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Abstract

Background: The determination of the right model structure describing a gene regulation network and the
identification of its parameters are major goals in systems biology. The task is often hampered by the lack of
relevant experimental data with sufficiently low noise level, but the subset of genes whose concentration levels
exhibit an oscillatory behavior in time can readily be analyzed on the basis of their Fourier spectrum, known to
turn complex signals into few relatively noise-free parameters. Such genes therefore offer opportunities of
understanding gene regulation quantitatively.

Results: Fourier analysis is applied to data on gene expression levels in mouse liver cells that oscillate according to
the circadian rhythm. Several model structures in the form of linear and nonlinear differential equations are
matched to the data and it is shown that although the considered models can reproduce many features of the
oscillatory patterns, some can be excluded on the basis of Fourier analysis without appeal to prior knowledge of
regulatory pathways. A systematic method for testing models is also proposed based on measuring the effects of
variations in gene copy-number on the expression levels of coupled genes.

Conclusions: Fourier analysis is a technique that is well-adapted to the study of biological oscillators and can be
used instead or in addition to conventional modeling techniques. Its usefulness will increase as more high-
resolution data become available.

Background
Transcriptional regulation of gene expression deter-
mines the way concentrations of gene products (RNA
and proteins) change in time within a cell. Its study is
relevant to the understanding of all biological systems
and thus deserves to be treated in the most detailed
manner possible. This involves modeling gene regulation
mathematically.
Within the currently accepted paradigm, genetic pro-

cesses are described as chains of interactions between
segments of DNA (basically promotor sequences), RNA
and/or proteins, sometimes mediated by other mole-
cules. The understanding of a particular process at the
most basic level thus involves identifying those sub-
stances, among thousands present in a cell, that take
part in the interactions. This can be done experimentally
although procedures can be time-consuming if, as is
often the case, several substances take part in a reaction

or pathway. The end result is a network of relationships
which can often be summarized in terms of gene regula-
tion diagrams such as those shown in Figure 1. Those
diagrams can communicate whether or not one sub-
stance has an effect on another and if it does, whether
the effect is activating or repressing.
Rough models based on regulation diagrams can be

very useful to build intuition about the relation between
network topology and function in static [1] as well as
dynamic contexts [2,3]. In particular, they have shed
light on how types of regulatory patterns such as posi-
tive and negative feedback loops exerted by proteins on
the expression of their own or other genes can give rise
to sustained oscillatory expression patterns associated,
for example, with circadian rhythms that allow adapta-
tion of an organism to environmental variations caused
by the succession of days and nights [4]. In this context
of cellular oscillators, the rough models can help verify
whether proposed complex pathways can indeed give
rise to stable oscillations [4] or aid in the construction
of artificial systems [5,6].
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Their uses notwithstanding, gene regulation diagrams
also have some important limitations. One of these is
that they are inherently simplified descriptions. As such,
mathematical models based on regulation diagrams can
provide qualitative information but should be rigorously
checked against data before they can be said to capture
all the relevant aspects of a genetic process. Another
limitation is that the diagrams do not contain sufficient
information to recreate the details of the dynamics of
the interactions they illustrate. The diagrams do not
explicitly encode information about the time depen-
dence of interactions and therefore cannot be used to
unambiguously write the correct mathematical model
associated with the genetic process they are meant to
describe. As a result, many inequivalent mathematical
models can be formulated based on a single diagram.
Indeed, several equation structures have already been
developed to describe experimentally observed oscilla-
tory signals, e.g. [2-4,7,8]. Not only are the parameters
of the equations representing such models left unspeci-
fied, but the form of the equations themselves also
shows considerable variability.
To claim a quantitative understanding of a genetic

process, it is desirable to determine the associated equa-
tions with considerable confidence [9]. This implies that
the form of the equations used should be validated and
all the parameters in the equations should be fixed by
comparison with experimental data. Once backed by
such analysis, a genetic regulation model should be able
to predict with confidence the behavior of a system
under novel conditions. It would also provide a firm
foundation for coupling a biological oscillator, for exam-
ple of the circadian oscillator, to the rest of the gene
regulation networks which it may be expected to influ-
ence to various degrees. However, to date, this kind of
detailed understanding has not been achieved for any
genetic process.
Given that quantitative knowledge about genetic pro-

cesses is desirable, the question arises as to how to
acquire it. Part of the difficulty lies in the fact that

