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We study the thermocapillary stabilization of a free liquid film as it is formed by being pulled out of a bath
at constant speed. For sufficiently large stresses induced at the interface through a controlled temperature
gradient, a continuous film of liquid can be processed. For negligible inertial effects, the film thickness only
depends on the capillary length and on the strength of the surface tension variation. The theory suggests
that very thin ribbons or foils of molten material can be drawn out of a melt over a wide range of thicknesses
and at speeds relevant to manufacturing.

Many objects used everyday are made of metallic foils,
the most obvious example being aluminum foil. An an-
cestral process to produce foils is by rolling1, which is a
forming process where metal stock is passed through a
pair of rolls. Another technique is the foil-casting pro-
cess, used for instance to produce silicon foils2. The
method consists of depositing a liquid metal on a moving
and subcooled substrate through the bottom of a cast-
ing frame, so that a layer of the liquid metal crystallizes
on the substrate, and a metal foil is formed3. Both foil
rolling and casting methods place the liquid metal in con-
tact, at least on one side, with a solid substrate, which
is undesirable for production of extremely pure and flat
materials.

Silicon sheets produced by vertical growth from a melt
are contact-free but the production speed is much smaller
than the aforementioned techniques4: the speed is typi-
cally limited to a few mm/s to avoid breaking the liquid
bridge between the melt and the foil. In fact, no stable
film can be pulled out of a liquid bath if only extensional
viscous and capillary forces are in balance5. Nevertheless,
soap films can be formed at large speeds (m/s) due to in-
terfacial stresses induced by the presence of surfactant
concentration gradients at the free surfaces6. Surfactant
can obviously not be used to produce foils of pure ma-
terials but interfacial thermocapillary stresses could be
used instead by prescribing temperature gradients along
the free surfaces.

The concept of stabilizing the formation of free liquid
films by thermocapillary effects has not been reported
previously. The ideas should be applicable to the pro-
duction of contact-free foils at competitive speeds, and
here we focus on the fluid dynamics aspects of this con-
cept.

We consider a liquid film withdrawn with speed u0

from a bath of temperature Tb (Fig. 1). Symmetry is as-
sumed about the x-axis. The prescribed far-field ambient
temperature is denoted Ta(x). At steady state, a film of
thickness h(x) eventually reaches a constant value h0 at
a distance sufficiently far above the bath. We assume
the film then solidifies. The density ρ and the viscosity
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FIG. 1. Sketch of the pulling film problem. The dashed line
indicates a static meniscus (not to scale).

η are taken to be constant because they do not change
significantly over a modest temperature interval near the
solidification temperatures of typical materials that in-
terest us. We denote θ(x) as the cross-sectional average
temperature of the film and assume a linear decrease of
the surface tension γ with temperature from the solidi-
fication temperature Ts, γ(θ) = γs − γT (θ − Ts), where
γs = γ(Ts) and γT = |dγ/dT |, as is the case for most
liquid metals7.

Following the region decomposition applied in the con-
text of a foam lamella8, determination of the shape of the
film requires solving the thin-film equation in an interme-
diate region of length ℓ that connects the static meniscus
at the bath with the flat film region near the solidification
front. The static meniscus (dashed line in Fig. 1) is iden-
tical to a meniscus that would be attached to a perfectly
wetting substrate with curvature h′′ =

√
2/ℓc, where the

prime denotes the x-derivative, and ℓc =
√

γs/(ρg) is the
capillary length9. Because of the downward capillary suc-
tion induced by the positive curvature of the free surface,
no purely viscous film can be stably pulled out of a liquid
bath5 unless sufficiently large shear stress is present at
the free surface, which is ensured here by the Marangoni
stress induced by the gradients of surface temperature on
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both sides of the film. According to Breward and Howell8

this “shear flow” regime corresponds to a distinguished
limit where capillary and Marangoni effects provide the
dominant balance in the intermediate region and where
the extensional viscous stress is always negligible. This
limit is applicable for

Ca =
ηu0

γs
= O(ε3) and Ma =

γT ∆T

ηu0

= O(ε−1) ,

(1)
with ε = h0/ℓ and ∆T = Tb−Ts. The corresponding axial
stress equation, neglecting inertia and gravity effects (see
justifications hereafter), has the form

γs

2
hh′′′ − 2γT θ′ = 0 . (2)

Terms in (2) account, respectively, for the capillary stress
induced by the curvature of the interface and for the ther-
mocapillary stresses at the two interfaces. Finally, in the
case where the rate of heat transfer across the free sur-
faces is much larger than the rate of heat advected by the
flow, the local temperature of the film takes the temper-
ature of the ambient (the reader is referred to Scheid et

al.
10 for details on this ‘prescribed temperature limit’),

such that the energy equation reduces to

θ(x) ≈ Ta(x) . (3)

