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a b s t r a c t

The technological obsolescence of a unit is characterized by the existence of challenger units displaying

identical functionalities, but with higher performances. This paper aims to define and model in a

realistic way, possible maintenance policies of a system including replacement strategies when one type

of challenger unit is available. The comparison of these possible strategies is performed based on a

Monte Carlo estimation of the costs they incur.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Most often, papers studying optimization of preventive
or corrective maintenance policies rely on the assumption
that failed or used pieces of equipment are replaced by iden-
tical items. Actually, the technological reality is often quite
different. In practice, new equipments are regularly available
on the market achieving the same missions, but with
higher performances. These higher performances can be under-
stood as smaller failure rates, lower energy consumption, a lower
purchase cost, etc. At the same time, it can be more and more
difficult or costly to find old-generation spares to replace
degraded units. This situation is characteristic of technological
obsolescence.

Managers then face important issues, such as, for instance:
how to optimally schedule the replacement of old-type units by
new-type ones? Is it economically more interesting to preven-
tively replace all the old equipments, without benefiting from
their residual lifetime, by their more performing challengers, or
on the contrary is it preferable to replace gradually the old
components in a corrective way, progressively with their normal
outage, but at the risk of a larger number of failures? Such
questions become even more crucial when spare parts are to be
dealt with.
ll rights reserved.
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The aim of our work is therefore to define replacement policies
of these obsolete equipments and to help the decision maker find
an optimal strategy among them.

Previous works envisaged this problem in a simplified way.
In Ref. [1], the case of one single component subject to ageing,

which can be either periodically maintained or replaced by a
technologically more advanced unit was studied.

In Ref. [2], authors studied analytically the following case:
A set of n identical and independent units can be either
preventively or correctively replaced by new-type units. The
replacements take a negligible time. The new-type units have a
lower constant failure rate and a lower consumption rate. The so-
called ‘‘K strategy’’ was introduced as follows [3]: first, new-type
components are used only to replace failed old-type units; then,
after K corrective actions of this kind, the n– K old-type remaining
components are preventively replaced by new-type ones at the
time of the Kth corrective intervention. The 0 strategy represents
the preventive replacement of all old-type components at the
initial moment. In Ref. [2], the authors reached the following
conclusion: no matter which values are chosen for the data and
the time horizon, only three strategies can be optimal: either all
the components are replaced preventively (K ¼ 0), or one
component is replaced correctively and the others preventively
immediately after this first failure (K ¼ 1), or all the components
are replaced correctively (K ¼ n).

In Ref. [4], units subject to ageing and non-negligible stochastic
replacement durations were envisaged and the same conclusions
reached.

In the continuation of the works presented in Refs. [2,4], we
introduce in this work more realistic maintenance actions, as
extensions of the K strategy, and develop a complete model for the
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management of a set of identical units subject to obsolescence, in
the presence of a maintenance policy and of challenger units with
a limited number of maintenance teams.

This paper summarizes and extends the works presented in
Refs. [5,6]. It is organized as follows: Section 2 describes the
model proposed and the assumptions on which it is based. Section
3 illustrates, by numerical results based on Monte Carlo (MC)
simulation, some aspects of the whole model and some of the
strategies proposed. In particular, we compare in Section 3.1 our
MC results with the analytical solution of the simplified problem
from [2]. Section 3.2 treats how to deal with the spare part
inventory and the time horizon on which the transition between
technological generations takes place. In Section 3.3, we discuss
on the basis of another set of data the ability to forecast a budget
for the replacements, which is regularly distributed in time.
Finally we conclude by some possible perspectives and extensions
of the model.
2. Model description

In this work, we will consider a set of n identical units, likely to
be replaced by their more performing challengers. These units are
subject to ageing and can be either replaced, imperfectly
preventively maintained or repaired.

In this work, the new-type units will be more performing
according to two criteria: their consumption rate and failure rate
will be lower than that of the old ones.

2.1. Component failure modes

For both generations of components, we consider the following
failure causes:
�
 Ageing: we model the ageing of the components by failure
times exponentially distributed with time-dependent failure
rates. These failure rates are the sum of a constant term l0

embodying purely random failures and a time-shifted Weibull-
like contribution corresponding to ageing. At time t, the
cumulative probability function of the failure time of one unit
of a given generation is thus given by an expression of the
form:

FðtÞ ¼

1� e�l0ðt�tsÞ if tðtÞpn

1� e�l0ðt�tsÞððtðtÞ�nÞ=aÞb if tðtÞ4n and tðtsÞpn

1�
e�l0ðt�tsÞððtðtÞ�nÞ=aÞb

e�ððtðtsÞ�nÞ=aÞb
if tðtsÞ4n

8>>>><
>>>>:

(1)

where ts is the instant at which the unit underwent the last
intervention and ô(ts) the unit age after the intervention. The
location parameter ı́ is an effective working time before which
the ageing of the unit does not affect its failure rate. The age
ô(t) to be considered to evaluate the failure probability is the
effective (or virtual) age of the unit. This effective age is
different from the calendar working time of the unit and
depends on its past and on the maintenance interventions it
has undergone. In particular, we consider that the different
interventions affect this effective age by a rejuvenation factor.
See Section 2.2, Eq. (3), for more details.

