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We report on a numerical study of the mixing of two miscible fluids in gravitationally stable
configuration. In the absence of external forces the diffusion process leads to the mixing of
species. The aim of this study is to analyze the physical mechanism by which vibrations
affect the mixing characteristic of two stratified miscible fluids. The translational periodic
vibrations of a rigid cell filled with different mixtures of water–isopropanol are imposed.
The vibrations with a constant frequency and amplitude are directed along the interface. In
absence of gravity vibration-induced mass transport is incomparably faster than in diffusion
regime. Our results highlight the strong interplay between gravity and vibrational impact,
the relative weight of each effect is determined by ratio vibrational and classical Rayleigh
numbers.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Transport phenomena, such as heat and mass transfer,
are important in energy production technologies. Here the
attention is focused on the mass transfer under vibrations.
One of the important industrial applications is mixing in liq-
uids [1]. Two miscible liquids when brought into contact
inside a container will mix, i.e. become homogeneous via
molecular mass diffusion. Depending on the volume of liq-
uids, spatial homogenization by random molecular motion
occurs over a long time scale since the binary diffusion co-
efficient for liquids is of the order of 10−10 m2/s.

Vibrations, acting on density difference may essentially
influence on the fluid dynamics and mass transport. The
microgravity environment on-board of ISS is characterized
by low mean accelerations, which are 10−5–10−6g0, and
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fluctuations that are two or three order of magnitude above
mean. Interacting with density and concentration gradients,
these g-jitter may cause convective flows. In weightlessness,
it is an additional way of transporting heat and matter sim-
ilar to thermo- and solutocapillary (Marangoni) convection.

The physical mechanisms by which g-jitters affect the
mixing characteristics of two miscible fluids initially placed
in two vertical regions separated by a thin diffusion layer
have been investigated in [2]. Brief study of vibrational im-
pact on behavior of miscible liquids was presented in [3].
They identified four different regimes with increasing of
Grashof number: neutral oscillations, successive folds which
propagate diffusively; localized shear instability; and both
shear and convective instabilities leading to a rapid mixing.
The effect of external vibration on the convective flow and
heat transfer in a two-layer fluid system of immiscible liq-
uids with density inversion have been investigated in [4].
The effects of external high-frequency vibration on the flow
characteristics and interfacial dynamics were examined, and
the heat transfer process have been evaluated.

The response of the fluid to external forcing depends
on the frequency of vibration. One can speak about low
or high frequencies depending on whether the period is
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comparable with or much smaller than the reference viscous
and heat/mass diffusion times. The high frequency limit is of
special interest: here the flow can be represented as a super-
position of `fast' part, which oscillates with the frequency of
vibration, and `slow' time-average part (mean flow), which
describes the non-linear response of the fluid to a periodic
excitation [5,6].

The choice of the examination of `mean' flows and ap-
plication of average approach for this is due to the nature
of the considered problem. Because several very different
time scales are involved in the process, i.e. viscous time
(�vis=L2/�), diffusion time (�D=L2/D) and period of imposed
oscillations, the complexity of simulations can be underes-
timated. To properly resolve the transport phenomena one
should perform calculations with a time step smaller than
any of the characteristic physical times, i.e. less than viscous
time or period of imposed oscillations. However, mass trans-
port is significantly slower than the viscous process and its
characteristic time is determined by diffusion time, �D?�vis.
The calculations should cover a long period of physical time,
at least by the order of magnitude the final time should be
comparable with diffusion time. If someone would like to
perform parametric study of physical phenomena in a rea-
sonable CPU time, it might be a problem. Thus instead di-
rect numerical simulations the averaging approach is used,
which allow the use of relatively large time steps.

The paper is organized as follows. In Section 2, we explain
a model used for numerical simulation. We formulate the
problem using non-linear Navier–Stokes and mass transfer
equations and describe procedure and validity of the appli-
cation of the average approach. Results of numerical simu-
lations are given in Section 3.

