm devotes to its innovative activities. Using detailed data for the 

Netherlands in 1992, Brouwer and Kleinknecht (1997) have estimated that R&D expenditures 

represent about one quarter of total innovation expenditures. Investment in fixed assets, 

market research and trial production are as many expenses that are not accounted for by 

official statistics. Third, patent series are by nature subject to a substantial bias, with most 

patents generating low or no value and a few patents being associated with a high economic 

of financial value. More generally, the estimates could be impacted by the patent count that is 

used. Studies rarely test the sensitivity of their results to the patent count methodology or the 

data source used. In this respect, there is a clear need for a comparative study of the various 

patent indicators. 

  

Industry level analyses lead to even less conclusive insights into the R&D-patent relationship 

(see Meliciani, 2000). Cross-industry differences in the patent-to-R&D ratio exhibit great 

variations and do not necessarily correlate with their perception of the effectiveness of 

patents as a protection mechanism. For instance, some R&D-intensive industries that 

systematically rely on the patent system such as the pharmaceutical industry show low 

patent-to-R&D ratios, suggesting that patent metrics do not correlate well with innovative 

efforts across industries.  

 

Scholars have long argued that patent counts reflect more the propensity to patent than 

innovative performance or research productivity. For instance, Scherer (1983, p. 116) 

explicitly assumes a constant productivity of research, for the sake of simplicity. While 

admitting the possibility of “differential creativity of an organization’s R&D scientists and 

engineers”, the author does not consider it important and chooses to concentrate on other 

“more systematic” factors. These more “systematic” factors which drive the patenting 

performance of firms are of two main types: alternative protection mechanisms and strategic 

behaviour. 

 

First, companies have varying capacity for appropriating innovation rents. They rely on many 

alternative mechanisms of appropriation, such as secrecy, lead time, complementary sales and 

services, complementary manufacturing facilities, barriers to entry and tacit knowledge. 

These mechanisms may coexist with patent protection and are often paired with it. According 

to the Carnegie Mellon Survey by Cohen et al. (2000) or the survey by Arundel and Kabla 

(1998), patents appear to be generally the last appropriability mechanism that is used, though 

its importance for some industries is noticeable, as reported in Table 1. This is particularly 
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true for pharmaceuticals, machinery, and office and computing equipment. Secrecy and lead 

time are ranked overall as the two most effective appropriability mechanisms being top-

ranked in 17 and 13 industries, respectively. Based on survey data of R&D executives in 

Switzerland, Harabi (1995) reports that the ability of competitors to “invent around” patents 

and the perception that patent documents disclose too much information are the most 

important factors that reduce the willingness to file patents.  

 

The second reason that undermines the quality of patents as indicators of technological 

advance is to be found in strategic patenting, a topic of investigation for the past 20 years 

(e.g., Teece, 1998; Rivette and Kline, 2000; Guellec et al., 2007). Applying for a patent is 

indeed not always driven by the desire to protect innovation rents: Patents can be used as a 

tool for technological negotiations with competitors or with potential collaborators, to 

exclude rivals from a particular technological area, for communication purposes, to increase 

revenues through license agreements, to ensure freedom to operate and to attract capital. 

These strategic considerations all influence the observed patenting performance of firms. 

Patents are therefore not only an indicator of innovation output and technological success but 

also an indicator of strategic behaviour (see Blind et al., 2006; Cohen et al., 2000; de 

Rassenfosse and Guellec, 2009 or Hall and Ziedonis, 2001 for detailed investigations in this 

field).  

 

Table 1. Share of product innovations that are patented (in percent) 

 Arundel and Kabla (1998) Cohen et al. (2000) 

Mining 28 - 
Food, beverages and tobacco 26 53 
Textiles, clothing 8 43 
Petroleum refining 23 73 
Chemicals 57 77 
Pharmaceuticals 79 74 
Rubber and plastic products 34 65 
Glass, clay, ceramics 29 50 
Basic metals 15 54 
Fabricated metal products 39 77 
Machinery 52 74 
Office and computing equipment 57 80 
Electrical equipment 44 62 
Communication equipment 47 59 
Precision instruments 56 70 
Automobiles 30 89 
Other transport equipment 31 - 
Power utilities 29 41 
Transport and telecom services 20 - 
Notes: The industry classification corresponds to that presented in Arundel and Kabla (1998). 

The shares are rounded to the nearest integer.  

 

In a nutshell, beside the innovation output that requires protection, the decision to file a 

patent is affected by alternative mechanisms of appropriation and by the strategic role that 

patents can play for a firm. These elements are typically industry-specific. It is striking that 

despite the many sources of variation and randomness in patent data, there has been a 

continuous increase in the use of patent-based indicators, not least for economic and strategic 

analyses. The objective of this paper is to reconcile the a priori antagonism between the 

intensifying use of patent data and the pessimistic appraisal of these indicators in the 



economic literature. This reconciliation is done by identifying key milestones when 

the R&D-patent relationship at the industry level

with various patent indicators. 

 

A first distinction can be made with respect to two important factors: research productivity 

and patent propensity. This distinction is investigated

Rassenfosse and van Pottelsberghe (2009) who find that patent indicators reflect both 

The authors exploit the cross-country variation in patent indicators for the year 2003. They 

relate the number of patents to 

productivity (e.g. the share of basic research in total R&D) and propensity to patent (

cost of filing a patent or the strength of the patent system). Unlike the present study, however, 

the authors have limited insights into cros

and do not investigate the time dimension, including the dynamic adjustment of patent 

outcomes to changes in research efforts. 

 

The literature on the R&D-patent relationship

propensity” in a (too) broad way as the number of patents per R&D. T

however be defined as the number of patents per invention and be split

the “appropriability propensity” and the “strategic prop

former captures the decision to protect an invention and is measured with the share of 

inventions that are patented, as reported in surveys such as Cohen

and Kabla (1998). The latter capture

decision is made to protect an invention, the applicant chooses the number of patents that are 

to be filed to protect it. Early evidence by Reitzig (2004) supports the claim put forward in 

this paper. Using survey data for 614 patents filed at the EPO, the author finds that on 

average inventions are protected by a coherent group of around five patents. 

dimensions surely affect the observed R&D

appropriability propensity from the strategic propensity is probably what made Griliches

(1990) claim that “the patent to R&D ratios appear to be dominated by 

irrelevant fluctuations in the R&D numbers

evidence of the claim – that taking into account these two dimensions provides a better 

understanding of the R&D-patent relationship.

 

Figure 1. The R&D-patent relationship

 

Figure 2 illustrates the issue at stake. It depicts the appropriability propensity 

axis against the ratio of patents to R&D expenditure

instrument and the computer industries have a high appropriability propen

has a much higher patent-to-R&D ratio than the former, probably due to a higher strategic 

propensity (patent thickets are known to be prevalent in this particular industry). Note that 

differences along the horizontal axis are prob

propensities. The pharmaceutical industry has a very high appropriability propensity but a 

very low patent-to-R&D ratio due to the 

invention. Similarly, the relatively

does not prevent these industries from having a relatively high number of patents per R&D. 

This should be borne in mind when interpreting statistics such as patents over R&D 

6 

literature. This reconciliation is done by identifying key milestones when 

at the industry level and by performing the empirical analysis 

A first distinction can be made with respect to two important factors: research productivity 

and patent propensity. This distinction is investigated at the macroeconomic level

Rassenfosse and van Pottelsberghe (2009) who find that patent indicators reflect both 

country variation in patent indicators for the year 2003. They 

relate the number of patents to aggregate R&D expenditure and to proxies for research 

the share of basic research in total R&D) and propensity to patent (

the strength of the patent system). Unlike the present study, however, 

have limited insights into cross-industry differences in the propensity to patent 

and do not investigate the time dimension, including the dynamic adjustment of patent 

outcomes to changes in research efforts.  

patent relationship has taken the implicit practice to define “patent 

way as the number of patents per R&D. The propensity

however be defined as the number of patents per invention and be split into two components: 

the “appropriability propensity” and the “strategic propensity”, as illustrated in Figure 1. The 

former captures the decision to protect an invention and is measured with the share of 

inventions that are patented, as reported in surveys such as Cohen et al. (2000) or Arundel 

and Kabla (1998). The latter captures the patent-filing behaviour at a second stage. Once the 

decision is made to protect an invention, the applicant chooses the number of patents that are 

Early evidence by Reitzig (2004) supports the claim put forward in 

r. Using survey data for 614 patents filed at the EPO, the author finds that on 

average inventions are protected by a coherent group of around five patents. 

dimensions surely affect the observed R&D-patent relationship. The failure to distinguish

appropriability propensity from the strategic propensity is probably what made Griliches

the patent to R&D ratios appear to be dominated by what may be largely 

irrelevant fluctuations in the R&D numbers.” This paper argues – and provides empirical 

that taking into account these two dimensions provides a better 

patent relationship.  

patent relationship 

ustrates the issue at stake. It depicts the appropriability propensity on the vertical 

against the ratio of patents to R&D expenditures on the horizontal axis. For instance, the 

instrument and the computer industries have a high appropriability propensity but the latter 

R&D ratio than the former, probably due to a higher strategic 

propensity (patent thickets are known to be prevalent in this particular industry). Note that 

differences along the horizontal axis are probably not solely due to heterogeneous strategic 

propensities. The pharmaceutical industry has a very high appropriability propensity but a 

R&D ratio due to the large amount of R&D efforts devoted to a single 

invention. Similarly, the relatively low share of patented inventions in food and basic metals 

does not prevent these industries from having a relatively high number of patents per R&D. 