obtaining reliable data (i.e. relatively free of measure-
ment and sample noise) about a single genetic process
is not straightforward. This is due to a combination of
factors, among which are the relative young age of some
experimental techniques (such as micro-arrays) and the
intrinsic stochastic nature of intra-cellular processes.
The problems with noise can be overcome in two ways.
First, the measurement techniques may be refined to
reduce the noise. Second, experimental as well as theo-
retical efforts can be focused on those studies which can
lead to quantitative knowledge despite of the noise.
Both approaches can be pursued, but the second one is
particularly interesting because it allows to make pro-
gress using technology that is already available.
Oscillatory signals are ideal candidates for precision

studies of any process. Because oscillations are repeti-
tive, it is, in principle, possible to collect data over long
periods and thus obtain enough statistics to measure
multiple properties of a signal even in the presence of
background noise. As already mentioned, some genes
have been observed to oscillate at the circadian rhythm
[4]. Others are known to be periodically expressed
within the cell cycle [10]. Experimentally, they can be
studied using fluorescence techniques (e.g. [5,6,11]) as
well as micro-array approaches (e.g. [10,12-16]). The
focus of this work is to show that such data, often col-
lected at the systems-scale, can encode qualitative as
well as quantitative information about regulatory
mechanisms and to describe a methodology by which
this information can be extracted. The cornerstone of
the presented approach is Fourier analysis, a classic
technique which provides a fairly noise-insensitive way
to parameterize the shape of an oscillatory signal in
terms of the strengths of its harmonic components. It is
shown that this technique can be used to discriminate
between regulation mechanisms, and in so doing pro-
vide the opportunity to validate and/or invalidate candi-
date models. The methodology is suited to the bottom-
up approach to modeling gene regulation networks,
where the complete network is divided into loosely con-
nected subnetworks, each containing only a few genes.
The results presented below are divided into two main

parts. The first part introduces a linear model of gene
regulation based on the simple harmonic oscillator. This
model is exactly solvable and is thus a good starting
point for a discussion of oscillating gene expression. It
provides a simple framework in which to discuss oscilla-
tions and how their properties depend on model para-
meters. The second part extends the ideas presented in
the simple harmonic oscillator context to nonlinear
oscillator models and introduces modeling by Fourier
analysis. The discussion draws on experimental data on
circadian oscillations [12] collected using micro-array
technology. The modeling techniques are applied to

Figure 1 Two genetic regulation networks. Two genetic
regulation networks capable of producing oscillations. Circles
denote genes or gene products. Arrows and lines with bars denote
activating and repressing actions, respectively.
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identify the possibilities, and sometimes lack thereof, for
selecting between two oscillator models.

Results and Discussion
Positive simple harmonic oscillator
The most well-known oscillatory functions are sin (ωt)
and cos (ωt), where ω is a real number representing the
frequency of oscillation. They satisfy the simple harmo-
nic oscillator (SHO) equation
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The equation can be equivalently written in terms of
two first order equations
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Here, the first equation is a definition of the function
r(t), and the second equation is a reformulation of (1) in
terms of r(t). The solutions to this set of equations are

s t A t A t( ) cos sin ,= ( ) + ( )1 2  (3a)

r t A t A t( ) cos sin ,= ( ) − ( )( )  2 1 (3b)

where the A1, and A2 are two real coefficients, which
can be fixed given two initial conditions, for example
values of the functions s(t) and r(t) at an instance in time.
In biological oscillators the quantities that change per-

iodically are often concentrations. Since they are non-
negative, they cannot be described directly by the func-
tions s(t) and r(t) which are as often negative as they are
positive. But it is possible to generalize the SHO equa-
tions slightly so that the solutions are offset from zero.
Such equations are
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R(t) and S(t) are here new functions and a, b, CS, and
CR are constants. The solutions are now
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with ω = ab and A1, A2 real constants analogous to
those in Eq. 3. Generalizations of this model are dis-
cussed in Additional file 1.
From the mathematical standpoint, all the constants in

Eq. 4 and Eq. 5 are arbitrary but for biological applica-
tions, they should be chosen appropriately so that the
functions S(t) and R(t) are non-negative for all values of
t. Under such restrictions, the system can be said to
describe a Positive Simple Harmonic Oscillator (PSHO)
and can be applied to the biological context to describe
two substances, RNA or protein, whose concentrations
oscillate with the same frequency.
As to the biological interpretation of the equations,