2. Formulation of the problem

Here the results on numerical modeling of vibrational
convection under reduced gravity are presented. The cu-
bic cell of L = 10mm length is filled with two miscible liq-
uids: both liquids consist of the same components, water
and isopropanol, in different proportions. The layer of heav-
ier/denser liquid (51% of water) is at the bottom and lighter
(5% of water) is on the top (gravitationally stable config-
uration). The system is kept at constant temperature. The
direction of vibrations perpendicular to the concentration
gradient and coincides with the initial horizontal interface,
see Fig 1. Since it is assumed that the two fluids are mis-
cible, there is no discontinuity in the concentration at the
interface (y=�L, 0<�<1). Because we assumed that inter-
face is sharp, the width of the region over which the initial
concentration changes from 1 to 0 is assumed to be 0.03 L.

This system is subjected to periodical oscillations of the
cell along the x-axis according to the law Af (�t). Here A is
vibration amplitude and f is a periodical function:

〈f 〉 = 1
2�

∫ 2�

0
f (�)d� = 0.

Method utilized herein does not demand specification of
the exact type of function f ; it can be cos(�t) or sin(�t)
or any other periodical function with zero mean value. To
simplify notations below let us choose the type of periodicity

Fig. 1. Geometry of the system.

in such a way, that vibrational velocity and acceleration can
be written as

vos = A�tf (�t) = −A�f̃1(�t),

aos = −A�2 f̃ (�t),

where f̃ (�t) remains a periodical function. In the coordinate
system associated with the cell, the acceleration applied to
the system is the sum of gravitational and vibrational accel-
erations:

g + A�2 f̃ (�t)e,

where g is the constant gravity vector and e= (1, 0, 0) is the
unit vector along the axis of vibrations.

2.1. Full non-linear equations

The density difference between liquids, i.e. ��, is as-
sumed to be small, i.e. ��/�0>1 and the Boussinesq ap-
proximation is valid,

� = �0(1 + �c(C − C0)).

Here �c=1/�0(��/�C) is the solutal expansion coefficient and
C is the concentration of the heavier fluid. It is known that for
aqueous solutions of alcohols, the viscosity and the diffusion
coefficient are strongly depending on composition. Therefore
the viscosity and the diffusion coefficients are considered
as function of concentration. Then the equations of motion,
mass transport, and continuity can be written as

�V
�t

+ (V · ∇)V = − 1
�0

∇P + ∇(�∇V)

− �CC[g + A�2 f̃ (�t)e], (1)

�C
�t

+ V · ∇C = ∇(D∇C), (2)

divV = 0. (3)

Here V is the vector of velocity, P is the pressure, D is
the molecular diffusion, � is the kinematic viscosity, and P=
P′ − g0�0y is the pressure. All reference values, noted by
subscript `0' are taken at the equilibrium conditions, i.e. the
mean values for two mixtures at the initial state.
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Let us introduce dimensionless variables by taking the
scales of length L, time L2/�, velocity �/L, pressure �o�

2/L2,
and initial concentration difference �c. The dimensionless
equations are written in the form

�tv + (v · ∇)v = − ∇P + ∇
(

�
�0

∇v
)

− Sc−1[Ra + Raosf̃ (�t)e]c, (4)

�tc + v · ∇c = Sc−1∇
(

D
D0

∇c
)
, (5)

divv = 0, (6)

where c = (C − C0)/�c and C0 is the initial concentration of
heavier liquid. The system includes the Rayleigh number Ra,
the oscillatory Rayleigh number Raos, the Schmidt number
Sc, the dimensionless angular frequency 	:

Ra = g�c �c L3

�0 D0
, Raos = A�2�c �c L3

�0D0
,

Sc = �0/D0, 	 = �L2/�0. (7)

The cell boundaries are rigid with no-slip condition for the
velocity and no-penetration for concentration

v = 0, �nc = 0, (8)

where n is the normal vector to the rigid walls. An additional
parameter of the problem, the initial position of the inter-
face, �, enters to the initial conditions. The initial conditions
correspond to zero velocity and constant concentration in
each layer of fluid: V = 0; C = 1, for 0� y<� and C = 0 for
�� y<1.