�
 Common cause failures: we also consider possible common

cause failures modelled according to Atwood’s shock model
[7]. This model considers one (or several) external cause(s),
whose occurrence entails an on-demand failure risk for the
units, with a failure probability possibly specific to each
component. In this work, the occurrence of the only initiating
cause considered is distributed according to a negative
exponential pdf (parameter w); it is supposed that the old-type
units have a conditional failure probability pO different from
that pN of the new-type equipment.

�
 On-demand start-up failure: For the stocked units, we assume a

cold stand-by situation. When a component is replaced by a
new one, the latter has a probability to fail on demand
depending on the storage time. In the model, this probability is
given by a Weibull law of the form (1).

�
 Incompatibility: As already introduced in Ref. [4], a probability

of incompatibility pinc(t) is accounted for, in order to model the
fact that the on-site implementation of new-type components
could turn out to be problematic, and some replacements
could not be immediately successful, as technicians are not
familiar yet with this new technology. This probability of
incompatibility is an on-demand probability of unsuccessful
restart after a replacement of an old-type unit by a new-type
unit. For these replacements, the incompatibility comes in
addition to the on-demand start-up failure.

�
 Part of this probability will decrease when both the informa

tion on the installation procedure and experience increase.
This incompatibility should consequently not favour early
replacements. This incompatibility hazard is difficult to model,
especially its time-dependent part. A first approach consists in
limiting this dependence on the number of replacements per
formed on the system under study. Adopting this simplifica-
tion, we can write:

pincðtÞ ¼ p0 þ
pi

f nintðtÞ�1
(2)

where p0 is the purely ra ndom on-demand failure probability
of the new-type components, pi is the contribution to
incompatibility for the first replacement intervention, nint (t)
is the number of replacements of old-type units by new-type
ones achieved on the whole system and f is a parameter larger
than 1. Yet a more satisfying modelling depending on the
calendar time should be developed in future works.

2.2. Interventions

As mentioned before, we consider a limited number of
maintenance teams, which are supposed to perform four different
types of actions. The first one is the preventive imperfect
maintenance of the components at constant time intervals. The
second one consists in repairing a failed component. The last two
actions are the corrective and the preventive replacements.

To model the effects of these interventions, we use, among the
available models in the literature, the effective age model [8,9].
This effective age is different from the physical component age
(absolute or calendar age) that gives the time elapsed from the
time the component was first started until the current time. The
effective age rather represents an equivalent working time of
the unit, given the different interventions it has undergone. The
effective age t(t) is the one taken into account (see Eq. (1)) in the
Weibull law to evaluate the failure probability of a component.

The imperfect preventive maintenance actions are carried out
at regular intervals. The effect of an imperfect preventive
maintenance is to reduce the unit’s effective age by a rejuvenation
factor em. The effective age ta after a preventive maintenance is
given by

ta ¼ �mtb; 0p�mp1 (3)

where tb is the effective age of the components before the
maintenance and em (p1 except if the intervention deteriorates
the component) is the rejuvenation factor due to a preventive
maintenance. If em ¼ 0, the maintenance is perfect (as good as

new) and if em ¼ 1 the maintenance has no effect (as bad as old).
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This use of the concept of effective age here above is referred to
in different yet equivalent ways in the literature, e.g. Kijima 2
model [10], Arithmetic Reduction of Age with infinite memory
[11] or to the Proportional Age Setback model [12].

We assume that no intervention is perfect; hence each
maintenance operation may have a different impact. This implies
that the rejuvenation factor em should not be taken constant.
Moreover, it is assumed to be a random variable embodying the
variability in the resulting state of the component. The expected
effect of a preventive maintenance is less and less efficient as the
number of maintenance actions undergone by a component gets
higher and the unit’s work time gets higher. Thus the distribution
of em(tb) should also depend on the age of the component (or on
the number of maintenance actions already performed).

In addition, we consider that the effective age of the
component is a degradation criterion. A preventive replacement
is planned when the effective age of the component reaches a
threshold value, tmax. This threshold value is fixed such that it
becomes more expensive on average to maintain the component
and replace it at the next maintenance time than to replace it
immediately, given the expected costs induced by failures during
the inter-maintenance period. In order to delay or advance the
installation of the new-type units in the system, the threshold
value for the old-type units can be augmented or decreased,
respectively, during the transition period. There are thus three
different threshold values to be considered: one for the replace-
ment of old-type components by old-type spares, one for the
replacement of old-type components by new-type ones and one
for the replacement of new-type components by new-type spares.

When a failure occurs, if a preventive replacement was
planned but not yet completed, the component is repaired;
otherwise, the component is correctively replaced. After repair, a
component can be in either a degraded or a rejuvenated state
compared to its state before failure. The repairs are assumed to be,
in average, minimum. It means that, in average again, the effective
age of a component after a repair is the same as before failure. The
effective age after repair is thus given by an equation similar to (3)
but with an age reduction factor er associated to a repair, whose
expected value is equal to one.

In our model, the intervention durations are random variables
modelled by Erlang distributions. We suppose that the preventive
maintenance actions and the replacements are always success-
fully performed within a given intervention time interval (lower
and upper bounds). As Erlang distributions have a non-bounded
support, they are truncated in these two cases at these extreme
intervention times. These bounds are noted Dmmin and Dmmax for
the minimum and the maximum maintenance durations, respec-
tively, and Drmin and Drmax, for the minimum and the maximum
replacement durations, respectively.