This should be borne in mind when interpreting statistics such as patents over R&D 

literature. This reconciliation is done by identifying key milestones when analyzing 

and by performing the empirical analysis 

A first distinction can be made with respect to two important factors: research productivity 

at the macroeconomic level by de 

Rassenfosse and van Pottelsberghe (2009) who find that patent indicators reflect both effects. 

country variation in patent indicators for the year 2003. They 

oxies for research 

the share of basic research in total R&D) and propensity to patent (e.g. the 

the strength of the patent system). Unlike the present study, however, 

industry differences in the propensity to patent 

and do not investigate the time dimension, including the dynamic adjustment of patent 

e to define “patent 

he propensity could 

into two components: 

illustrated in Figure 1. The 

former captures the decision to protect an invention and is measured with the share of 

(2000) or Arundel 

filing behaviour at a second stage. Once the 

decision is made to protect an invention, the applicant chooses the number of patents that are 

Early evidence by Reitzig (2004) supports the claim put forward in 

r. Using survey data for 614 patents filed at the EPO, the author finds that on 

average inventions are protected by a coherent group of around five patents. These two 

patent relationship. The failure to distinguish the 

appropriability propensity from the strategic propensity is probably what made Griliches 

what may be largely 

vides empirical 

that taking into account these two dimensions provides a better 

 

on the vertical 

. For instance, the 

sity but the latter 

R&D ratio than the former, probably due to a higher strategic 

propensity (patent thickets are known to be prevalent in this particular industry). Note that 

eous strategic 

propensities. The pharmaceutical industry has a very high appropriability propensity but a 

amount of R&D efforts devoted to a single 

low share of patented inventions in food and basic metals 

does not prevent these industries from having a relatively high number of patents per R&D. 

This should be borne in mind when interpreting statistics such as patents over R&D 
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expenditures. The quantitative approach adopted in the next section aims at taking into 

account, and measuring, these three components (productivity, appropriability propensity and 

strategic propensity) of the R&D-patent relationship. 

 

Figure 2. Appropriability propensity and the R&D-to-patent ratio by industry 

 
Source: Arundel and Kabla (1998) and own calculations 

Note: The horizontal axis corresponds to the ratio of priority filings to R&D expenditures (in million of 

USD PPP at constant prices).  

 

 

3. Empirical implementation 
 

The aim of the empirical analysis is to investigate the link between R&D and patents at the 

industry level with several alternative patent indicators and taking into account the factors 

that affect the propensity to patent and those that affect the productivity of research efforts. In 

an ideal set-up, one would be able to observe both the “raw” technology output (i.e. the 

number of inventions) and the number of patents. Yet, since the only observable measure of 

inventive output is the count of patents, one should be cautious when interpretating the 

parameters of the patent production function because differences in patent numbers reflect 

both productivity and propensity effects.  

 

3.1 The model 
 

The dataset has three dimensions: time (t = 1, …, 19), industry (i=1,…,18) and country 

(j=1,…, 19). Each “individual” is thus an industry–country pair.
3
 Since research efforts (R) 

lead to inventions (I) which, in turn, may lead to patent applications (P), the R&D-patent 

relationship for the N individuals in the sample can be expressed as follows (forgetting 

momentarily the time dimension): 

                                                
3  An alternative approach would have been to estimate the parameters of a patent production function for each 

industry, thereby allowing for differentiated impacts across industries. The “pooled” approach is nevertheless 

chosen because it is based on a larger number of observations and provides averages across industries and 

countries. It is the very purpose of this paper to grasp cross-industry determinants of patent-to-R&D 

variations. 
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γRI Ω=  and IP Φ= ,         (1)

  

where Ω and Φ are diagonal matrices of size N capturing the productivity and the propensity 

effects for each individual, respectively. In this framework, Φ captures both the 

appropriability propensity and the strategic propensity. The parameter γ is a scalar measuring 

the average return to R&D across individuals 
4
. Φ can be expressed as a function of the two 

propensity components (the appropriability propensity and the strategic propensity) but this 

would unnecessarily clutter the notation. If we let X and Z respectively denote the matrices of 

variables that affect Ω (productivity) and Φ (propensity), and α and β the column vectors of 

parameters, equation (1) can be written as: 

 

 rxci γα ++= 1 and izcp ++= β2 ,       (2)

   

where lower-case roman letters denote the log of the variables. Expanding the patent 

production function gives: 

 

 xzrcp αβγ +++= ,         (3)

  

where c equals c1 + c2 and is a scale parameter capturing the rate at which research efforts 

lead to patent applications (c1 reflects the average productivity of research across individuals 

and c2 the average propensity to file patents). It is well documented in the literature (see the 

introduction and Section 2) that the propensity to patent has most probably increased since 

the eighties, due to an unobservable greater reliance on the patent system for various 

“strategic” reasons, i.e., c2 might have increased over time, even when accounting for the 

observable characteristics Z. In a similar vein, the productivity of research has also probably 

improved over the years (Kortum and Lerner, 1999). Therefore, the extent to which the scale 

variable c would capture an average growth rate of the productivity of research or of the two 

propensity effects is unclear. It actually depends on the proxies used to measure research 

productivity and patent propensity. As the variables used in the empirical analysis tend to 

better capture cross-industry and cross-country variations in the productivity of research, 

there are more reasons to suspect that unobserved changes are due to variation in the 

propensity to patent rather than in the productivity of research. It is therefore likely that the 

dummies (country, industry or year effect) would be more reflective of a change in 

propensity than a change in productivity. The patent production function for a given industry-

country pair in a single point in time (ijt) can be written as: 

 

 ijtijtijtijtijtijt xzrcp εαβγ ++++= ,        (4)

  

where εijt is the error term. It is good practice to estimate panel data in first-difference to 

avoid potential spurious-regression problems. Letting “∆” denote the first-difference 

operator, equation (4) can be transformed as follows: 

 

 ijtijtijtijtijtijt xzrcp εαβγ ∆+∆+∆+∆+∆=∆ ,       (5)

  

                                                
4 The expression Rγ indicates that each of the N elements rij of R is taken to the power of γ. 
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Assuming that c1 is roughly constant, 

 

 ijtijtijtijtijtijtijtijt cccccccc ,21,21,1,2,11 )()( ∆≈+−+=−=∆ −−− ,     (6)

   

such that  

 

 ijtijtijtijtijtijt xzrcp υαβγ +∆+∆+∆+∆=∆ ,2 ,      (7)

   

with υijt = ∆εijt. Since the variables are expressed in logs, equation (7) is an approximation of 

the growth rate of patenting. The term ∆c2,ijt is the growth rate of the propensity to patent that 

is not accounted for by the explanatory variables. Equation (7) implies that a change in any of 

the explanatory variable has a contemporaneous impact on the number of patents applied for. 

In other words, the parameters of the first-differenced variables capture the short term 

elasticities.  