2.2. Averaging approach

In the limit of high frequency and small amplitude of pe-
riodical vibration the averaging method can be applied ef-
fectively to study the property of vibrational convection, see,
e.g. [5,6]. The averaging procedure is rather confusing and
for better understanding we will give some details. Accord-
ing to this method each field is subdivided into two parts:
slow (the characteristic time is large with respect to the
vibration period) and fast(the characteristic time is of the
order of the vibration period) parts

V = V + V′, P = P + P′, C = C + C′, (9)

here (V, P,C) are the slow (averaged) components and
(V′, P′,C′) are the fast (oscillating) components. Let us sub-
stitute relations (9) into Eqs. (1)–(3) and consider the fast
fields:

�tV′ + (V · ∇)V′ + (V′ · ∇)V + (V′ · ∇)V′

= −�−1
0 ∇P′ + ∇(�∇V′) − g�CC

′

+ �C(C + C′)A�2 f̃ (�t)e, (10)

�tC′ + (V · ∇)C′ + (V′ · ∇)C + (V′ · ∇)C′

= ∇(D∇C′), (11)

∇ · V′ = 0. (12)

The mean (slow) fields in this formulation have the same
scaling, as the corresponding quantities in Eqs. (4)–(6). The
length scale L remains the same. The fast time is scaled
with the period of oscillations �os =2�/�. For the fast fields,
defined on `quick' time, a new scaling is introduced with
subscript `s'

t̃ = t
�os

, Ṽ = V′

vs
, C̃ = C′

Cs
, P̃ = P′

Ps
. (13)

Using these scales Eqs. (10)–(12) will be written as (for mean
values the same notations are used to avoid multiplying of
notations)

Vs

�os
�Ṽ
�t̃

+ �0Vs

L2
[(V · ∇)Ṽ + (Ṽ · ∇)V] + V2

s

L
(Ṽ · ∇)Ṽ

= − Ps
�0

∇P̃ + �0Vs

L2
∇
(

�
�0

∇Ṽ
)

− g�CCsC̃

+ �C(C�C + C̃Cs)A�2 f̃ (�t)e, (14)

Vs

�os
�C̃
�t̃

+ �0Cs
L2

(V · ∇)C̃ + Vs �C
L

(Ṽ · ∇)C

+ VsCs
L

(Ṽ · ∇)C̃ = D0Cs
L2

∇
(

D
D0

∇C̃
)
. (15)

The fast scales will be chosen later in such a way that
only the main terms will be kept in the equations for the
fast fields:

�tV′ = −�−1
0 ∇P′ − �CCA�2 f̃ (�t)e, (16)

�tC′ = −(V ′ · ∇)C, (17)

∇ · V ′ = 0. (18)

2.2.1. Choice of characteristic scales for the fast fields
By choosing new temporal scales we will introduce limi-

tations, at which the averaging approach correctly describes
the phenomenon of thermo-vibrational convection.

(a) In the left-hand side of Eq. (16) only the derivative with
respect to `quick' time is kept, so the following condi-
tions are imposed

Vs

�os
?

�0Vs

L2
and

Vs

�os
?

V2
s

L

→ �os>
L2

�0
, Vs>

L
�os

.

(b) In the right-hand side we neglect by the viscous term

Vs

�os
?

�0Vs

L2
→ �os>

L2

�0
.

(c) In addition in the right-hand side we neglect by the
buoyancy force �CC

′g. First, we demand that amplitude
of concentration oscillations is small, i.e. Cs>�C and
then that buoyancy force is smaller than vibrational
force

g�CCs>�C �C A�2 → Cs>A�2 �C/g.
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(d) Applying the similar procedure for the mass transport
equation an additional assumptions are introduced. For
illumination of convective terms

Cs
�os
?

�0Cs
L2

and
Cs
�os
?

VsCs
L

→ �os>
L
Vs

.

(e) For neglecting by mass diffusion

Cs
�os
?

D0Cs
L2

→ �os>
L2

D0
.

Taking into account a, b, c, d, e the assumptions of averaging
approach can be formulated:

1. The limitation for high frequency vibrations follow from
points a, b, e, written above, i.e. the period of external
vibrations (�os) must be small with respect to all charac-
teristic times. Simultaneously, the Boussinesq model of
an incompressible fluid requires that the acoustic wave-
length must be larger than the characteristic length scale.
Then the vibration period is to satisfy

L
c

= �sound>�os>min

[
�vis = L2

�
, �D = L2

D

]
.