Eq. 4a suggests that substance S is produced at a rate
proportional to the concentration of substance R, with
the constant of proportionality equal to a2. Thus R can
be regarded as an activating transcription factor for S.
Substance S is removed at a constant rate CS. Within a
cell, if S represents a protein concentration, this may
occur if the removal is carried out by an active transport
system functioning at full capacity or if it is degraded by
other molecules. If S represents an RNA concentration,
this may describe translation into protein.
The other equation for the PSHO system, Eq. 4b, sug-

gests substance R is produced at a constant rate CR

independently of S. Substance R, however, is removed
from the system at a rate proportional to S with propor-
tionality constant b2. This may occur if S takes part in
the active degradation of R. Arguably, it may also be
interpreted as a particular repressor mechanism.
Since the solutions of the PSHO system can be writ-

ten analytically, it is possible to understand precisely
how each biological process affects the temporal expres-
sion profile for the two substances. In particular, the
solutions can be used to make predictions that may
otherwise seem non-obvious or even counter-intuitive.
For example, the period of oscillation for both quantities
does not depend on either of the constant rates CR and
CS, the long term average concentration of a substance
does not depend on the production rate or degradation
rate associated with that substance (it only depends on
the rates of the other substance), and the ratio of ampli-
tudes of oscillation of the two substances is a/b.
Fitting to data
Given experimentally measured signals for two sub-
stances whose concentrations oscillate, it may be possi-
ble to infer numerical values for the unknown
parameters and constants of the PSHO model. In this
section, it will be assumed that the measured signals are
clear enough so that two signal amplitudes, two signal
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frequencies, two offsets or long-term average levels, and
one phase difference between the signals can be esti-
mated with reasonable accuracy. These are seven inde-
pendent quantities.
Since the PSHO model predicts unambiguously that R

and S oscillate at the same frequency and with a set
phase difference, the experimental signal should exhibit
these properties within a reasonable accuracy. If the sig-
nals do oscillate at the same frequency, then the six
remaining measured quantities fix the six unknown con-
stants in Eq. 5. If phase information is in fact lacking,
there may remain a two-fold ambiguity due to the
impossibility to identify which experimentally measured
signal corresponds to each variable in the model.
Additional information extracted from the measured

data can be used to validate or reject the model. In par-
ticular, since the model predicts oscillatory signals of a
single frequency, measurement of more complex wave-
forms would be sufficient to reject the model. Such
invalidation would be indicative of different interactions
between the substances than those captured by the lin-
ear equations.
Gene-knockout and copy-number mutants
The mathematical model and its solution can also be
useful when studying mutant organisms. Two types of
mutants are particularly interesting: gene-knockout and
copy-number mutants.
If one of the genes becomes dysfunctional, i.e. it is

knocked-out, then the expression level of that substance
should be expected to be nill. Assuming that the
knocked-out gene is R and inserting R(t) = 0 into the
equation for S(t) gives dS(t)/dt = -CS. The solution to
this equation is not positive at all times and thereby
indicates a breakdown of the model. Still, since the non-
zero term in the above equation has a negative effect on
S, the model may be argued to suggest a lower concen-
tration of S in the knockout mutant than in the
wildtype.
If the knocked out gene is S (S(t) = 0 at all times), the

PSHO equations reduce to dR(t)/dt = +CR. The solution
is unbounded from above and therefore also signals a
breakdown of the model. However, it may still be
argued that the concentration of R are likely to be
higher in the mutant than in the wildtype.
In both cases, knocking out a gene changes the system

dramatically. The equations can be used to give a gen-
eral idea of what to expect in the mutant data, but the
PSHO model is incapable of describing in detail the
dynamics within the mutant organism.
Another type of mutant organism, a copy-number

mutant, contains not one but two copies of a particular
gene and associated promotor sequence. Supposing this
gene is R and assuming that the production rate of R in
Eq. 4b is proportional to the probability for a

transcriptase to encounter R’s promotor site, it is rea-
sonable to assume that CR should increase twofold as a
result of the gene replication leaving the other para-
meters in the model unaltered [17,18]. The change in
CR has two distinct effects on the analytic solutions of
the model. It alters the coefficients A1 and A2 and thus
the amplitude of both the R and S expression signals,
albeit in a manner that depends on the initial condi-
tions. Doubling CR also changes the offset of the S
signal by a factor of two and this is an unambiguous
and verifiable effect.
If the replicated gene is S, it is the production rate of

S parameterized by a2 that is likely to double leaving
other parameters unchanged. a appears in several places
in the analytical solution and is thus responsible for
more than one effect in the copy-number mutant: the
average level of gene product R should decrease by a
factor 2; the ratio of amplitudes for S and R should
decrease by 2 ; the frequency of oscillation should
increase by a factor 2 . All three signatures are dis-
crete and unambiguous. The amplitudes of each sub-
stance may also shift but the extent of the change will
depend on the initial conditions.
If experimental data on the knockout and copy-num-

ber mutants were available, their signals could be com-
pared with these predictions and thus used to validate
the model or to identify its weaknesses. The two types
of mutants would test the model in different ways, with
the copy-number mutants arguably yielding more subtle
and valuable information.