A corrective replacement is carried out when repair fails. The
latter situation is assumed to occur when the repair duration
exceeds a maximum value Ds.

2.3. Logistics

Several intervention teams are considered. Each intervention
team can perform all the interventions on the units.

After repair, as the actual state of the component is not
perfectly known, the next preventive maintenance time of this
component is anticipated and scheduled a given constant time
interval after the repair end.

Due to the non-zero intervention durations and the possibility
of common cause failures, we can have simultaneously failed
components. When an intervention is needed, if there is no
maintenance team available, the intervention is postponed until a
maintenance team finishes its current intervention. We introduce
priority rules to know which intervention starts when several
interventions are scheduled at the same time. Corrective replace-
ments are always performed first, then repairs are considered;
next, preventive replacements are given priority with respect to
preventive maintenance actions.

Most companies keep a spare part inventory in order to reduce
the risk of not being able to replace a failed component. Therefore
our model includes a spare part management. If there is no spare
part in stock at the time a replacement is scheduled, this
replacement is postponed until a new delivery of spares takes
place. This is very penalizing when a corrective replacement is
needed.

The inventory is supplied in this way: when the stock goes
below a predetermined threshold S, a quantity of Q units is
ordered. The costs associated to the management of the inventory
are the purchase cost of the units, the order cost, Ct, and the
storage cost, cs (modelled by a possession rate of the economic
value of the units in %).

It is not simple to calculate the optimal value of Q. When there
is only one type of component, the inventory is supposed to be
managed by the well-known Wilson formula, modified to take
into account the variability of the demand. The Economic Order
Quantity [13] Q* is thus:

Q� �

ffiffiffiffiffiffiffiffiffiffiffi
2CtD

csr

s
(4)

where D is the average demand and r the economic value of an
item (as a first approximation, the economic value is assumed to
be equal to the purchase cost). If L is the mean lead time between
the replenishment order and the delivery of the component, the
threshold S is equal to DL, plus, possibly, a security margin to limit
the risk of stock-out.

When the manager takes the decision to replace the old-type
units by new-type ones, in general, the spare part inventory is not
empty. In our model two options are envisioned for the old-type
spares: they can be either used to replace failed old-type
components, or resold. In the same way as the K strategy was
defined, the manager can make a compromise and first use a part J

of the old-type spares to replace old-type components, before
reselling the remaining old-type spares.

The expected lifetime of the old-type and the new-type units
are not the same. Thus, each time a new-type component is
installed, both the economic quantity Q and the corresponding
threshold S vary. But, in the majority of cases, it is unrealistic to
envisage readjusting unceasingly the spare part reapprovisioning.

In order to minimize the organizational changes, three
provisioning periods are considered.

First, the old-type components are replaced by old-type spares,
up to a maximum number J. Additional old-type units are no
longer bought; when the remaining stock goes below a level
defined by the demand on old-type components and the average
lead time on new-type components, a replenishment is ordered.
The remaining old-type units are then resold. In the numerical
applications presented in Section 3, we assume that the resale
price decreases with time as a stepwise function.

Secondly, during the transition period between the two
technologies, the demand of new-type units is mostly conditioned
by the threshold criterion on age that triggers the replacement of
the old-type units. Indeed, the new-type components should not
need frequent replacements at the beginning of their lifetime.
Thus we can neglect their influence when we evaluate the average
demand of spares. When the number of old-type units replaced by
new-type ones is close to K, in order to apply the K strategy, an
exceptional order must be posted with a sufficient quantity of
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items to face the grouped preventive replacement of n– K old-type
components.

Thirdly, after all old-type components are replaced by new-
type components, the economic order quantity given by (4) can be
exploited again with the demand corresponding to the new-type
components.

Generally, when new-type units appear on the market, their
price is very high and it decreases with time. This can motivate
the manager to defer the beginning of the replacement of the
old-type units by the new-type ones. In our model, a reduction
factor of the purchase cost with time was thus added. By
simplicity, we suppose that the purchase cost decreases by steps
at predefined times. It will also influence the value of the
economic quantity Q.

2.4. Constraints

The aim of the company is to achieve the replacement of all the
old-type units by the new-type ones for a minimal cost and with
the highest achievable availability of the system. But the manager
can face some other constraints. For example, a legal constraint
could impose to replace all old-type components by new-type
ones before a predefined time, with some indemnity to pay if this
objective is not met.

Moreover, the manager must forecast and respect a budget.
A strategy s1, with final expected cumulated costs higher than the
costs entailed by another strategy s2, could however be preferred
if the costs induced by s1 are more predictable (hence budgeted)
or more regularly distributed over the whole replacement period
than the costs incurred by s2.

Indeed, large expenses on a limited time window require
more cash available and hence involve additional costs. Too
much variable costs around the expected value also complicate
the budget forecast and increase the risk of going beyond the
budget.