 

However, past R&D expenditures might also influence current patenting activity because 

research projects usually require some time before leading to a patentable invention. In order 

to account for a gradual adjustment, the patent production function is estimated by means of 

an error correction model (ECM)
5
 with a one-year lag structure. The choice of a one-year lag 

is motivated by de Rassenfosse and Guellec (2009) and Hall et al. (1986)
6
. Using firm-level 

survey data, de Rassenfosse and Guellec (2009) notice that the lag between initial R&D 

expenditures and patent applications is of the order of one year, even though it can reach as 

much as five years. Hall et al. (1986) estimate several panel data models at the 

microeconomic level and obtain a strong contemporaneous relationship between R&D 

expenditures and patenting, and a small effect of R&D history on patent applications. This is 

consistent with the practice of starting to file patents early in the life of a research project. 

 

ECMs allow estimating both the short-run and the long-run impacts that exist between the 

endogenous and the exogenous variables. It consists in estimating the model in first 

difference together with previous year’s deviation from equilibrium (in brackets), leading to 

the following equation to be estimated:  

  

                                                                                                                                                 
(8)

  

Finally, remember that the individual is defined as a country-industry pair. The term ∆c2,ijt of 

Equation (7) can be decomposed into a fixed industry effect (ψi), a fixed country effect (ψj) 

and a common time-effect (ψt). 

 

The term between parentheses is usually referred to as the error correction term. It can be 

interpreted as the deviation from equilibrium in the previous period. The variables expressed 

in first difference (i.e. those preceded by the operator ∆) capture the short-term impact on the 

number of patents and indicate how a change in any explanatory variable contemporaneously 

affects the number of patents. The parameter λ usually fluctuates between 0 and 1 and 

measures the speed of adjustment to the long-term equilibrium (the closer to 1, the quicker 

                                                
5 The tests on unit roots and cointegration for our panel data (see Appendix 2) suggest that the series are non-

stationary and cointegrated. It confirms the interest of an ECM framework for the analysis of the R&D-patent 

relationship at the industry level. 
6
  Kondo (1999) analyses the dynamic mechanism of the R&D-patent relationship of Japanese industry and 

shows also that the R&D effort create patent applications with a time-lag of about a year and a half. 

 

ijtijtlijtlijtlijtijtsijtsijtstjiijt vxzrcpxzrp +−−−−−∆+∆+∆+++=∆ −−−− )( 1111 αβγλαβγψψψ
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the adjustment process). The long-run elasticities are calculated by dividing each parameter 

associated with the lagged variables by the adjustment parameter λ. For instance, the long-run 

elasticity of the productivity variable is equal to 
1−⋅− λα l  (for a discussion, see Alogoskoufis 

and Smith, 1991). 

 

3.2 The dependent variable: patent indicators 
 

There exist many ways to count patents, each having its own strengths and weaknesses (see 

e.g. Dernis et al.,  2001 and OECD, 2009 for a discussion). It is therefore particularly 

important to carefully select the patent indicators that will be used to monitor countries’ 

innovation performance so as to reduce the potential biases as much as possible. For this 

reason, five alternative indicators are used in the empirical analysis in order to gauge the 

robustness of the results to the chosen dependent variable. These indicators are the number of 

national priority filings, the number of patents filed at the EPO, the number of patents filed at 

the USPTO, a measure combining EPO and USPTO patents, and the number of patents filed 

simultaneously in Japan, the US and Europe (the so-called triadic patents). Whereas the first 

indicator is composed of many patents with a highly skewed distribution of value, triadic 

filings are less numerous but are supposed to be of a much higher economic value.  

 

The patent indicators are computed from the OECD-EPO PATSTAT database (April 2009) 

for each manufacturing industry, following the International Standard Industry Classification 

scheme (ISIC, Revision 3) as indicated in Table A2 of Appendix 1. Patents, however, are not 

characterised by the ISIC scheme, but rather by the codes of the International Patent 

Classification (IPC), representing different areas of technology to which they pertain. Patents 

have therefore been assigned to the appropriate industries using the concordance table 

between IPC and ISIC codes provided by Schmoch et al. (2003). The authors have estimated 

the empirical concordance table by investigating the patenting activity by technology-based 

fields (IPC) of more than 3,000 firms classified by industrial sector (ISIC). When a patent 

contains more than one IPC code, the industry allocation is performed on a fractional basis.
7
 

 

The first indicator is the corrected count of national priority filings (NPFCORR) recently 

introduced by de Rassenfosse et al. (2010). It captures all the patents filed by the inventors 

based in a country, regardless of the patent office of application. The count for, say, Austria is 

thus equal to the number of priority filings invented by inventors based in Austria and filed at 

the Austrian patent office plus the priority filings invented in Austria but directly filed at 

other patent offices such as the EPO, the USPTO or the German patent office.
 
This 

methodology assures the best match between R&D expenditures and patent applications at 

the country level. The inclusion of these priority filings abroad also allows reducing the bias 

against small countries such as Belgium and the Netherlands which file a high share of their 

patents abroad as compared with larger countries such as France or Germany. This corrected 

count of priority filings is a broad measure of patenting, encompassing both low-value and 

high-value patents. It is biased in favour of Japan and South Korea, with the share of these 

countries in the total of national priority filings being much higher than their share in R&D 

expenditures. This is due to the large differences in patent systems, particularly in South 

Korea and Japan, where patents are much smaller in scope but more numerous: these patents 

have on average three times less claims than US or European patents. For this reason, the 

                                                
7
  Some patents had no IPC codes, and some IPC codes were not in the concordance table. All these 

“unassigned” patents were allocated to the industries according to the observed share of successfully allocated 

patents. 
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count for Japanese and Korean priority filings has been divided by three (for a discussion, see 

Kotabe, 1992 and Archontopoulos et al., 2007). 

 

The second indicator is the count of patent applications filed at the EPO. It is composed of 

the patents that were filed directly at the EPO or that were later extended to the EPO as 

second filings. As the patenting procedure at the EPO is expensive, EPO patents are 

supposedly of a higher value. This indicator is nevertheless biased for two main reasons. The 

first is related to the home bias, which is well illustrated in Figure 3, whereby companies in 

Europe tend to file a higher proportion of their patents at the EPO as compared with 

companies from non-European countries. Second, the reliance on the EPO has increased over 

time, for all countries and especially European ones. de Rassenfosse and van Pottelsberghe 

(2007) show that a systematic bias in statistics based on European patents must be 

acknowledged: the share of priority filings transferred to the EPO is increasing with the age 

of membership to the European Patent Convention. This calls for a cautious interpretation of 

the evolution of the number of EPO patents over time.  

 

The third indicator is similar to the second, except that the patent office of reference is the 

USPTO and that long-term statistics are available for granted patents. Given that a large 

number of countries in the sample are European countries, this indicator probably reflects the 

value of patents better (a European applicant will file more easily at the EPO than at the 

USPTO, and will seek for a US patent only for the most valuable inventions).
8
 However, this 

indicator is subject to an important, and logical, home bias for North American applicants as 

illustrated in Figure 3.  

 

Figure 3. Research effort and patenting activity, 2004 

 
Source: Own calculations.  

 

The fourth indicator (REGIONAL) is a mix between EPO and USPTO patents. Since 

European applicants have a higher tendency to file at the EPO and other countries preferably 

file at the USPTO, the indicator is composed of EPO patents for European countries and 

                                                
8
 To mitigate the effect of the grant lag on US patent statistics, which was especially strong in 2004 and 2005, 

the data are adjusted for each country-industry pair using the ratio of EPO patents to US patents for the year 

2003. 
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USPTO patents for other countries. The approach mitigates the home biases characterising 

the EPO and the USPTO indicators, with a geographical distribution that is closer to the 

distribution of research efforts. 

 

The count of triadic patent families is the fifth indicator (TRIADIC). It was developed a 

decade ago by the OECD to select patents of a high quality standard that were comparable 

across countries. According to the OECD definition, the triadic patent family is defined as “a 

set of patent applications filed simultaneously at the EPO, the JPO, and granted by the 

USPTO”, sharing one or more priority applications (OECD 2009: p. 71). The indicator is 

more robust to differences in patent regulations across countries and changes in patent laws 

over time. Triadic patents are of high value given the high cost incurred with patent 

applications in the three patent offices. On average, only between 10 and 15 percent of 

priority filings ultimately become triadic patents. The 19 countries included in the sample 

have a total of 374,106 priority filings in 2004 for 50,504 triadic patent applications. The 

absolute count of patents and the relative shares are presented in Tables A3 and A4 of 

Appendix 1 for countries and industries, respectively. 