The viscous time is smaller than the diffusion time,
�vis/�th = 1/Pr. Thus, the limitations for the frequency is
based on the viscous time, i.e. the dimensionless fre-
quency 	 is

	 = �L2

�
?1. (19)

2. In the left-hand side of Eq. (16) we also neglected by the
non-linear terms (V′ ·∇)V′ and (V ·∇)V′, (V′ ·∇)V. It means,
that displacement amplitude is sufficiently small

A>
L

�C �C
or

A
L
>

1
�C �C

,

but may be larger than cell size; usually �C �C<1. Be-
sides, we neglected in equation for the `quick' component
of the flow by the gravitational buoyancy force �CC

′g. It
is justified under the following relationship between the
gravity and the vibrational accelerations

g
A�2

A
L
�C �C>1 or

g
L�2 �C �C>1.

2.2.2. Solving equations for the fast fields
To solve Eq. (16) the vector C e is decomposed as

Ce = W + ∇
, ∇ · W = 0, (20)

where W is its solenoidal part and ∇
 is its potential part.
Substituting (20) into Eq. (16) one will get

�tV′ = −�CA�2 f̃ (�t)W, (21)

�−1
0 ∇P′ = −�CA�2 f̃ (�t)∇�. (22)

Integrating these equations over the `quick' time, then sub-
stituting solution to Eq. (17), one may write the resulting

relations for the fast components

V′ = −�CA�Wf̃1(�t), (23)

C′ = −�CA(W · ∇C)f (�t), (24)

P′ = −�C�0A�2
f̃ (�t). (25)

These equations define the characteristic scales of oscillatory
fields

V ′ ∼ �C �CA�,

C′ ∼ �C �C2 A/L,

P′ ∼ �C�0A�2 �C. (26)

Note, that if f=cos(�t) in Eqs. (23)–(25), then f̃1(�t)=sin(�t)
and f̃ (�t) = cos(�t).

2.2.3. Equation for mean fields
On the next step we will write equation for the averaged

quantities. Substituting (23)–(25) into the complete set of
equations and integrating (averaging) over the fast time, we
will obtain the governing equation for the mean fields

�V
�t

+ (V · ∇)V = − 1
�0

∇P + ∇
(

�
�0

∇V
)

− �CCg + (�CA�)2

2
[(W · ∇)(Ce − W)],

(27)

�C
�t

+ (V · ∇)C = D0∇
(

D
D0

∇C
)
, (28)

∇ · V = 0, W = Ce − ∇
, divW = 0. (29)

The characteristic scale for W, 
 are �C and �C/L, (� =

�C L). Using for other slow and fast quantities the char-
acteristic scales, introduced above, the non-dimensionless
form of the governing equations can be written as (we omit
here overline for mean)

�v
�t

+ v · ∇v = − ∇p + ∇
(

�(c)
�0

∇v
)

+ Sc−1[−Ra c + Gs((ce − ∇�)∇)∇�],

�c
�t

+ v · ∇c = Sc−1∇
(
D(c)
D0

∇c
)
,

divv = 0, w = ce − ∇�, divw = 0. (30)

Here Rayleigh number, Ra, characterizes gravitational mech-
anism of convection and Gs is its vibrational analogue:

Gs = Ravib = (A��C �C L)2

2�D0
(31)

and describes the vibrational mechanism of convection rep-
resented by the mean flow. We suggest to call it Gershuni
number (instead of vibrational Rayleigh number Ravib) to
mark a significant contribution of Gershuni to the theory of
thermovibrational convection [6]. Note, that Raos, introduced
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Table 1
Physical properties of the initial water/isopropanol mixtures.

c �0 × 106

(m2/s)
�c D0 × 1010

(m2/s)
�0 × 10−3

(kg/m3)
Sc

0.05 3.08 0.213 7.778 0.795 3957
0.51 4.17 0.187 1.86 0.902 23 167
0.28 3.99 0.203 2.70 0.853 14 778

Last raw corresponds to the `mean' values of top and bottom mixtures.

earlier in Eq. (7) characterizes the physics of full flow, but
does not describes properly the `mean' fields.