2.5. Costs

To evaluate the performance of each strategy, we estimate the
expected cumulated costs it entails. The costs included in the
model are the following.
�
 The component purchase costs: A purchase cost per unit is
accounted for. As pointed out in Section 2.3, this price
decreases with time. This decrease of the price can lead the
manager to defer the purchase of the new components. In
practice in our model, it can lead to increase the value of
parameter J. In addition to this per-unit cost, a fixed order cost
is considered for any delivery.

�
 The resale value: In order to limit the costs, the old-type units

still in stock can be resold when the installation of the new-
type units begins. In our model, the resale value of these units
is under the initial purchase cost and it is also decreasing
with time.

�
 The consumption costs: Each component has an operation cost

modelled by an energy consumption rate, valid for all the
components of a same generation. We suppose in our model
that the old-type units have a larger consumption rate than
the new-type ones. In further sections, we use (Z+ı́) for the
consumption rate of the old-type units and Z for that of the
new-type units.

�
 Intervention costs: The intervention costs have two different

parts. The first one is a mobilization cost counted each time a
team starts a series of interventions (noted r). The second one
corresponds to hourly costs due to labour costs.
�
 The loss-of-production costs: When a unit is stopped, it does not
consume anymore, but it does not produce either. Thus, we
take into account hourly costs due to the loss of production.
We supposed that the scheduled stops are less costly that the
non-scheduled ones due to the fact that if a stop is scheduled, a
provision can be made in order to reduce its consequences.

�
 The storage costs: As said in Section 2.3, these costs are

represented by a cost per unit time, expressed in percents of
the unit value.

�
 Time horizon: In the case a constraint on the replacement

horizon time is envisaged, the model makes it possible to take
into account some indemnity due for each old-type component
still operated at this horizon time.

In order to compare the costs incurred at different times, we
take into account a discount rate ir. The value of this discount rate
is related to the time unit chosen.

2.6. Strategy definition

In Ref. [2], the strategies were defined by the number K of old-
type components undergoing a corrective replacement before all
remaining old-type components are preventively replaced in a
grouped way. Here the K strategy cannot be applied just as such.

As said in Section 2.4, the old-type components are first
replaced by old-type spares, up to a maximum number J. After this
first step, in most of our numerical applications, K must now be
understood as the number of replacements of old-type compo-
nents by new-type ones that are carried out one by one, according
to a criterion such as the threshold age or the failure of a repair.
After these K replacements, the ‘‘grouped preventive replace-
ments’’ of the remaining n– K old-type components still in use are
scheduled.

In Section 3.3.3, we shall adapt the strategies by defining a
vector K. Each component of this vector K will be a number of old-
type units to be replaced preventively by new-type ones during
predefined time periods.

To deal with the possible constraints cited in Section 2.4, we
shall use the threshold value tmax of the age of old-type
components before their replacement. This value is specific to
the first J replacements by old-type spares, and can be modified
for the next K corrective replacements by new-type components,
in order to delay or anticipate the arrival of the new-type units in
the system (see Section 3.2.4 for more details). We shall also
introduce a maximum replacement time horizon tmax in Sections
3.2.1, 3.2.2 and 3.3.2.

To summarize, a strategy is thus defined by the values of the
different parameters presented or recalled here above, when they
apply. The set of relevant parameters can be only the scalar K or
contain the values of J, K, tmax during the transition period tmax.
3. Simulations

Based on the model described in the previous model, we
developed a Matlab program in order to evaluate via MC
simulation the costs incurred by the different strategies.

In this section, we first compare the results of the MC
simulation with an analytical test case. Then the influence of
the addition of specific assumptions and/or strategy parameters
introduced above is discussed. These simulations will show the
interest of calculating not only the expected costs at the end of the
time window under consideration, but also the evolution of costs
with time in order to envisage a budget adapted to the
implementation of the selected strategy. We envisage two
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different sets of reliability and cost data in order to show different
aspects of the results. All the MC simulations presented in this
section are done with 104 histories and we used a pure random
sampling.

3.1. Analytical test case

Our MC code was first validated by running it on an analytical
test case provided in Ref. [2]. The only parameter of the strategy is
in this case the value of K. In this section, we assume that
intervention durations are negligible and that the intervention
costs are constant. The cost of an intervention is thus the
following: the intervention cost r plus a cost per preventive
replacement cp, or a cost per corrective replacement cf.

Discounting the cost at time 0 with the discount rate ir,
we have:
�

Tab
Num

Cha

n u

r in

cp p

cf c

l ol

m n

Z n

n ol

Arb
Cost of a corrective replacement at time u: (r+cf) (1+ir)
�u.
�

Table 2
Numerical value of the data

Characteristic Old-type New-type

Failure rates

Constant term l0 1/420 1/420

Weibull:

a 300/Op 520/Op
b 2 2

n 0 0

Common mode

w 1/240

pO/N 0.65 0.60

Incompatibility
Cost of one corrective replacement and n– K simultaneous
preventive replacements at time u: (r+cf+(n�K) cp) (1+ir)

�u.

The numerical values of the data chosen are given in Table 1.
The energy consumption rate is Z+n for the old-type units and Z for
the new-type units.

Fig. 1 compares the expected cumulative costs calculated as a
function of time by the MC simulation with the analytical results
provided in Ref. [2].