Nonlinear oscillators
Most interacting systems other than the simplest ones
such as the PSHO model in Eq. 4, are described by non-
linear equations. This presents several challenges.
First, there are an infinite number of mathematically

distinct non-linear models that can give rise to oscilla-
tions. Such models, for example, can be based on differ-
ential equations or perhaps include stochastic
components. In the biological context, it may sometimes
be possible to restrict attention to certain types of mod-
els on the grounds that they may be based on previous
knowledge of interactions or on commonly used
assumptions about kinetics of chemical reactions (e.g.
with terms of the Michaeles-Menten type). However, it
is important to emphasize the assumptions of such
models.
Second, even if attention is focused on a small set of

nonlinear models, analytic solutions describing the oscil-
lations they produce in general will not be available.
Thus, the only way to proceed is by numerical methods.
Third, whereas all the parameters of the PSHO model

can be estimated using only coarse features of a mea-
sured expression level signal - period, amplitude, and
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offset, - the same may not hold for many nonlinear
models because these generally have many more
unknown parameters. The situation may be alleviated if
some of the model parameters can be given values using
data from complementary experiments. But unless this
can be done, the fitting procedure based only on period,
amplitude, and offset will leave many parameters
undertermined.
Fourier spectrum
One way to tackle the last challenge and make progress
in determining model parameters is by analyzing the
finer features of the oscillating signal. The key observa-
tion is that oscillating signals produced by a nonlinear
model cannot be ideal sinusoids. Instead, they can be
decomposed into a sum of sine and cosine functions of
different frequencies.
From a mathematical standpoint, an oscillating func-

tion H(t) can be written as

H t c c p t d p tp

p

p( ) sin cos= + ( ) + ( )
=

∞

∑0

1

  (6)

with ω a base frequency and c0, cp and dp some real
coefficients. These coefficients completely determine the
function, meaning that it possible to reproduce the
waveform by listing the coefficients. In effect, therefore,
the waveform can be thought of as a function of p, i.e.
H(p) (see [19,20] and Additional file 1 for more details).
When applied to Eq. 6, its magnitude is H(0) = c0 and
H p c dp p( ) = +2 2 . It is called the Fourier transform, or
the spectrum, of H(t) and can also be computed using a
well defined formula (or computer packages) when the
waveform is given as a sequence of values at regularly
spaced intervals. The spectral representation of an oscil-
lating signal, widely used in several branches of science
and engineering, is useful for several reasons. First, it
transforms a continuous signal (or a time-series of mea-
surements) into a short list of coefficients. This implies
that the shape of the oscillating waveform can be
described accurately and quantitatively in terms of only
a few numbers. Second, since an entire set of observa-
tions is used to compute every coefficient, the uncer-
tainty associated with that coefficient may be small even
if the uncertainty on each individual data point in the
time series is fairly large. Furthermore, accuracy
increases with greater number of observations per per-
iod and also with a greater number of observed periods.
Properties of Fourier spectra are further discussed in
Additional file 1.

Application to circadian oscillations
The Fourier transform can be applied to data from any
biological oscillator. For concreteness, however, this

section focuses on oscillations in gene expression due to
the circadian cycle, data for which was recorded in a
time-series micro-array experiment on mouse liver cells
[12]. The experiment was performed at high temporal
resolution, recording 48 points in one-hour intervals
over two complete periods of the circadian cycle and
identifying more than 3,000 transcripts that exhibit
oscillatory behavior. Some of the transcripts have pre-
viously been known to oscillate and have been included
in qualitative modeling efforts (e.g. [4]). Many others,
however, are not part of most circadian oscillation mod-
els, and therefore their coupling with the circadian cycle
and other external factors are not known. Both types
are interesting for detailed modeling.
Figures 2 and 3 show a small sample of the data on

circadian oscillations in mouse liver cells [12] for the
purposes of the present discussion. In the left column,
the plots show the expression levels and, in the right
column, they show the corresponding Fourier spectra.
The genes in Figure 2 are Nr1d2 (top row), member of
a nuclear receptor family, and gene Pde12 (bottom row),
coding for an enzyme. The genes in Figure 3 are Eif2ak3
(top row), a translation initiator factor, and Ttr (bottom
row), a serum carrier. Among these, only the first gene
(Nr1d2) has been previously noted to participate in the
regulation of the circadian rhythm [12].
In the top row of Figure 2, the peak at p = 0 in the