 

Figure 4 represents the share of priority filings that eventually became triadic patents. de 

Rassenfosse and van Pottelsberghe (2009) have shown that triadic patents are more suited 

than priority filings to capture the productivity of research efforts. Yet, an increase in the 

share of triadic patents over time might also be associated with an increase in the 

internationalisation of economic activity witnessing a more competitive economy. The figure 

shows that the share of triadic patents has been slightly increasing in Europe and Japan and 

literally falling in the US. The increase in Europe and Japan could be due to a higher 

tendency of applicants to seek protection in foreign markets. For the US it is likely that the 

drop in the share of triadic patents is due to a strong increase in the number of priority filings 

that did not lead to many triadic patent applications. According to van Pottelsberghe (2009) 

this is due to the very low cost of patenting in the US and a weak rigour of the examination 

process. A cheap patent system with a soft examination practice would logically lead to a 

high propensity to file low value patents that do not reach the minimum value threshold to be 

turned into triadic applications. 

 

Figure 4. Share of triadic patents in total priority filings, in Europe, Japan and the 

USA 

 
Source: Own calculations 

Note: CH and NO are included in Average EU.  
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Figure 5 depicts the evolution over time of the share of triadic patents for a selected number 

of industries. On average, 10 to 15 percent of priority filings became triadic, but some 

industries, in particular the pharmaceutical industry have a much higher share of triadic 

patents. This figure should be contrasted with the low ranking achieved by the 

pharmaceutical industry in Figure 2. This industry typically produces a low number of patents 

per unit of R&D, but these patents are of a relatively high value.  

 

Figure 5. Share of triadic patents in total priority filings, selected manufacturing 

industries 

 
Source: Own calculations, see Table A2 for the industry definitions. 

 

3.3 Explanatory variables 
 

The most important explanatory variable is R&D expenditures by industry (R&D) as a 

measure of the industry’s research efforts. It is taken from the OECD’s ANBERD database 

and is expressed in constant 2000 US dollars (USD) at purchasing power parity (PPP). The 

estimated patent elasticity with respect to R&D provides an incomplete evaluation of the 

research productivity. A more complete picture would be easy to draw if inventions (not 

patents) could be measured with accuracy and if the two types of propensity to patent were 

properly measured across countries and over time. Since there are no such indicators, an 

indirect approach such as the one developed by de Rassenfosse and van Pottelsberghe (2009) 

is needed. It consists in finding variables that arguably reflect (or induce) differences in the 

productivity of research activities and variables that arguably affect the propensity to patent. 

 

Finding potential explanatory variables affecting the propensity and the productivity 

components for a large group of countries, varying over industries and available over a long 

period is a challenging task. Three candidates that could affect the productivity of research 

and three others potentially affecting the propensity to patent were identified. Some vary over 

time and across countries and industries whereas some others vary only across countries or 

industries, as indicated in Table 2.  
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Table 2. Overview of the explanatory variables 

  Component   Variation   Number of 

observations  Propensity (z) Productivity (x)  Country Industry Year  

R&D    x x x  4937 
APPROPRIABILITY x    x   4131 
COMPLEXITY x    x   4937 

IP INDEX x   x  x  4937 

INTL COMP  x  x x x  4451 

SHARE BASIC  x  x  x  1811 

SHARE HIGHER EDU   x   x   x   4353 

Source: OECD STAN R&D Expenditure in Industry (ISIC Rev. 3) ANBERD ed2009 for R&D; Arundel and 

Kabla (1998) for APPROPRIABILITY; von Graevenitz et al. (2008) for COMPLEXITY; Park (2008) 

for IP INDEX, with yearly data computed on the basis of a compound annual growth rate between two 

available data points; OECD STAN Bilateral Trade Database for INTL COMP; and OECD Main 

Science & Technology Indicators for SHARE BASIC and SHARE HIGHER EDU 

 

The three variables that are supposed to affect – or to correlate with – research productivity 

are defined and measured as follows. The variable “SHARE BASIC” is the basic-research 

expenditure as a percentage of gross domestic expenditure on R&D (OECD Main Science & 

Technology Indicators (MSTI)). The variable is expected to lead to a greater productivity of 

research efforts as basic research typically pushes forward the knowledge frontier and 

generates new opportunities for further development. The second productivity variable is 

“SHARE HIGHER EDU.” It is defined as the percentage of gross domestic expenditure on 

R&D performed by the higher education sector (OECD MSTI). The expected impact on the 

number of patents is mixed. On the one hand, the higher education sector develops and uses 

frontier knowledge that companies can use, suggesting a positive relationship. On the other 

hand, the propensity to patent is lower among universities, such that a negative impact is also 

possible. The third productivity variable is “INTL COMP” and captures an industry’s 

exposure to international trade. It is defined for each country-industry pair as the ratio of net 

exports to the sum of imports and exports (OECD STAN Bilateral Database). The higher the 

ratio, the more the industry exports in comparison to its imports, hence the more it is 

internationally competitive. A positive impact is expected as internationally competitive 

industries must be innovative in terms of new product performance or reduced production 

costs. In analysing the determinants of patenting across a set of OECD countries, Furman et 

al. (2002, p. 899) find that “an extremely important role is played by factors associated with 

differences in R&D productivity [such as] openness to international trade.” 

 

Three proxies are used to measure the propensity effects. The first variable, 

“APPROPRIABILITY”, captures the appropriability propensity and is based on a survey of 

the share of innovations that were patented in the French manufacturing industry (Arundel 

and Kabla, 1998). This observation allows reducing the noise in the R&D-patent relationship 

by directly correcting for a fundamental link between inventions and patents. This data source 

is preferred over Cohen et al. (2000) because it is the closest to the industry classification of 

the ANBERD database. As for the strategic propensity, the variable “IP INDEX” is a 

measure of the strength of the intellectual property (IP) system at the country level developed 

by Ginarte and Park (1997) and updated by Park (2008). We expect countries with a stronger 

IP regime to have a higher strategic propensity to patent as a strong protection increases the 
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value of patent rights and signal a more advanced patent system.
9
 This is an imperfect proxy 

however, as it is only published every five years and is rather stable over time.
10

 The second 

proxy for the strategic propensity is the measure of ‘complexity’ developed by von 

Graevenitz et al. (2009). They construct a novel measure of patent thickets by technology 

area based on ‘triples’ of firms that mutually block some of each others’ patents (variable 

COMPLEXITY). They identify the most complex technology areas as being those with the 

highest density of ‘triples’. This information derives directly from data on European patent 

citations. In our industry perspective, an own industry matching of the median number of 

‘triples’ was considered as a factor explaining the variation in strategic propensity across 

industries.  

 

It must be emphasized that the variables that supposedly correlate with the productivity of 

research are more diverse and comprehensive than the propensity variables: the exposure-to-

trade variable varies across countries, industries and over time and the other two variables 

(SHARE BASIC and SHARE HIGHED EDU) vary over time and across countries. By 

contrast, the proxies for the appropriability propensity and for the complexity vary only 

across industries, while the IP INDEX varies only slightly across countries and over time. It 

is therefore fair to assume that the fixed effects in the regression mainly capture changes in 

the propensity to patent across the various dimensions of the panel (industry, country and 

time) as assumed in equation (6). 

 

 

4. Empirical results 
 

The empirical results are presented and interpreted in three main stages. First, the basic R&D-

patent model is estimated with the five patent indicators. Then the productivity and the 

propensity variables are added simultaneously to the model. The third stage consists in 

analyzing the various sets of dummies (industry, country and time), as they witness the 

remaining “dynamic” propensity to patent. 

 

4.1. The basic R&D-patent model 
 

The estimated parameters of the error correction model described in Equation (8) are 

presented in Table 3 for the five patent indicators. The only explanatory variable taken into 

account is R&D expenditure. 