Here, there is a pivot time t0E6.91, before which the optimal
solution is the fully corrective strategy K ¼ 10, while after t0, the
optimal solution is K ¼ 1. These results are in agreement with
those announced in the introduction, namely that the optimal
strategy always corresponds either to K ¼ 0, K ¼ 1 or K ¼ n. We
can see in Fig. 1 that the MC estimations are fully consistent with
le 1
erical value of the data

racteristic Value

nit’s number 10

tervention cost 1

reventive cost 0.5

orrective cost 1

d-type failure rate 0.1

ew-type failure rate 0.05

ew-type energy consumption rate 0.1

d-type additional consumption rate 0.02

itrary time and cost units are used.

Fig. 1. Comparison between analytical results and MC simulation results.
the analytical solution. Depending on the strategy, the calculation
time is approximately 0.4 h for 104 stories. The standard deviation
of the expected cumulated cost at the end of the simulation
time is 2.95 for K ¼ 0, 2.86 for K ¼ 1 and 3.5 for K ¼ 10; these
values thus correspond to relative standard deviations between
10% and 15%.

3.2. First data set

The set of data values for these simulations are given in
Tables 2 and 3.

3.2.1. Non-negligible replacement duration

The first simulation envisages a system of 100 units subject to
ageing and five maintenance teams. For this first simulation, the
only intervention type considered is replacement, either pre-
ventive or corrective. Therefore, the only preventive replacements
p0 – 0

pi – 0.5

f – 1.5

Cold stand-by

a 1/540

b 720/Op
n 0

Replacement time

Drmin 5/720 3/720

Drmax 12/720 10/720

Erlang

r 360

g 2

Preventive maintenance

Period 20 36

Effecta

em if 0pto100 0.75–0.95

em if 100pto200 0.8–1

em if 200pt 0.89–1.09

Preventive maintenance time

Drmin 0.5

Drmax 8/720

Erlang

r 360

g 2

Repair time:

DSmin 1/720

DS 8/720

Erlang

r 360

g 2

Repair effecta

er 0.9–1.1

a Uniformly distributed between the two values.
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Table 3
Numerical values of the costs

Cost type Cost type

Mobilization 300 Labor cost 10*720

Loss of production

Scheduled 5*720 Non-scheduled 10*720

Consumption rate

New-type 0.045*720 Old-type 0.065*720

Discount rate 0.025/12 Possession rate 0.10/12

Order cost 250 Purchase cost 1750/0.675

Fig. 2. Expected cumulative cost for different values of K, with only replacements

and non-negligible replacement times.

Fig. 3. Average number of old-type units running.

Fig. 4. Effect of the maximum time horizon on the costs.
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to be carried out are those realized in the n– K grouped preventive
replacements.

Here parameter J and the threshold values on age defining the
replacement criteria are not considered in the different strategies
because we do not envision either a spare part inventory
(each component is delivered with a negligible time and a null
order cost).

The only parameter of the strategies is thus parameter K, such
as in Refs. [2,3].

Depending on the strategies the calculation time is about 3.5 h
for 104 stories.

Figs. 2 and 3 show respectively the expected cumulative costs
incurred for different values of K and the average number of old-
type units running. With our choice of data set, the optimal
strategy is the fully corrective strategy K ¼ 100 until time tE74.1;
after this point, the optimal strategy is the fully preventive
strategy K ¼ 0. It means that this time corresponds to the trade-off
between new investment costs and the higher performances of
the new-type units. The standard deviation in the final cumulated
cost varies from 7.02�104 for K ¼ 100 to 9.35�104 for K ¼ 1.

We can see in Fig. 3 that, for strategy K ¼ 100, the average
number of old-type units still in operation at this time is
approximately equal to 27, whereas, for strategy K ¼ 60, this
number is equal to 2. We thus see that, if the manager wishes the
replacements of the old-type units by the new ones to be
completed before a given time, a maximum time horizon to
complete the change of technology must be considered. Fig. 4
shows how the decision to engage the strategies within ts ¼ 60,
whatever number of preventive replacements is carried out,
affects the costs induced by the different strategies. In this case,
we take into account a penalty cost for the remaining old-type
units still in use at tmax ¼ 61. We see that, logically, this approach
disadvantages the most corrective strategies (i.e. those with large
values of K). The standard deviation on the final cumulated cost
varies from 2.1�104 for K ¼ 0 to 4.4�104 for K ¼ 20.

We can see in the figures that, at early times, the costs induced
by all strategies with K40 are almost the same ones. Progres-
sively, when the probability of having already replaced K old-type
units increases, each strategy leaves the bundle of curves, as K

increases. When the probability to have already replaced all the
old-type units is close to one, the cost evolutions associated to the
different strategies become almost parallel, the system being then
composed mainly of new-generation units in all cases. These
asymptotically parallel evolutions appear to be more separated for
other numerical values of the data set than in the case here above.

Beside these general obvious trends, a major output of this
work consists in not only looking at the mean costs of each
strategy at the end of the simulation time, but also in considering
how regularly the costs are distributed with time. Indeed, from a
budget standpoint, it can be more comfortable to deal with
smoothly distributed costs instead of concentrated expenses
about some specific moments.
3.2.2. Repair and imperfect preventive maintenance

The next simulation was performed on the full-scale problem,
with the four possible types of interventions of the maintenance
teams, i.e. imperfect preventive maintenance, preventive replace-
ment, minimum repair, and corrective replacement.