spectrum corresponds to the offset of the expression
level from zero, and the peak at p = 2 confirms the fre-
quency of oscillation is such that two complete cycles
are completed during the observation period. Indeed,
there are only two clear maxima and minima in the top-
left panel indicating a circadian cycle with a period of 24
hours. The p = 2 peak is large relative to the noise (the
values of the spectrum H(p) at large p) so the experi-
mental detection of oscillations for the gene can be said
to have been made with high confidence [12]. The fact
that the heights of p = 2 peaks computed from the
smoothed and unsmoothed data are similar further
strengthens this conclusion.
In addition to the p = 0 and p = 2 peaks, the spec-

trum also shows a peak at p = 4. This is also above the
noise and reveals by how much the shape of the
observed oscillating pattern differs from a pure sinusoid.
The other elements of the spectrum are near zero, indi-
cating that they are either not present or that it is diffi-
cult to distinguish them from the background noise.
In the bottom row of Figure 2, the peak at p = 0 again

corresponds to the offset of that gene’s expression from
zero. Other clear peaks appear at p = 2 and p = 4. The
existence of the peak at p = 2 indicates that the base
frequency of that oscillating signal is the same as in the
top panel. In other words, in the strict sense the period
of the second oscillating signal is the same as that of the
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first - 24 hours. The spectrum, however, shows a pro-
nounced component at p = 4 and because it is in fact
larger than the one at p = 2, the bottom-left panel actu-
ally shows four main maxima and minima. This double-
peak signature, evident only in the Fourier spectrum
and not in the original representation, will lead to an
interesting result in the next section.
Figure 3 shows two other sets of signals and spectra.

Again, peaks at p = 0 correspond to offsets from zero
(in Figure 3D this peak is not visible because the vertical
scale is optimized to show the spectrum features at
higher p). The structure of the other peaks shows some
important differences from the previously discussed
spectra. In panels Figure 3A and Figure 3C, the expres-
sion levels exhibit a trend - downward in the first and
upward in the latter. In the frequency domain represen-
tations in Figure 3B and Figure 3D, this translates into
nonzero levels at several values of p [19,20]. In particu-
lar, the spectra at p = 1 are larger than the noise level
and larger than in Figure 2 because of this effect. The
first indications of oscillations appear at p = 4 in Figure
3B and at p = 3 in Figure 3D, suggesting that their base

periods are 12 and 16 hours respectively. In both cases,
however, the strongest component appears at p = 6,
which corresponds to an oscillatory component with
period of 8 hours. These combinations of features will
also lead to concrete results in the next section.
Model selection
Many gene regulation network diagrams and associated
equations can lead to oscillatory behavior. Model selec-
tion is then the task of determining if a particular model
structure is a good description of certain experimental
data. To demonstrate the role Fourier analysis can play
in this processes, two specific model structures can be
considered. Their diagrams are shown in Figure 1.
(A simpler example of model selection using Fourier
spectra is discussed in Additional file 1.)
The first model describes a single substance E that

inhibits its own production after a time delay. The equa-
tion for the model,

d
d
E t
t

E
E t A E

nE
k E tE

( )

( ( )/ )
( ),=

+ −
−

 1
(7)

Figure 2 Gene expression in mouse liver cells. Expression levels of genes in mouse liver cells [12]. (Top): gene Nr1d2 (probeset 1416958-at).
(Bottom): gene Pde12 (probeset 1454963-at). (Left column): raw data points (circles) and a smoothing curve (line) computed using a three-hour
simple moving average. (Right column): spectra for the unsmoothed (circles) and smoothed (squares) data. The spectrum component at H(p = 1)
corresponds to ω = 2π/48 hours-1.
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has previously appeared in the literature as a toy
model for circadian oscillations [7]. It is discussed here
because, despite containing five unknown parameters
(kE, aE, δE, bE, and nE), it is relatively simple.
The second model involves two substances P and Q.

Their dynamics is given by

d
d
P t
t

VPXPQ
WP XPQ

k P tP
( )

( )=
+

− (8a)

d
d
Q t
t

VQWQ
WQ XPQ

k Q tQ
( )

( )=
+

− (8b)

where

X P t Q t P t Q tPQ P Q P Q= − − −⎡⎣ ⎤⎦ − − −( )( ) ( ) ( ) ( )   Θ (9)

involves the Heaviside function Θ (Θ(z ≥ 0) = 1, Θ(z <
0) = 0). This model also appeared previously as a toy
model for circadian oscillations [8]. It has several more
parameters (VP , VQ, δP,δQ, kP, kQ, WP and WQ) than the
first model, but it is discussed here because its equations