2.3. Governing equations

The target of this study is to examine the mixing of realis-
tic fluid, when the Schmidt number is very large, Sc=14778
(see Table 1). For this purpose, we will restrict our study
by 2D calculations and converse the problem into stream-
function vorticity formulation. For the mean fields a stream
function, 
, such that vx = �
/�y,vy = −�
/�x and a vortic-
ity, � = �vy/�x − �vx/�y are introduced. Eqs. (30) for mean
fields are rewritten in the form

��
�t

+ �

�y

��
�x

− �

�x

��
�y

= ∇
(

�(c)
�0

∇�
)

− Ra
Sc

�c
�x

+ Gs
Sc

×
(

�c
�y

�2
�

�x2
− �c

�x
�2

�
�x�y

)
, (32)

�c
�t

+ �

�y

�c
�x

− �

�x

�c
�y

= Sc−1∇
(
D(c)
D0

∇c
)
, (33)

∇2
 = −�, ∇2� = −�c
�x

. (34)

The boundary conditions could be written in the form

x = 0, 1 : 
 = �x
 = 0, �xc = 0, �x� = c,

y = 0, 1 : 
 = �y
 = 0, �yc = 0, �y� = 0.

The conditions for � follows from non-permeability condi-
tions for the vector field W · n|� = 0 on the rigid bound-
ary �. Note that the viscous force driving the oscillatory
flow has been neglected when deriving Eq. (16). The initial
conditions are

t = 0 : 
 = � = 0, �xc = 0,

c = 1 when 0� y<�,

c = 0 when �<y�1,

�x� = c; �y� = 0.

The physical properties, used in calculations, are listed
in Table 1. Last line corresponds to the mixture when the
initial interface is at mid-height.

Fig. 2. Viscosity, � = �(C), of water/isopropanol mixture.

Fig. 3. Density, � = �(C), of water/isopropanol mixture.
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Fig. 4. Dependence of Schmidt number, Sc = �/D, on concentration of
water/isopropanol mixture.

A finite-difference method in both directions is utilized.
The time derivatives are forward differenced and for the con-
vective and diffusive terms are central approximated. The
Poisson equation for the stream function 
 and for the am-
plitude � of fast pressure were solved by introducing an ar-
tificial iterative term, analogous to the time-derivative one.
ADI method is used to solve the time-dependent problem for
vorticity, the concentration, the pulsatory pressure ampli-
tude, and the stream function. More detail about numerical
procedure one may find in [7].

The dependence of density, �(C), and viscosity, �(C), for
water–isopropanol mixture was found in handbooks [8]. One
of the points on the viscosity curve was verified experimen-
tally, see Fig. 2. The value of �C in Table 1 was estimated
according to Fig. 3. Data for diffusion, D(c), are somewhat
scattered and they were taken from different sources [9,10].
Theywere used for estimation of the Schmidt number shown
in Fig. 4.
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The explicit form of the dependences �(C) and D(C) used
in calculations was obtained on the basis of mentioned above
dependencies:

�(C) = (90.092C6 − 264.46C5 + 312.43C4

− 192.57C3 + 54.93C2 − 2.486C

+ 3.0901) × 10−6 m2/s,

D(C) = (18.189 ∗ C4 − 33.6193 ∗ C3 + 23.672 ∗ C2

− 7.694 ∗ C + 1.180) × 10−10 m2/s.

3. Results

Translational vibrations act on the non-uniformity of den-
sity and generate the oscillatory convection. In the consid-
ered geometry, the problem is governed by four parameters:
the Schmidt number, Sc, the Rayleigh number, Ra, the
Gershuni number, Gs (or its analog vibrational Rayleigh
number Ravib) and the initial interface location �. Different
flow regimes were observed depending on the ratio of these
parameters. The general trend of the flow development is
the following: convection starts at the cross-section of the
interface with solid walls. To present results of this multi-
parametric problem some of the parameters will be frozen,
e.g. thickness of both liquids is taken equal. We will con-
sider initially gravitationally stable system composed of two
miscible mixtures. Initial compositions are: 5% water–95%
isopropanol at the top and 51% water–49% isopropanol at
the bottom. These mixtures are encircled on density curve
in Fig. 3.

3.1. Net and mean flow

First, we would like to draw your attention to the differ-
ence between net fields described by Eqs. (1)–(3) and mean
fields described by Eq. (32)–(34). The net flow consists of
one vortex, which occupies the whole system and rotates to
one side for a half of the period and to the opposite side for
another half of the period, see Fig. 5a. For relatively strong
external excitations (see Eq. (19)) the fluid cannot immedi-
ately return to its initial position due to inertia and convec-
tive mean flow is created. The vibrations organize mean flow
in such a way that heavy/denser liquid moves up along the
both solid walls, x=0 and 1 and less dense moves down. Two
weak vortexes with the opposite direction of the circulation
are formed in each fluid, see Fig. 5b. Hereafter we consider
only the cases, for which all theoretical requirements for ex-
istence of this mean flow are fulfilled. Further presentation
will be given for dimensionless concentration: at the begin-
ning concentration of heavier/denser liquid at the bottom is
c0 = 1 and the concentration of top liquid is c0 = 0.