In this section, we consider that there are no old-type spares at
the initial moment. The stock of new components is then
constituted along the lines described in Section 2.3. Namely, in a
first stage, the demand of new-type units is mainly due to the
replacement of the old-type units; when the number of new-type
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units in use is close to K, n– K units are ordered to face the demand
of the n– K grouped preventive replacements. After this, the
demand is mainly due to failures of the new-type units already
in use.

Fig. 5 shows the expected cumulated costs for the different
strategies without considering a maximum time horizon for the
transition between technologies, while Fig. 6 shows these costs
with such a time horizon. Depending on the strategies, the
calculation time is about 7 h for 104 stories. The standard
deviation on the final cumulated cost varies from 2.7�104 for
K ¼ 100 to 4.35�104 for K ¼ 60 in the case of Fig. 5. In the case of
a time horizon, the standard deviation in the final cumulated cost
varies from 3.3�104 for K ¼ 0 to 2.66�104 for K ¼ 60.

As we can see in Fig. 5, strategy K ¼ 100 is now optimal from
tE91 on. This is due to the fact that the possibility of repairing or
renovating the components delays the apparition of the new-type
units for large values of K, and thus the costs incurred by these
strategies. At this time, there is in average 44 remaining old-type
units still running for strategy K ¼ 100.

Fig. 6 shows the costs when a maximum time horizon ts ¼ 60
for the full implementation of the strategies is accounted for. With
this time horizon and our set of data values, there is no visible
difference between the curves corresponding to values of K460.
This figure shows the cost evolution until t ¼ 80 only, because,
once all the units are new-type ones, the costs are almost the
same, no matter what strategy is considered (differences being
due to the age of the units and to the planning of their preventive
maintenance, these differences decreasing with time).
Fig. 5. Mean cumulative cost for different values of K, with the four possible

interventions.

Fig. 6. Cumulative mean cost for different values of K with time horizon and the

four possible interventions.
The different strategies lead to cumulative mean costs of the
same order of magnitude at the final mission time; but during the
application of each strategy, the costs evolve with time in a very
different way according to the strategy. This implies that the
optimal strategy from the total cost point of view is not
automatically the most interesting strategy for the company.

Indeed, the strategy with the minimum cost at the end is
strategy K ¼ 0; this strategy leads to a mean cost larger by several
orders of magnitude than that induced by other strategies at the
beginning of the strategy implementation, and up to the time
where preventive replacements of old-type units by new-type
ones are concentrated.

This concentration of the replacements leads also to a
concentration of the preventive maintenance actions, which
results in major steps in the cost curves.

We can see in Fig. 6 that strategy K ¼ 40 gives an almost linear
evolution of the cost, which is thus more regular than for the
other strategies displayed in this figure. The cost due to this
strategy is thus more regularly distributed with time than those
induced by the other strategies. This can lead to preferring this
case with respect to another strategy entailing a smaller final total
cost, as it allows to better distribute the incurred expenses on
several financial years.

3.2.3. Spare part inventory

In our model, the parameter describing the number of old-type
spare parts used is denoted by J (see Section 2.3). The manager can
thus decide to use J old-type units that are still in the stock and to
resell the other ones. As we said before, in this period, the stock
level S when the new-type units are ordered is defined by the
demand on old-type units and the delivery time of the new-type
units. After the first J replacements by old-type units, the ordering
of new-type spares is carried out in the same way as described in
the previous section, and the remaining old-type units in stock are
resold. Their reselling cost decreases with time. The values of the
data related to the spare parts inventory are given in Table 4.

Fig. 7 shows the total mean costs for different values of K and J

with an initial stock of 12 old-type spares. Depending on the
strategies, the calculation time is about 7 h for 104 stories.

With our set of data, parameter J does not affect significantly
the different strategies, especially for small values of K, when the
advantages of the new-type units are such that it is finally more
interesting not to use the old-type spares and to switch directly to
new-type ones. This is partly due to our modelling of the
incompatibility probability which accounts only for the number
of replacements carried out and not for the time elapsed since the
new-type units are available. Accounting for this last point would
support strategies revealing the new-type units later.

It should be noted that, with a maximum time horizon to
complete the transition period between the generations of units, the
introduction of a large value of J increases the probability to
Table 4
Spare part inventory data

Characteristic Value

Lead time:

Drmin 0.5

Drmax 1.5

Erlang

r 10

g 2

Cold stand-by

a 1/540

b 720/Op
n 0
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Fig. 7. Cumulative mean cost for several values of K and J.

Fig. 8. Cumulative mean cost for several values of K and tmax.

Table 5
Numerical value of the data

Characteristic Old-type New-type

Failure rates

Constant term l0 1/120 1/210

Weibull

a 120/Op 144/Op
b 2 2

n 0 0

Common mode

w 1/240

pO/N 0.6 0.65

Incompatibility

p0 – 0

pi – 0.5

f – 1.5

Cold stand-by

a 1/540

b 720/Op
n 0

Replacement time

Drmin 5/720 3/720

Drmax 12/720 10/720

Erlang

r 360

g 2

Preventive maintenance

Period 20 36

Effecta

em if 0pto45 0.50–0.0.7

em if 100pto75 0.55–0.75

em if 75pt 0.81–1.01

Preventive maintenance time

Drmin 0.5

Drmax 8/720

Erlang

r 360

g 2

Repair time

DSmin 1/720

DS 8/720

Erlang

r 360

g 2

Repair effecta 0.9–1.1

er

Lead time

Drmin 0.5

Drmax 1.5

Erlang

r 10

g 2

a Uniformly distributed between the two values.
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concentrate the preventive replacements close to this maximum
horizon and thus to entail a rapid increase in the costs at this value
of the time horizon, as we can observe in the curves for K ¼ 40.