describe a regulatory mechanism that uses a nontrivial
logic operation encoded by the Heaviside function.
Fitting spectral signatures
The models in Eq. 7 and Eq. 8 can be solved numeri-
cally for any choice of parameters and the signal thus
produced analyzed in terms of its Fourier spectrum.
These spectra, to repeat from the previous section, con-
tain all information about the signals. The coarse fea-
tures of the signal are encoded in the two leftmost
peaks: the signal offset in the height of the leftmost
peak; the oscillation amplitude in the height of the next
peak; the oscillation frequency in the distance between
adjacent peaks. The heights of the subleading peaks in
the spectrum are independent quantities whose values
derive from the shape of the oscillating waveform. As
shown in Figure 2, spectra derived from recent experi-
mental data [12] can yield numerical values for four
independent quantities: the three coarse features of an
oscillating signal plus the first subleading feature (the
remaining subleading features being confused by noise).
The fact that the data shows a nonzero subleading com-
ponent is sufficient to immediately invalidate the Posi-
tive Simple Harmonic Oscillator model. The biological

Figure 3 Gene expression in mouse liver cells. Expression levels of genes in mouse liver cells [12]. (Top): gene Eif2ak3 (probeset 1449278-at).
(Bottom): gene Ttr (probeset 1455913-x-at). (Left column): raw data points (circles) and a smoothing curve (line) computed using a three-hour
simple moving average. (Right column): spectra for the unsmoothed (circles) and smoothed (squares) data. The spectrum component at H(p = 1)
corresponds to ω = 2π/48 hours-1.

Konopka and Rooman BMC Systems Biology 2010, 4:123
http://www.biomedcentral.com/1752-0509/4/123

Page 7 of 12



scenario described in the context of that model can
therefore be ruled out in the context of the circadian
oscillations. The other models, Eq. 7 and Eq. 8, however,
are viable.
The number of measured independent quantities is

one fewer than the number of parameters in the single-
gene model of Eq. 7. Naive parameter counting there-
fore suggests that the model should be able to fit the
experimental data. The two-gene model of Eq. 8 con-
tains even more parameters and so it too should be able
to fit the data. Indeed, parameters for both models can
be found with relative ease that give rise to spectra that
resemble Figure 2B. Therefore, additional information
must be input before one can be selected over the
other. This information can be in the form of restric-
tions on the values the parameters can take in each
model, for example derived from independent experi-
ments, or from precise measurements of further features
in the oscillating gene’s spectrum. (Arguably, the addi-
tional information may also come in subjective form.
For example, in this situation Occam’s razor marks the
model with a single gene as preferable over the one with
two genes.)
The situation is different when matching the models

with the spectrum in Figure 2D, which has the unusual
feature that the higher frequency component is stronger
than the lower frequency one. Assuming that this signa-
ture is not an artifact of noise, the two models can be
tested for their ability to reproduce such a spectrum by
generating sets of parameters, Fourier-transforming the
models’ output for each parameter set, and comparing
the strengths of the relevant peaks. Since the volume of
the parameter space for each model is large, this cannot
be done exhaustively. But it can be done by sampling a
region of the parameter space of interest. For this study,
the region of interest can be defined as ranging from
0:01 to 100 for most parameters in the two models (the
parameter nE was taken as equal to 2, 3 and 4).
When sampling the parameter region of interest uni-

formly at random on a logarithmic scale for each model,
the result, after thousands of samples, is that no para-
meter set of the single-gene model of Eq. 7 gives the
desired Fourier signature (data not shown). The two-
gene model of Eq. 8, in contrast, does yield a few sets of
parameters for which the peaks in the spectrum have
relative strengths as in Figure 2D. Accepting the results
of random sampling study implies the rejection of the
single-gene model for describing the behavior shown in
Figure 2D. Since the model is only a toy model and
does not describe any interactions between chemicals in
a cell, it may not be totally surprising that it is inade-
quate to fully capture the intricacies in the data. But the
analysis is nonetheless an example of how Fourier analy-
sis may help in model selection in gene regulation

science. In contrast, if model fitting were to be done
using the original oscillating waveform and associated
methods (for example by minimizing the deviation
between experimental and model signals), invalidation
of the single-gene model may not be as clear because
the imperfect overlap between the fitted model and data
may be blamed on noise. (A related example is dis-
cussed in more detail in Additional file 1.)
Similar model invalidation arguments can be directly

applied to all genes in the mouse liver cell data set [12]
with features similar to those in Figure 2. In some cases,
they can be extended to other genes with more peculiar
features as well. For example, both models in Eq. 7 and
Eq. 8 can be argued to not describe the data in Figure 3
very well because they do not produce signals with
long-term downward/upward trends. Furthermore, even
if such trends are ignored, comparing the peak struc-
tures in Figure 3 and in Figure 2 can lead to interesting
conclusions. In Figure 3B, the two detectable peaks are
not at frequencies related by an integer multiple. Since
neither the single-gene model nor the two-gene model
can produce such signals, both models must be rejected
in that context. In Figure 3D, the frequencies of the two
peaks are multiple integers of each other, but their base
frequency (corresponding to a period of 16 hours) is not
equal to the circadian rhythm. In the two-gene model of
Eq. 8, substances P and Q always have the same period,
so detection of the signal in Figure 3D implies that the
gene cannot be a partner to another gene belonging to a
class represented by the genes shown in Figure 2.
Model invalidation carries information about regula-