 

                                                
9  van Pottelsberghe (2010) argues that Ginarte and Park’s index is not so much an index of the strength of 

patent rights as a measure of the applicant-friendliness of the patent system. Both of these dimensions are 

actually likely to increase the strategic propensity. 
10

 To avoid losing too many data points, we compute annual data on the basis of the compound annual growth 

rate. 
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Table 3. Results of the error-correction model of the R&D-patent relationship 

∆ log(#patents) 
NPFCORR   TRIADIC   EPO   USPTO   REGIONAL 

(1)   (2)   (3)   (4)   (5) 

∆ log(R&D) 
0.009  0.013  0.009  -0.013  0.014 

(0.007)  (0.015)  (0.009)  (0.010)  (0.009) 

log(#patents) (t-1) 
-0.119***  -0.290***  -0.155***  -0.145***  -0.149*** 

(0.007)  (0.010)  (0.008)  (0.008)  (0.008) 

log(R&D) (t-1) 
0.014***  0.032***  0.018***  0.017***  0.019*** 

(0.002)  (0.005)  (0.003)  (0.003)  (0.003) 
Country dummies Yes ***   Yes ***   Yes ***   Yes ***   Yes *** 

Industry dummies Yes ***  Yes ***  Yes ***  Yes ***  Yes *** 
Time dummies Yes ***   Yes ***   Yes ***   Yes ***   Yes *** 

Number of observations 4943  4943  4943  4943  4943 

Adjusted R-squared 0.197  0.187  0.156  0.171  0.129 
Long-run impact of R&D 0.118***   0.110***   0.116***   0.123***   0.128*** 

Notes: Standard errors in parentheses; ***, **, * denote significance at the 1, 5 and 10-percent levels, 

respectively. The rows “country dummies”, “industry dummies” and “time dummies” report the 

significance level of the joint effect of theses dummies. The long-run impact of R&D is computed by 

dividing the coefficient of log(R&D) (t-1) by the coefficient of log(#patents) (t-1). 

 

The short-term elasticity of patents with respect to R&D is not significantly different from 

zero (see the parameter associated with ∆log(R&D)). This result suggests that changes in 

patent filings are a poor indicator of contemporaneous changes in R&D expenditures. The 

long-term elasticity of R&D is highly significant and fluctuates around 0.12 as indicated in 

the last row of Table 3. In other words, a 10-percent increase in R&D outlays leads to a 1.2-

percent increase in patent applications, on average.  Two remarks must to be made regarding 

these estimated long-term elasticities. First, the various point estimates are strikingly low but 

compatible with estimates performed with firm-level panel data sets. Second, the elasticity is 

very stable across patent counts. In other words, studies that use different patent indicators 

have some degree of comparability. This stability is all the more remarkable given the strong 

variations in the adjustment parameter. 

 

Depending on the patent indicator that is used, R&D expenditures and the fixed effects 

explain between 13 and 20 percent of the growth in patent applications. The best fits are 

achieved with priority filings and triadic patents, i.e. the patent indicators that are at the 

opposite ends on the value scale. This better performance is probably due to the fact that 

these two indicators are the least subject to home bias. The explanatory power is fairly high 

given the nature of the data and the simplicity of the patent production function. Country, 

industry and time effects are all jointly significant. They are described and analysed at the 

end of this section. Note that the tests for autocorrelation of residuals reject the presence of 

correlated errors. 

 

4.2. Productivity 
 

The low estimated elasticity of patents with respect to R&D raises the question of whether 

other factors may help to explain industry or country variations in patent applications. This 

issue is investigated in Table 4 where the productivity and the propensity components are 

jointly included in the model. The estimations are presented only with NPFCORR,  

TRIADIC and REGIONAL patent indicators as dependent variables for the sake of 

readability. Regressions based on EPO and USPTO lead to very similar results. 
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Table 4. Results of the full error-correction model  

∆ log(#patents) 
NPFCORR   TRIADIC   REGIONAL 

(1)   (2)   (3) 

APPROPRIABILITY 
0.004***  0.012***  0.005*** 

(0.000)  (0.001)  (0.000) 

IP INDEX 
0.031***  0.053**  0.073*** 

(0.012)  (0.023)  (0.015) 

COMPLEXITY 
0.003***  0.005***  0.003*** 

(0.000)  (0.000)  (0.000) 

∆ log(R&D) 
-0.003  -0.010  -0.008 

(0.008)  (0.016)  (0.010) 

∆ INTL COMP 
-0.002  0.098***  0.052*** 

(0.016)  (0.030)  (0.019) 

∆ SHARE HIGHER EDU 
-0.010***  -0.002  -0.008*** 

(0.002)  (0.004)  (0.002) 

log(#patents) (t-1) 
-0.142***  -0.279***  -0.137*** 

(0.008)  (0.012)  (0.009) 

log(R&D) (t-1) 
0.014***  0.013**  0.007* 

(0.003)  (0.006)  (0.004) 

INTL COMP (t-1) 
0.028***  0.100***  0.056*** 

(0.009)  (0.017)  (0.011) 

SHARE HIGHER EDU (t-1) 
0.0001  -0.002  0.005*** 

(0.001)  (0.002)  (0.001) 

Countries dummies Yes ***   Yes ***   Yes *** 

Industry dummies Yes ***  Yes ***  Yes *** 

Time dummies Yes ***   Yes ***   Yes *** 

Number of observations 3696  3696  3696 

Adjusted R-Squared 0.236   0.190   0.140 

Long-run impact of R&D 0.099***  0.047**  0.051* 

Long-run impact of INTL COMP 0.197***  0.358***  0.409*** 

Long-run impact of SHE 0.001   0.007   0.036*** 

Notes: Standard errors in parentheses; ***, **, * denote significance at the 1, 5 and 10-

percent levels, respectively. Each of the rows “country dummies”, “industry 

dummies” and “time dummies” report the significance level of the joint effect of 

the respective dummies. 

 

The three indicators that are likely to be correlated with research productivity are the share of 

higher education in total R&D expenditure, the share of basic research in total R&D 

expenditure and an indicator of international competitiveness. The first two indicators vary 

across countries and over time while the third fluctuates in the three dimensions. The impact 

of the share of total R&D performed by the higher education sector (SHARE HIGHER EDU) 

has a positive and significant impact on the regional patent indicator only
11

, suggesting that 

                                                
11

 A positive effect was also expected with triadic filings. This is not observed, probably due to the budgetary 

constraints for higher education institutions which are not endowed to file simultaneously at the three main 

regional patent offices. 
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university-performed R&D leads to more valuable patents in the long-run. The negative 

short-term impact of this variable is probably due to a transitional effect caused by the 

diversion of resources towards less patent-minded institutions. It can also be explained by 

longer delays in the R&D process at universities as compared with the private sector.  

 

The share of basic research, an indicator of the relative efforts directed towards potential 

breakthrough inventions, is tested separately. It is not included in the main specification due 

to a much smaller sample. The results are presented in Table A5 of Appendix 1. The share of 

basic research has a strong productivity effect on all patent indicators, with a long-term 

premium of about 11 percent. In other words, the higher the share of basic research in total 

R&D expenditures, the higher the number of patent applications induced by an increase in the 

research productivity. It confirms that allocating more resources to basic research is a long-

term policy aimed at securing the seeds of future innovations. 

 

The exposure to international trade (INTL COMP) has a positive and significant impact on 

the number of patent filings, both in the short run and in the long run. This result confirms the 

impact on research productivity that Furman et al. (2002) estimate with their variable 

OPENNESS. Note that the effect is twice as high with international patents as with priority 

filings, which indicates as expected a strong correlation between international 

competitiveness and international patenting activity. Interestingly, the long-term elasticity of 

patents with respect to R&D substantially drops when productivity variables are added to the 

model. The drop is most stringent for high value patents, underlying the strong importance of 

the productivity effects for these patents. 

 

4.3. Propensity 
 

The distinction between appropriability propensity and strategic propensity put forward in the 

present paper is not straightforward to implement empirically. The three proxies that are used 

to gauge these effects are imperfect measures because they only vary across countries or 

across industries and are quite stable over time. Still, the share of inventions patented 

(APPROPRIABILITY) is highly significant, which provides evidence of the key role played 

by the appropriability propensity in the R&D-patent relationship. 

 

The variables that aims at capturing some facets of the strategic propensity are the measure of 

complexity (COMPLEXITY) and the strength of the patent system (IP-INDEX from Ginarte 

and Park, 1997 and Park, 2008). Both variables turn out to be significant determinants of the 

number of patents. On the one hand, complex industries (as measured by the number of 

blocking patents) are characterized by more patents applications per unit of R&D effort 

compared to more discrete technologies. On the other hand, countries with a higher IP-

INDEX are also likely to have more patent filings per unit of R&D effort. For instance, the 

US has a very high index because there are many patentable subject matters (as opposed to 

Europe where many restrictions apply) and because the enforcement system is well 

developed and historically supporting patent holders. In other words, the more applicant-

friendly the patent system  the more patents are filed. 