3.2.4. Maximum age

The last parameter that we can exploit is the value of the age
threshold tmax (see Section 2.1) above which old-type components
are to be replaced. Indeed if, when there is no obsolescence, the
threshold value of the effective age of an old component is fixed
by economic considerations, it can be decreased for the transition
period between the old- and the new-type units in order to
anticipate the arrival of the new-type units in the system.
Depending on the strategies, the calculation time is about 7 h
for 104 stories.

Fig. 8 shows in this case the mean total costs for several values of
K and tmax. If the decrease of tmax does not turn out to be interesting
for small values of K, because it does not significantly affect the
arrival time of the new-type components, we can see that, for
K ¼ 60, this modification of results can be used to decrease the final
mean cost and to better distribute costs on the mission time
compared to the same case in Fig. 6 (with tmax ¼ 87.5). As seen in
this figure, there is an optimal value of tmax: if we decrease too
much the value of tmax, we concentrate the cost about the early
times (see curve with tmax ¼ 20) and we increase the total mean
cost. The standard deviation in the final cumulated cost varies from
2.66�104 for tmax ¼ 87.5 to 2.66�104 for tmax ¼ 20.

3.3. Second data set

As the previous simulations show, the average cumulated cost
is not the only relevant information and we envisaged in Ref. [10]
a new set of data for which not only the costs are evaluated but
also the standard deviations. Tables 5 and 6 give the data values
used for these simulations. Here the number of units n is equal to
20. The calculation time is, depending on the strategy, approxi-
mately 8 h for 104 stories.

3.3.1. No maximum time horizon

The first simulation gives the costs incurred by a simple K

strategy, without time horizon, as a reference result. The other
results are displayed in Fig. 9. Fig. 10 shows the corresponding
standard deviations. The step displayed in the costs at time tE6 in
Fig. 9 is due to the first arrival of new-type units into the stock.
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As in the previous case, if the strategy K ¼ n has the smallest
cost until a time tE49.5, on average, it does not lead to a full
replacement of all the old-type units by the end of the simulation
time. And at the end of the simulation time, the curves for
each strategy are almost parallel and have the same magnitude
order.

But, as we can see in Fig. 10, their standard deviations are quite
different. Most curves display two peaks. The first one is due to
Table 6
Numerical values of the costs

Cost type Cost type

Mobilization 300 Labor cost 10*720

Loss of production:

Scheduled 4*720 Non-scheduled 40*720

Consumption rate:

New-type 0.045*720 Old-type 0.065*720

Discount rate 0.025/12 Possession rate 0.10/12

Order cost 250 Purchase cost 1750/0.675

Fig. 9. Expected cumulative cost for different values of K, with

Fig. 10. Standard deviation
the first command of new-type components. The second one is
due to the grouped replacement in the K strategy. The higher the
value of K, the more the peak is spread out and the lower it is. This
is due to the fact that, when K increases, a smaller number of
preventive grouped replacements is needed but the start time of
these grouped replacements can be, from one history to another,
distributed in a larger interval. The strategies with a large value of
K will thus have the disadvantage to not make it possible to
envisage a reasonable budget as a function of time with high
precision. On the contrary, for strategies with a low value of K, if
the probability of having to carry out the grouped preventive
replacements is tightened much in time, these strategies present
the drawback to require much more money at a given moment.

Let us note that for the K ¼ 0 strategy, the two peaks are
superposed, and that for the K ¼ n strategy the second peak is
non-existent because all the components of the old generation are
replaced progressively.
3.3.2. Time horizon

The large values of K have the advantage to spread out
expenses in time. But in turn they do not guarantee to replace all
only replacements and non-negligible replacement times.

for several values of K.
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the old-type units in a reasonable time and decrease the precision
of the expenditure forecast.

In Sections 3.2.1 and 3.2.2, we had considered a first approach
to solve the problem of a time horizon before which all the old-
type units had to be replaced. The approach was to introduce a
time ts for which the strategies are engaged, whatever number of
preventive replacements is carried out. This approach has the
disadvantage to concentrate again the cost around this limit time,
which is precisely what we wanted to avoid. Another approach is
to envisage a given time te before the time horizon tmax and to
evaluate, at regular time intervals between te and tmax, if, in the
current state of the system, the average replacement rate is
sufficient to engage the strategy before tmax. If not, a small
number of old-type units are preventively replaced to accelerate
their global replacement. This number is selected equal to the
ratio of old-type units still running over the number of remaining
intervals before tmax.