tory mechanisms for genes under the influence of the
circadian cycle. For example, since the expression profile
of the gene in Figure 2C is inconsistent with a self-regu-
latory mechanism, it suggests that the gene is strongly
regulated by more than one substance. The additional
regulatory factors may be in the form of other genes
actively participating in the transcription process as in
the second model or in the form of metabolic or other
systemic cues. Indeed, the latter hypothesis was sug-
gested and indeed tested in [12]. These arguments are
indicative and not conclusive, but it is nonetheless inter-
esting that they can be made at all on the basis of two
signals from a micro-array experiment and a model
selection analysis.
Equally important, the fit of the single gene model to

the expression profile of the gene in Figure 2A suggests
that gene is less affected by the same external condi-
tions. That is, it is more weakly coupled and hence
more robust to external perturbations.
Exploiting mutants
Another technique useful for model selection exploits
mutant oscillators, particularly copy-number mutants,
similarly as described in the context of the positive
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simple harmonic oscillator. Since there is currently no
experimental data similar to [12] for copy-number
mutant organisms, the discussion here uses signals gen-
erated in-silico.
The task is to determine, given two oscillating signals/

substances A and B, whether they are produced by a
regulation scheme described by the first model applied
to each substance separately, or whether their dynamics
is better described by the second model that contains a
particular form of coupling. The task is approached by
comparing the original oscillations to those produced by
mutants in which the number of coding regions for sub-
stance A is changed. If it is changed from one to two,
the mutant can be called a copy mutant. If the copy-
number is further increased to an integer N, the mutant
can be called an N-copy mutant.
To accommodate this scenario using the first model,

its mathematical description must be first expanded to
include two independent oscillating variables. This can
be done by defining a new quantity E’ governed by an
equation of the same form as Eq. 7 with a new set of
parameters also distinguished from the original ones by
primes. Since the substances E and E’ obey mathemati-
cally identical equations, the mutations in coding
regions for substance A can be taken to lead to changes
in either equation. Supposing that A corresponds to E,
the mutation would not affect any of the parameters
associated with E’. Furthermore, by the same arguments
as before, the sole effect of the replicated gene may be
to increase aE by a factor of two (or N for an N-copy
mutant).
Using the second model, there is some ambiguity at

the start since it is not clear whether the replicated gene
A should be identified with quantity P or Q. The two
possibilities must therefore be considered separately. For
simplicity, however, the discussion here is focused on
the case where the gene in question corresponds to P.
The replication is therefore assumed to increase the
parameter VP by a factor of two (or N for an N-copy
mutant) while leaving all other parameters unchanged.
To ensure a fair comparison between the two models,

they must be matched before the gene copying takes
place. Ideally this should be done by matching each
model to a set of experimental data for the wildtype.
For the present discussion, however, it is sufficient to
only match the models to each other. This can be done
by first choosing a set of parameters for one model
fairly arbitrarily and then adjusting the parameters of
the other model to match the spectrum of the first. As
an example, the parameters of the two-gene model in
Eq. 8 are taken to be VP = 1.5, VQ = 0.25, WP = WQ =
0.2, kP = kQ = 0.4, δP = δQ = 5. Assuming that the decay
constants and all delays are equal, the signal of P must
be matched to a signal of E by adjusting n, aA, bA. By

some trial and error the values kE = 0.4, δE = 5, n = 3,
aE = 1, bE = 0.4 are found to reproduce the spectrum
peaks of P’s signal within 10%. The first subleading
peaks turn out to be matched within about 25%.
The parameters in the models give scope to improve-

ments in this matching procedure but this will not be
important for what follows. It is important to recognize,
however, that the models cannot be matched exactly,
even in principle. Since there are a large number of
peaks in the spectrum and only three adjustable para-
meters (n, aA, and bA), in general the matching problem
will have no solutions, reflecting the fact that the two
models are mathematically inequivalent.
In copy-number mutants, the signals for the quantities