The temporal behavior of the interface is shown in Fig. 6
shortly after beginning of flow development. The position of
interface is defined as a collection of concentration isolines,
where the levels change from c = 0.9 to 0.1. The interface
is swinging around some mean position with the frequency
of imposed oscillations. Hereafter we will show only `mean'
position, i.e. `mean' field defined by Eq. (9). The evolution of

Fig. 5. The flow structure (isolines of 
) at the very beginning (t = 1) for
Sc0 = 14778, Ra = 0 (g = 0), Gs = 7.86 × 107. (a) Snapshot of the full flow
and (b) mean flow.
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Fig. 6. The interface location (isolines of full c) at the very beginning for
Sc0 = 14778, Ra= 0 (g= 0), Gs= 7.86× 107 at two different time moment.

the mass transfer with time strongly depends on the ratio
of parameters.

3.2. Absence of gravity, Ra = 0

The `effective' Schmidt number (mean value for both liq-
uids) is Sc0 = 14778, see Table 1. The vibrational effect is
fixed: Gs = 7.86 × 107, which corresponds to the following
parameters of the experiment: f = 8Hz, A= 1 cm, �c= 0.46.
Here we will discuss the fluid behavior in the upper liquid
until it is not stated otherwise. From the very beginning, the
concentration front moves along the solid walls, creating a
head, see Fig. 7 (t = 0.1–5). The leading part of the front
(this notation is used for isolines c = 0.7) expands and rolls
up, and a denser liquid intrudes into the less dense region,
see Fig. 7 (t = 5). The flow resembles a Kelvin–Helmholtz
instability which is observed in free shear layers and grav-
ity currents. The instability appears almost immediately af-
ter imposing vibrations and persists during certain interval
of time. For example, for Ra = 0 it exists up to 10 viscous
times. The horizontal solid walls impose constrains on the
approaching concentration front and it turns inside the cell
creating another flow organization, when the denser liquid
is on top of the less dense.

This scenario is a kind of Rayleigh–Taylor instability,
which is observed in ground conditions (when heavy liquid
is on the top). Further the denser liquid starts to descend,
and it splits the region of low concentration in a few zones,
see Fig. 7 (t = 20).



Author's personal copy

180 Yu. Gaponenko, V. Shevtsova / Acta Astronautica 66 (2010) 174 -- 182

Fig. 7. Evolution of the concentration front; The leading profiles are c=0.3 and 0.7 at lower and upper liquid, correspondingly. Shadowed space corresponds
to the intermediate concentration region 0.29<c<0.71. Dimensionless time inside the graphs is given in viscous times, �vis = L2/�, Ra = 0.

Fig. 8. Evolution of the vertical concentration profile with time; solid and dashed lines show concentration c(y) in the middle (x = 0.5) and near the wall
(x = 0.05), respectively.

The flow is not exactly similar in the upper and lower
fluids. The break of symmetry is related to the non-linear
dependence of the viscosity and the diffusion coefficients
on concentration. Note, that during relatively long time over
which Kelvin–Helmholtz and Rayleigh–Taylor instabilities
develop, the role of diffusion is undetectable. The major part
of the interface remains almost as sharp as in the initial
stage.

One may follow the development of mixing process on
long time scale analyzing the behavior of curves in Fig. 8.
The solid and dashed lines show vertical concentration pro-
files c(y) in the middle (x=0.5) and near the wall (x=0.05).
For better understanding, the lines, along which the concen-
tration profiles are shown, are displayed in Fig. 7 (t = 2) by
vertical lines. For the first 10 viscous times, the initial
concentration distribution in the middle (solid line) is not
affected by vibrations while near-wall regions the liquid is
almost homogeneous. It is worth to emphasize, that the fast
mixing process essentially homogenizes mixture at about
100 viscous times. Later in time, the mixing is much slower
and at t = 400 almost complete mixing is achieved. The
smaller is the concentration non-uniformity, the weaker is
convection produced by vibrations.