 

These propensity variables are only two factors influencing the strategic propensity to patent. 

Despite their significant impact, which validates one of the intuitions that motivated this 

paper, one can hardly disagree with the fact that the “strategic propensity” is imperfectly 

measured. To the best of our knowledge, no other indicator with cross-industry variations is 

available.  
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4.4. Remaining “dynamic” propensity 
 

The country, industry and time effects from the full model can be used to assess the average 

evolution of the propensity to patent along the three dimensions (see Appendix 3 for 

methodological details). Since the model explains the growth rate of patent filings, the  

dummies capture the increase in the propensity to patent – or the “dynamic” propensity – net 

of the impact of all other observable characteristics. The fixed effects probably capture 

unobserved changes in productivity and in the two measures of propensity. But since the 

R&D productivity component is arguably better measured than the two propensity 

components, it is fair to assume that the fixed effects are more reflective of the propensity 

than the productivity component.  

 

Figure 6 shows the normalized parameter associated with the country dummies. The rankings 

for the international indicators (TRIADIC, EPO and USPTO) are roughly similar and clearly 

underline a strong catching-up effect for South Korea, Poland, Norway and Spain. Countries 

such as France, Canada, Great Britain and the US rank last on triadic and regional patent 

statistics (EPO and USPTO), suggesting that they have lost some ground in their patenting 

performance as measured by international indicators.  

 

Figure 6. Dynamic propensity to patent across countries 

 
Source: Own calculations 

Notes: The values are coefficients of country dummies taken from the full model and are normalized from 0 to 

1; they are interpreted as normalized dynamic propensity to patent. See Appendix 3 for more details.  
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The change in the propensity to patent also varies to a significant extent across manufacturing 

industries as illustrated in Figure 7. The industries related to communication, computers and 

instruments are associated with the strongest increase in the propensity to patent whereas 

fabricated metals or rubber and plastics products had the lowest increase. There is a clear ICT 

(information and communication technologies) effect at play. The industries in this area 

already scored high in at least one of the two propensity components, and they have 

apparently further increased their willingness to patent. This observation is true for all patent 

indicators. Contrary to the country dummies, which illustrate a catching-up effect from 

newcomers, the industry dummies seem to reinforce the trends towards a higher propensity to 

patent. As the industry-specific appropriability propensity is controlled for, this effect is most 

probably due to a sharp increase in the strategic propensity to patent in the two industries. 

 

Figure 7. Dynamic propensity to patent across industries 

 
Source: Own calculations 

Notes: The values are coefficients of industries dummies taken from the full model and are normalized from 0 to 

1; they are interpreted as normalized dynamic propensity to patent. See Appendix 3 for more details.  

 

Finally, Figure 8 depicts the evolution of the propensity to patent over time for the main 

patent indicators. The most striking observation is that the propensity to file priority filings 

has been roughly constant over time whereas the propensity to file international/regional 

applications has steadily increased. Taken together, these trends lead to the conclusion that 

there has been no particular “burst” in the underlying inventiveness (beyond the increase in 

R&D efforts and beyond the improvement in research productivity measured in the empirical 

analysis) and that the “patent warming” observed at major patent offices is mostly due to a 

globalization effect: companies do not file particularly more patents, but have a higher 
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willingness to extend them abroad. The USPTO (and to a lesser extent the EPO) is 

particularly intensely targeted in this respect. 

 

Figure 8. Evolution of the propensity to patent over time  

 
Source: Own calculations (see Appendix 3 for more details) 

 

 

5. Concluding remarks and policy implications 
 

The literature on the R&D-patent relationship reports a significant correlation between R&D 

efforts and patents. However, the estimated elasticities vary greatly, especially when 

estimated at the industry level. This weakness has not prevented patent statistics to be used 

for many purposes, including economic research on technological progress and knowledge 

diffusion. The objective of this paper is to reconcile the a priori antagonism between the 

intensifying use of patent data and the pessimistic appraisal of these indicators in the 

academic literature. This reconciliation is done by identifying key milestones when analyzing 

the R&D-patent relationship at the industry level. 

 

The empirical investigation relies on a unique panel data set composed of 18 manufacturing 

industries in 19 countries over the period 1987 to 2005, for which five broad patent indicators 

are developed. Six main methodological and policy implications summarize the major 

contributions of this paper.  

 

The first contribution is conceptual. The literature has implicitly or explicitly assumed that 

the patent-to-R&D ratio is driven by a research productivity stage (the extent to which 

additional units of R&D generate additional inventions) and a propensity-to-patent stage. 

This paper claims that the propensity to patent must be split into two main components in 

order to better understand how an increase in R&D expenditures translate into patent 

applications: the “appropriability propensity”, which indicates whether or not an invention is 

protected with patents; and the “strategic propensity”, which measures the number of patents 

used to protect an invention. While the former component can be proxied by existing survey 
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Kabla, 1998), the latter can so far be gauged by measures of complexity or of patent 

friendliness. This theoretical insight has a major implication: Large-scale surveys such as the 

Community Innovation Survey in Europe should assess the two propensity components for 

many countries. Data on the evolution of the share of inventions that are patented as well as 

on the average number of patents used to protect an invention would drastically improve our 

understanding of the R&D-patent relationship. So far only single-country information is 

available for a given year or period. 

 

Second, the econometric analysis of the patenting activity across industries, countries and 

over time confirm that the patent elasticity with respect to R&D is positive and significant but 

small. It fluctuates around 12 percent and is very robust to the patent indicator used as 

dependent variable (national priority filings versus the more restrictive and high value triadic 

patents). The results therefore confirm the existing dynamic time series estimates at the 

microeconomic level: The elasticity is much smaller than “hoped” for (Griliches, 1990) and 

captures only a small share of the variance in patent filings, which can be due to two 

important missing links unrelated to the productivity of research, namely appropriability and 

strategic propensities.  

 

Third, the empirical analysis confirms that a significant productivity effect takes place and 

does explain part of the variations in the R&D-patent ratio, as witnessed by the positive and 

significant premium associated with basic research and academic research, or by the 

noticeable impact of the international competitiveness variable, an indicator of ultimate 

innovation performance. The positive impact of basic and academic research suggests that 

allocating more resources to university-performed research and to basic projects is a long-

term policy aimed at securing the seeds of future innovations. 

 

Fourth, the appropriability propensity plays a positive and highly significant role in the patent 

production function, despite the fact that its measure varies only across industries. The 

implicit assumption that it is similar across countries and does not vary over time is probably 

too strong, but there is no convincing alternative to the best of our knowledge. The strategic 

propensity to patent is assessed by the strength of the patent system in the inventor country 

and by a measure of the complexity of industries. These variables have a positive and 

significant impact on the propensity to patent, but probably only partially capture the strategic 

propensity to patent.  

 

Fifth, the country and industry dummies allow to identify in some depth the origins of the 

increase in the propensity to file patents. This “dynamic propensity” is logically composed of 

an appropriability component and a strategic component. Two manufacturing industries, 

which were already characterized by a high patent-to-R&D ratio, communications and 

computers, turn out to be associated with the sharpest increase in the propensity to patent. 

This is precisely the technological area where a patent “paradox” was identified by Hall and 

Ziedonis (2001). In this respect our result shed some additional light on the R&D-patent 

relationship and its industry dimension. The pharmaceutical industry has a high 

appropriability propensity but is not associated with a particularly strong increase in its 

propensity to patent. The countries that are associated with the sharpest increase in their 

propensity to patent are South Korea, Poland and Spain, which witnesses a clear catching up 

effect. These results exemplify the pitfalls and advantages associated with patent data. 