E, P , and Q differ from those in the wildtype. The rela-
tive effects on various signal features (ratios of feature
strengths in mutants to the original) for these quantities,
using the initial parameters noted above, are shown in
Figure 4. As the quantity E’ is unaffected, it is excluded
from the figure. The figure should be viewed as a repre-
sentation of the types of effects that may arise when
comparing models and excessive weight should not be
attached to any one quantitative detail contained within
it. Nonetheless, it demonstrates a few interesting points.
The figure shows that the changes in the coarse signal

features can respond similarly due to mutations in the
two models: the periods remain roughly at the same
level for all substances and the offsets and amplitudes
increase for corresponding substances - they rise for E
and P and remain constant for E’ (not shown) and Q.
(In actuality there are small differences in the models
but they are all within the initial matching accuracy of
about 25%.) This observation alone is somewhat surpris-
ing. A priori, it would be reasonable to expect that even
the coarse features of signal Q would change in
response to a mutation in P, the first being regulated by
the latter. That this need not be true indicates that the
coarse features alone are not sufficient to infer causality
or lack thereof. The figure also shows that the harmonic
peaks (labelled by f = 4, 5 and 6 in the figure) can
respond quite differently in the two models and that
these differences can be much larger than the variations
observed for the coarse features. In the figure, the differ-
ence between the responses of the second harmonic (f =
5) for substances E and P is particularly pronounced
and could be used to discriminate between the models.
Also, because the panel corresponding to Q shows varia-
tion in the harmonic structure after the mutation, the
signature could be used to infer the existence of an
interaction between P and Q even though the coarse
features are consistent with lack thereof. Seen from a
different perspective, the figure shows concrete predic-
tions for gene expression profiles in copy-number
mutants for organisms whose wildtype is well modeled
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Figure 4 Changes in spectra for N-copy mutants. Effects of N-copy mutations in E and P on signal features in the Fourier spectrum for
oscillators: A. E of Eq. 7, B. P of Eq. 8, C. Q of Eq. 8. On the horizontal axis, f stands for features: 1 is period, 2 is offset (analogous to H(p = 0) in
Figure 2), 3 is amplitude, 4,5,6 are the first, second, and third harmonics. On the vertical axis, relative change is the ratio of feature strength in
the mutant to wildtype. Marker sizes represent N from 1 (large) to 5 (small).
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by (7) or (8). The predictions are in the form of changes
in the shape of the profile.

Conclusions
In summary, oscillating signals can be useful resources
for gene regulation analysis. Their Fourier spectra can
separate gene regulation signatures from noise, fix para-
meters of a candidate model, test the model’s predictive
ability and compare it with alternatives. Importantly,
these tasks can be tackled in a systematic, unambiguous,
and reproducible manner. Thus, oscillatory signals pro-
vide the means, building on the qualitative understand-
ing of gene expression and gene regulation, to begin
discussing gene regulation quantitatively despite the pre-
sence of noise.
Measurements of features in Fourier spectra of oscil-

lating genes are technologically and experimentally feasi-
ble: oscillatory gene expression has already been
measured using fluorescence techniques (e.g. [5,6,11]) or
inferred from time-series micro-array data (e.g.
[10,12-16]). Indeed, some features of Fourier transforms
have already been applied in such studies to statistically
separate oscillatory from non-oscillatory genes and some
studies have also focused on the difficulties associated
with sampling in micro-array data [21-23]. The same
technique can also be used to mine the data deeper for
information about specific regulatory mechanisms.
As shown in Figure 2, the resolution and time-span of

some experimental data now approaches a sufficient
level to allow reliable computation of the subleading fea-
tures of the Fourier spectrum. As more such data
becomes available, this structure should be put to use to
infer quantitative knowledge about gene expression
mechanisms. In so doing, studies based on micro-array
experiments can be used to infer not only systems-wide
properties (such as number of oscillating genes) but also
specific constraints on the dynamics of individual genes.
This shows that the data collection methods developed
for systems biology can be fruitful for studies familiar
from traditional reductionist biology.
But fully harnessing the benefits of gene regulation

modeling in Fourier space requires a dedicated
approach. From the theoretical perspective, it requires
studying gene regulation mechanisms that cause distinc-
tive patterns in oscillatory gene expression signals. From
the experimental perspective, it suggests there is value
in measuring oscillating waveforms at higher temporal
resolution, for longer times, and also under varying but
controlled conditions, for example in copy-number
mutants. When coordinated, the result may be the
description of genetic regulation mechanisms at a level
of detail that would allow the confident prediction of
cell behavior under previously untested circumstances.
It may also shed light on how coordination of gene

expression occurs across various regulatory pathways
and larger gene regulatory motifs.

Additional material

Additional file 1: Supplementary discussion. PDF file containing
extensions of the positive simple harmonic oscillator model as well as an
additional example of model selection using frequency-domain methods.
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