Fig. 11 compares the average number of components of new
generation in service as a function of time in two cases: for
strategies without a maximum time horizon of replacement and
for strategies with a maximum time horizon tmax ¼ 60. The time te

is chosen equal to 54, and the interval of time between each
Fig. 11. Expected number of new-type units

Fig. 12. Comparison of the average costs cumulated
evaluation is 1.5. These strategies are applied for values of K equal
to 10, 14 and 20.

We can see, in Fig. 11, that these strategies make possible to
increase progressively the number of new-type units running in
the system for large values of K. But all the old-type units are not
yet replaced by new-type ones in tmax. In Fig. 12, the costs of these
strategies are displayed. The strategies with te and tmax induce a
lighter concentration of the costs than those using only ts such as
in Section 3.2.2. And at the end of the simulation time, these
strategies lead to similar expected cumulated costs as the
strategies without tmax. If they do not lead to an excessive jump
in the costs, they display standard deviations of the same
magnitude order and thus they do not improve the forecast of a
budget.

3.3.3. Expenditure threshold

In order to decrease the variability of the costs, we introduce a
first model of budget management. For each financial period, if
the incurred costs exceed a given threshold, all the preventive
interventions are postponed to the next period. Only the
corrective interventions will be made in the remaining of the
period. Of course with this strategy, small values of K have no
running in time for several values of K.

for strategies with and without horizon time.



ARTICLE IN PRESS

Clavareau J. Labeau P-E / Reliability Engineering and System Safety 94 (2009) 370–381380
meaning anymore. Indeed, the corresponding strategies need a
large number of preventive replacements in a small period of time
and they will inevitably exceed the threshold cost.

To replace all the old-type units in a reasonable time and
without stopping all the preventive maintenance actions, we have
to replace only a small number of old-type units by new-type ones
in each financial period. This leads to reinterpreting parameter K

defining the replacement strategy, and to replacing it by a vector
(as mentioned in Section 2.6). Each component of this vector K is
then a number of old-type units to replace preventively by new-
type ones at predefined times.

Fig. 13 gives the costs incurred by different strategies of this type.
The predefined times are the beginning of each financial period.
Each financial period has a duration equal to 12 time units. The
expenditure threshold was chosen equal to 72�103, the final
cumulative expected costs of strategy K ¼ 0 divided by the number
of financial periods at the end of the simulation. For the sake of
comparison, the curves for K ¼ 0 and 20 from Fig. 9 are also showed.

Vector K was selected in order to achieve the replacement of
the old-type units before the time tmax defined in Section 3.3.2.

We can see that these strategies do not show significant
differences between them. Compared to strategy K ¼ 0, they
Fig. 13. Expected cumulative cost for t

Fig. 14. Standard deviation for the
induce a small overcost. It is due to the report of preventive
actions, which increases the number of corrective interventions,
the latter being more expensive than the preventive ones. On the
other hand, the costs of these strategies K have a much more
linear evolution in time than strategy K ¼ 0 and also slightly more
linear than strategy K ¼ n. The costs are thus more smoothly
spread in time.

Another interesting point is that the standard deviations for
these strategies, presented in Fig. 14, are lower by many orders of
magnitude than those of the ‘‘traditional’’ K strategies, presented in
Fig. 10. The unusual evolution in time of these standard deviations
can be explained in the following way: the peaks are due to the
grouped preventive replacements realized at the beginning of the
financial periods; and the valleys are due to the limitation of
the expenditures at the end of the financial periods. Of course, this
reduction of the standard deviation facilitates the budget forecast.
4. Conclusions

Technological obsolescence affects most components of in-
dustrial installations, but it is rarely investigated while devising
he strategies with cost threshold.

strategies with cost threshold.
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a maintenance strategy. The first step of this work was to develop
a model dealing with maintenance strategies authorizing different
types of preventive and corrective interventions. The proposed
model is included in an MC simulation.

The MC code was used to calculate the average cumulative cost
incurred by the replacement strategies as a function of time, be a
strategy fully completed or not. We envisaged not only the
expected costs but also their standard deviations. This informa-
tion is important to choose a maintenance and replacement
strategy. Indeed, strategies with lower final costs can also display
jumps in the costs at some times or a much larger statistical
variability than apparently less performing strategies. In this case,
strategies inducing lower final costs could exceed with a
significant probability the budget on the corresponding financial
period, which would negatively affect the actual expected costs.

The results, first, show the impact of each strategy parameter
on the costs induced by the different strategies studied. This work,
in particular, made it possible to take into account the impact of
the decisions relative to the use of the old-type spare parts. It also
made possible to give a first modelling of the strategy definition
for the build-up of new-type units’ spare parts inventory.

The opportunity to speed up the replacement of the old-type
units before the end of their lifetime by adapting the replacement
criterion (i.e. in this work by decreasing the value of the
replacement age threshold tmax) was also discussed.

Finally, we proposed strategies to deal with the constraint of a
time horizon before which all the old-type units have to be
replaced. We envisaged also strategies allowing to reducing the
variability of the costs.

There are several perspectives to improve the proposed model.
The model could have to deal with more constraints, like e.g. non-
negligible replacement durations. We will also refine the
obsolescence modelling, for example, by taking into account the
possible availability on the market of successive generations of
challenger units, or, by considering the possibility of choosing
between different available challenger unit types. Another way of
refining the model is to consider not only identical units but a
more complex system with several different units. In this case, the
stock model should be adapted consequently.
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