Whereas they witness fundamental economic changes such as catching-up effects, they are 

also greatly impacted by nations’ industrial structure, hence the need to improve our 

understanding of the “propensity” components.  
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Finally, the time dummies provide a broad measure of the increase in patent propensity, net 

of country and industry specificities, and of R&D expenditure. Here the results depend on the 

patent indicators that are used. The sharpest increases are associated with regional patent 

filings (at the EPO or at the USPTO) followed by triadic applications. As far as national 

priority filings are concerned, hardly any increase in the unaccounted propensity to patent is 

observed. In other words, the “global patent warming” that is currently taking place is 

essentially the result of a stronger internationalization of patent applications, and not a 

consequence of an increased propensity to rely on patent systems with national priority 

applications. Innovating firms are increasingly targeting global markets and hence have a 

higher tendency to seek protection in regional patent offices, world-wide. This tendency 

would justify a stronger coordination of patent offices at the global level, provided their 

views on how a patent system should be designed converge noticeably. 
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Appendix 1. Additional background tables 

Table A1. Literature on the R&D-patent relationship 

Reference Sample Model Results Specifications 

Firm Level     
Pakes and Giliches 

(1980) 

121 US firms 

1968-1875 

Panel (within dimension) 
0.61 

Sum of log R&D 

(Contemporaneous + 5 lags) 

Bound et al. (1984) 
2582 firms 

1976 

Cross-section; OLS 0.32-0.38  

Cross-section; Poisson, 

Negative Binomial and Non 

Linear Least Squares 

0.58-2.18 

 

Hausman et al. 

(1984) 

128 US firms 

1968-1974 

OLS, Poisson and Negative 

Binomial  
0.75-0.88 

Sum of log R&D 

(Contemporaneous + 5 lags) 

Poisson and Negative 

Binomial with firm effects 
0.35-0.6 

Sum of log R&D 

(Contemporaneous + 5 lags) 

Poisson and Negative 

Binomial  “between” firms 
0.75-1.29 

Contemporaneous log R&D 

Hall et al. (1986) 

642 US 

manufacturing 

firms 

1972 - 1979 

Nonlinear least squares, 

Poisson, negative Binomial 

and GMT 

0.39-0.66 

Sum of log R&D 

(Contemporaneous + 3-7 lags) 

Conditional Negative 

Binomial and GMT with 

firm effects 

0.29-0.38 

Sum of log R&D 

(Contemporaneous + 3-5 lags) 

Jaffe (1986) 
432 firms 

1973 & 1979 

Cross-section; Pooled OLS 0.74 Contemporaneous log R&D 

First differences 0.4  

3SLS 0.88  

Cincera (1997) 

181 

manufacturing 

firms 

1983-1991 

Panel; GEC, QGPML-

gamma, Conditional 

Poisson, GMM 
0.35-0.9 

Sum of log of R&D 

(contemporaneous + 4 lags) 

Duguet and Kabla 

(1998) 

299 firms 

1990-1992 

Cross-section; Poisson 

Model estimated by 

asymptotic least squares 

0.34-0.67 

Log R&D 

Crépon et al. (1998) 

4164 

manufacturing 

firms 

1986-1990 

Cross-section;  Non-negative 

binomial 
0.88-1.08 

Patents per employee – R&D 

capital per employee 

Blundell et al. 

(2002) 

407 firms 

1972-1979 

Linear feedback model 
0.9 

Level (without individual 

effects) 

0.34 Within group mean scaling 

Arora et al. (2008) 
790 R&D Units 

1991-1993 

Cross-section;  2SLS 
0.61 

 

Czarnitzki et al. 

(2009) 

122 firms 

1993-2003 

Pooled cross-sectional 1.10-1.13 Log(R&D/Employment) 

Fixed effect panel 0.30-0.32 Log(R&D/Employment) 

Aggregate (industry, region or country level) 

Acs and Audretsch 

(1988) 

247 

manufacturing 

industries 

Cross-section 
0.36 

Log (Innovations)1982 and 

Log(Total R&D)1977 

0.41 
Log (Innovations)1982 and 

Log(Company R&D)1977 

Meliciani (2000) 

Panel of 15 

industrial sectors, 

12 countries, 

1973-1993 

Negative binomial 
0.18 

With country and sector 

effects 

0-0.56 
Regressions by sector (with 

country effects) 

Botazzi and Peri 

(2003) 

86 European 

regions 

1977-1995 

Cross-section of lung run-

averages 0.76-0.95 
Patent and R&D per square 

kilometer 

Bottazzi and Peri 

(2007) 

15 OECD 

countries 

1973-1999 

Long-run Cointegration 

Relation; DOLS 0.30-0.79 
International patent 

applications 

de Rassenfosse and 

van Pottelsberghe 

(2009) 

34 countries 

2003 

Cross-section 
0.33-1.56 

Log Researchers 
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Table A2. Abbreviations of countries and industries 

Abbr. Country Abbr. 
ISIC 

Rev.3 
Industry definition 

Technological 

classification* 
Complexity** 

AT Austria FOOD 15-16 Manufacture of food products, beverages and tobacco products LOTE 0 

BE Belgium TEXT 17-19 
Manufacture of textiles, wearing apparel; dressing and dyeing of fur; Tanning and 

dressing of leather; manufacture of luggage, handbags, saddlery, harness and footwear 
LOTE 

3 

CA Canada WPAP 20-22 

 Manufacture of wood and of products of wood and cork, except furniture; manufacture of 

articles of straw and plaiting materials; manufacture of paper and paper products; 

publishing, printing and reproduction of recorded media 
LOTE 

10 

CH Switzerland PETR 23 Manufacture of coke, refined petroleum products and nuclear MLTE 6 

DE Germany CHEM 24 less 2423 Manufacture of chemicals and chemical products MHTE 6 

DK Denmark PHAR 2423 Pharmaceuticals and medicinal chemicals HTE 4 

ES Spain RUBB 25 Manufacture of rubber and plastics products MLTE 14 

FI Finland MINE 26 Manufacture of other non-metallic mineral products MLTE 2 

FR France META 27 Manufacture of basic metals MLTE 2 

GB United Kingdom FABM 28 Manufacture of fabricated metal products, except machinery and equipment MLTE 2 

IE Ireland MACH 29 Manufacture of machinery and equipment n.e.c. MHTE 1 

IT Italy COMP 30 Manufacture of office, accounting and computing machinery HTE 63 

JP Japan ELEC 31 Manufacture of electrical machinery and apparatus n.e.c. MHTE 18 

KR Korea COMM 32 Manufacture of radio, television and communication equipment and apparatus HTE 107 

NL Netherlands INST 33 Manufacture of medical, precision and optical instruments, watches and clocks HTE 22 

NO Norway AUTO 34 Manufacture of motor vehicles, trailers and semi-trailers MHTE 14 

PL Poland TRAN 35 Manufacture of other transport equipment MHTE 14 

SE Sweden MISC 36 Manufacture of furniture; manufacturing n.e.c. MHTE  

US United States       

Note: * Based on the OECD technological classification, LOTE, MLTE, MHTE and HTE stand for low technology, medium-to-low technology, medium-to-

high technology and high technology, respectively; **own industry matching based on the 'triples' data presented by von Graevenitz et al. (2008). 
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Table A3. Absolute and relative number of patents by country (2004) 

Country NPFCORR % TRIADIC % EPO % USPTO % REGIONAL % 
AT 2,356 0.6 284 0.6 1,259 1.2 825 0.4 1,259 0.5 
BE 1,742 0.5 394 0.8 1,265 1.2 927 0.4 1,265 0.5 
CA 5,569 1.5 381 0.8 1,147 1.1 3,750 1.7 3,750 1.6 
CH 3,480 0.9 988 2.0 2,656 2.5 1,874 0.9 2,656 1.1 
DE 49,502 13.2 6,865 13.6 24,130 23.2 17,126 7.8 24,130 10.4 
DK 1,579 0.4 311 0.6 1,015 1.0 906 0.4 1,015 0.4 
ES 2,525 0.7 177 0.4 886 0.9 519 0.2 886 0.4 
FI 2,640 0.7 314 0.6 1,175 1.1 1,199 0.5 1,175 0.5 
FR 14,635 3.9 2,675 5.3 7,839 7.5 5,541 2.5 7,839 3.4 
GB 19,665 5.3 1,944 3.8 5,181 5.0 5,782 2.6 5,181 2.2 
IE 559 0.1 82 0.2 237 0.2 282 0.1 237 0.1 
IT 10,007 2.7 696 1.4 3,962 3.8 2,195 1.0 3,962 1.7 
JP* 113,488 30.3 19,890 39.4 25,382 24.4 56,968 26.1 56,968 24.6 
KR* 33,282 8.9 2,736 5.4 4,573 4.4 16,084 7.4 16,084 6.9 
NL 5,742 1.5 2,329 4.6 3,879 3.7 3,362 1.5 3,879 1.7 
NO 1,045 0.3 127 0.3 356 0.3 410 0.2 356 0.2 
PL 2,226 0.6 13 0.0 135 0.1 99 0.0 135 0.1 
SE 3,599 1.0 685 1.4 1,817 1.7 1,491 0.7 1,817 0.8 
US 100,465 26.9 9,613 19.0 17,336 16.6 99,334 45.4 99,334 42.8 

Total 374,106 100 50,504 100 104,230 100 218,673 100 231,927 100 

Source: Own calculations 

Notes: * The number of priority fillings for Japan and Korea has been divided by 3. The “%”columns report the 

share of each country in the total of each patent count, expressed in percent. 