It is interesting to compare diffusive and vibration-
induced mixing times scales. The diffusion time, �D = L2/D
is shown in Fig. 9 by curve with rhombus. The curve with
triangles displays dependence of mixing time on concentra-
tion multiplied by factor 400(!), i.e. the time when mixing
by vibrations is completed according to Fig. 8. In both curves
the time is measured in viscous times t = L2/�. Assuming
that mixing by diffusion can be achieved during one diffu-
sion time, we conclude that the vibrational mechanism is
significantly faster.

Let us look at the dynamics of the flow which provides
mass transport of the liquids. When heavy liquid climbing
along the wall achieves the upper horizontal wall, the mean
flow (streaming) becomes oscillatory. It starts at t ≈ 7–10
viscous times. The flow pattern in two different time mo-
ments (t = 27 and 30, respectively) are shown in Fig. 10. It
clearly shows change in flow direction with time. For the
examined set of parameters, the amplitudes of velocity and
of concentration oscillations decay extremely slowly with
time. Time history of stream function at two points, being
located at two different vortexes in Fig. 10, are shown in
Fig. 11. Stream function oscillates with period about six vis-
cous times and its amplitude slowly decreases.
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Fig. 9. Curve with rhombus shows diffusion time, t = �D = L2/D for
water/isopropanol mixture; Curve with triangles outlines mixing time
(magnified by 400) in presence of vibration. In both curves the time is
measured in viscous times t = L2/�.

Fig. 10. Oscillations of mean flow; Isolines of 
 at t = 27 and 30.

Fig. 11. Time history of stream function in two fixed points in the bulk:
(x, y)= (0.37, 0.9) is shown by solid line and (x, y)= (0.65, 0.9) is shown by
dotted line.

3.3. Effect of gravity, Ra�0

With appearing of gravity field the flow dynamic, de-
scribed above, is changing. The concentration front rolls up
with a decreasing velocity: the larger the gravity, the smaller
the velocity. One may compare the propagation of mixing
front in Figs. 7 and 12 at the same time instant. As all param-
eters of system were fixed we may say by other words that

Fig. 12. Evolution of the concentration front in the same time moment for
different gravity levels when Sc=14778, Gs=7.86×107. (a) Ra=1.69×107,
g/g0 = 0.026 and (b) Ra = 1.13 × 108, g/g0 = 0.173.

graphs in Fig. 12 correspond to the gravity level g/g0 =0.026
and 0.1737. Here g0 is the Earth gravity.

With increasing gravity the intrusion of denser liquid
along the wall slows down. In the latter case, Ra=1.13×108,
(see Fig. 12b) the upward motion of denser liquid is
stopped by the gravity and Kelvin–Helmholtz instability
does not set-in. Here the ratio of Rayleigh numbers is about
Ra/Gs = 1.44. Thus, when the classical Rayleigh number be-
comes comparable or larger with the vibrational one, the
Kelvin–Helmholtz instability is not observed. For the picture
in Fig. 12a the ratio is Ra/Gs = 0.215.

We may draw a conclusion that the vibrations are the
driving mechanism for this instability and the local mixing
along the solid walls.

4. Conclusions

We have investigated the physical mechanism by which
external vibrations affect the mass transfer between two
miscible fluids which were initially separated by a thin
(vertically) diffusion layer. The translational periodic vibra-
tions of a rigid cell filled with different mixtures of water–
isopropanol are imposed. The vibrations with a constant
frequency and amplitude are directed along the interface.
The mean fields of flow and concentration, caused by vibra-
tions and buoyancy, were examined. Our results highlight
the strong interplay between gravity and vibrational impact.
For the parameter set, where vibrational mechanism dom-
inates, the Kelvin–Helmholtz instability produces vortices
near solid walls which can serve as a stirring mechanism
to promote local mixing. The Rayleigh–Taylor instability
strongly affects on large scale mixing. If the gravity forcing
is dominant the mixing occurs much more slowly, on the
diffusion time scale.

For high frequency oscillations the averaged approach,
adopted in this study, is beneficial. The larger time step can
be employed and the observation can be easily done on the
long time scale, i.e. up to 400 viscous times.
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