 

Table A4. Absolute and relative number of patents by industry (2004) 

Industry NPFCORR % TRIADIC % EPO % USPTO % REGIONAL % 
FOOD 7,939 2.1 997 2.0 2,172 2.1 4,156 1.9 4,258 1.8 
TEXT 2,521 0.7 268 0.5 613 0.6 1,258 0.6 1,369 0.6 
WPAP 4,698 1.3 605 1.2 1,324 1.3 2,418 1.1 2,649 1.1 
PETR 4,632 1.2 739 1.5 1,496 1.4 2,497 1.1 2,664 1.1 
CHEM 37,325 10.0 6,307 12.5 12,306 11.8 20,427 9.3 22,077 9.5 
PHAR 21,229 5.7 4,872 9.6 8,762 8.4 13,831 6.3 14,734 6.4 
RUBB 7,282 1.9 840 1.7 2,030 1.9 3,410 1.6 3,878 1.7 
MINE 6,654 1.8 810 1.6 1,767 1.7 3,380 1.5 3,695 1.6 
META 7,774 2.1 1,003 2.0 2,148 2.1 3,948 1.8 4,319 1.9 
FABM 10,142 2.7 925 1.8 2,579 2.5 4,532 2.1 5,239 2.3 
MACH 44,986 12.0 4,741 9.4 11,938 11.5 22,169 10.1 24,578 10.6 
COMP 53,304 14.2 7,012 13.9 12,922 12.4 36,830 16.8 37,443 16.1 
ELEC 14,209 3.8 1,794 3.6 3,736 3.6 8,527 3.9 9,016 3.9 

COMM 81,450 21.8 11,453 22.7 21,622 20.7 55,051 25.2 56,313 24.3 
INST 15,260 4.1 2,148 4.3 4,211 4.0 9,400 4.3 9,821 4.2 

AUTO 34,274 9.2 4,088 8.1 9,983 9.6 16,838 7.7 18,995 8.2 
TRAN 10,916 2.9 1,329 2.6 3,112 3.0 5,893 2.7 6,441 2.8 
MISC 9,511 2.5 573 1.1 1,510 1.4 4,107 1.9 4,439 1.9 
Total 374,106 100 50,504 100 104,230 100 218,673 100 231,927 100 

Source: Own calculations 

Note: The “%”columns report the share of each industry in the total of each patent count. 
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Table A5. Partial model with share of basic research in total R&D 

∆ ∆ ∆ ∆ log(#patents) 
NPFCORR   TRIADIC   REGIONAL 

(1)   (2)   (3) 

∆ log(R&D) 
0.019   -0.004   0.020 

(0.013)  (0.029)  (0.018) 

∆ SHARE BASIC 
0.016***  -0.0002  -0.005 

(0.003)  (0.007)  (0.004) 

log(#patents) (t-1) 
-0.114***  -0.365***  -0.192*** 

(0.011)  (0.019)  (0.014) 

log(R&D) (t-1) 
0.016***  0.041***  0.022*** 

(0.005)  (0.011)  (0.007) 

SHARE BASIC (t-1) 
0.019***  0.029***  0.023*** 

(0.003)  (0.006)  (0.004) 

Countries dummies Yes ***   Yes ***   Yes *** 

Industry dummies Yes ***  Yes ***  Yes *** 

Time dummies Yes ***   Yes ***   Yes *** 

Number of observations 1811  1811  1811 

Adjusted R-Squared 0.331   0.241   0.170 

Long-run impact of R&D 0.140***  0.112***  0.115*** 

Long-run impact of SB 0.167***   0.079***   0.120*** 

Notes: Standard errors in parentheses; ***, **, * denote significance at the 1, 5 and 

10-percent levels, respectively. The rows “country dummies”, “industry 

dummies” and “time dummies” report the significance level of the joint effect 

of theses dummies. 
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Appendix 2. Panel unit root and cointegration tests 
 
In order to analyse the dynamics of the R&D-patent relationship within an ECM framework, 

one need to test whether the variables have a unit root and are cointegrated. Three tests on 

unit roots in panel data are implemented: Levin, Li and Chu (2002); Im, Pesaran and Shin 

(2003) and a Fisher type test (Choi, 2001); denoted respectively LLC, IPS and Fisher in 

Table A6. The three tests are devised under the null hypothesis that all the variables in the 

panel have a unit root. LLC assumes that all individuals have the same autoregressive 

parameter whereas IPS and Fisher allow both for heterogeneous roots and for heterogeneous 

presence of a unit root. Since some of these tests require a strongly balanced panel, they were 

performed on a restricted sample of our initial panel data set (this restriction was simply 

based on the availability of data to obtain the largest possible balanced panel, which means 

going from 4937 to 2516 observations). 

 

Table A6. Panel unit root tests 

P-values NPFCORR TRIADIC REGIONAL EPO USPTO R&D 

LLC 1 1 1 1 1 1 

IPS 0.787 0.635 0.999 1 0.283 0.08 

Fisher 0.872 0.806 1 1 0.368 0.091 

Notes: Specifying one-year lag structure in the regressions performed in computing the test statistics. LLC: no 

panel-specific mean included. IPS: panel-specific mean included, subtracting the cross-sectional 

averages from the series. Fisher: statistic based on individual Augmented Dickey Fuller statistics with 

associated p-values using the inverse normal transformation, panel-specific mean included, subtracting 

the cross-sectional averages from the series. 

 

It appears that most of these tests allow us to reject the null hypothesis of a unit root; the 

series are therefore non-stationary. Concerning the cointegration, the four panel data tests 

developed by Westerlund (2007) are performed for the ‘basic’ R&D-patent model (see Table 

A7). Two tests (denoted G) refer to group-mean statistics and are defined under the 

alternative that there is evidence of cointegration for at least one of the cross-sectional units. 

The second pair (denoted P) formulate the alternative such that a rejection of the null should 

be taken as a evidence of cointegration for the panel as a whole. 

 
Table A7. Panel cointegration tests 

P-values NPFCORR TRIADIC REGIONAL EPO USPTO 

Gt 0 0 0.067 0.998 0.028 

Ga 0 0 0.224 0.967 0.098 

Pt 0 0 0.25 0.941 0.016 

Pa 0 0 0.026 0.435 0.001 

Notes : Replication of the tests presented by Westerlund (2007) on the basic R&D-patent model. They are 

implemented with a constant and one lag in the error correction equation.  

 
The null hypothesis of no cointegration is rejected for most of the five dependent variables 

(patent indicators), indicating that the panel is co-integrated. Thus, these results seem to 

confirm that there exists a long-run equilibrium level between the number of patents and 

R&D efforts. 
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Appendix  3. Construction of the dynamic propensities 

 

The variables presented in Figures 6, 7 and 8 are based on ψi, ψi and ψt in Equation (8) that is, 

the country, industry and time-effects, respectively. Since the dependent variable is the 

difference of the log of patent filings, the fixed effects can be interpreted as the growth rate in 

propensity to patent taking into account all the potential explanatory variables. We refer to 

these parameters as the dynamic propensities. 

 

Note that the fixed effects cannot be recovered immediately from Equation (8). Indeed, the 

fact that the error correction term is left open in Equation (8) means that the estimated fixed 

effects also include the parameter c (recall from Equation (3) that c captures the rate at which 

research efforts lead to patent applications). For this reason, the fixed effects presented in 

Figures 6, 7 and 8 have been recovered in the following way. We have first estimated the 

residuals from Equation (4) and injected them into Equation (8) in lieu of the lagged long-

term relationship (the expression in parentheses in Equation (8)). The fixed effects of this 

modified specification can be interpreted as the country, industry and time components of the 

change in the propensity to patent. Figures 6 and 7 respectively present the parameters ψj and 

ψi, which are normalized to lie between 0 and 1 for ease of readability. Figure 8 presents the 

cumulative effect of the time dummies on patent counts, including the average industry 

effect, the average country effect and the constant. 

 