We also assume that heat released during solidification
can be neglected because it occurs after the geometry
of the film is no longer changing11. In the present prob-
lem, we assume the ambient temperature to be prescribed
such that it varies by the temperature difference ∆T over
a distance d. For the sake of subsequent analytical devel-
opment, we chose a continuous and integrable function
of the form

Ta(x) = Ts +
∆T

2

(

1 − tanh
[

2π
(x

d
+ 1

)])

. (4)

We note that the choice of a function other than an hy-
perbolic tangent (such as an error function for instance)
leads to the same conclusions as those presented in this
letter. Because the problem is invariant by translation,
and according to the sketch in Fig. 1, we have also shifted
in space the temperature variation by the quantity d such
that Ta(0) ≈ Ts. This is valid so long as ∆T/Ts ≪ 1.

We next nondimensionalize using the scalings

X =
x

ℓ
, D =

d

ℓ
, H =

h

h0

, Θ =
θ − Ts

∆T
. (5)

Defining the length scale ℓ of the intermediate region as

ℓ =
h0

2
√

Γ
with Γ =

γT ∆T

γs
, (6)

leads to the parameterless equation

HH ′′′ = Θ′ . (7)
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FIG. 2. Solutions to (8) showing H for various D and H ′′ for
D = 1. The dotted line also corresponds to H = 1 + X2/2.

Since the thickness is assumed to reach a constant near
the solidification front, the boundary conditions at X = 0
are H = 1 and H ′ = H ′′ = Θ = 0. Integrating (7) and
combining with (3) and (4) in dimensionless form, yields

2HH ′′ − H ′2 = 1 − tanh

[

2π

(

X

D
+ 1

)]

, (8)

which straightforwardly relates the dimensionless length
of the temperature (or interfacial stress) variation D to
the shape of the film H(X). Furthermore, this latter
must match the curvature of the static meniscus as the
film thickens, i.e. H ′′

−∞
=

√
2 ℓ2/(ℓch0) as X → −∞.

Therefore, the matching condition that allows determi-
nation of h0, using (6), yields

h0 = 2
√

2 ℓc H ′′

−∞
Γ , (9)

where H ′′

−∞
remains to be determined.

In the limit D → 0 and for X < 0, the term tanh → −1
in (8) so that an analytical solution can be found: H =
1+X2/2. Replacing the corresponding curvature H ′′

−∞
=

1 in the matching condition (9) yields the asymptotic
determination of the film thickness:

h0 = 2
√

2 ℓc Γ as D → 0 . (10)

This prediction for the typical film thickness is the main
result of this work showing that it only depends on the
amplitude of the surface tension variation, as measured
by the parameter Γ. The film is thus pulled out of the
intermediate region with a thickness that does not de-
pend on the pulling speed. Increasing the speed will thus
increase the rate of liquid passing through this ‘virtual
‘slot’, whose the width is adjusted by the amplitude of
the thermocapillary stresses. As the pulling speed in-
creases, however, eventually inertial effects will enter the
axial stress balance (2), and we comment on this influ-
ence below.

Equation (8) can be solved numerically for any value
of D; typical solutions are given in Fig. 2. We observe
that even though the numerical solution for D = 1 is far
from the analytical D → 0 solution (contrary to the D =
0.1 solution), the curvature H ′′ still tends to a constant
approaching unity as X → −∞.
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FIG. 3. Matching curvature H ′′

−∞ versus the length D over
which the temperature difference is applied.

TABLE I. Properties given at the solidification temperature
Ts for various elementsa; ℓc =

p

γs/(ρg) and ∆T = 100K.

Ag Al Au Co Cu Fe Ni Si
Ts K 1235 933 1337 1773 1357 1811 1727 1683
ρ kg/m3 9150 2350 17400 7810 7900 7040 7920 2520
γs N/m 0.91 0.88 1.12 1.89 1.29 1.92 1.77 0.78
γT mN/m/K 0.18 0.20 0.09 0.33 0.23 0.40 0.33 0.65
ℓc mm 3.2 6.2 2.6 5.0 4.1 5.3 4.8 5.6
Γ γT ∆T/γs 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.08

a I. Egry and J. Brillo, J. Chem. Eng. Data 54, 2347 (2009).

We next report in Fig. 3 the constant value H ′′

−∞
for

a wide range of D. It appears that H ′′

−∞
is well approxi-

mated by unity for D <∼ 1, which extends the range of va-
lidity of the asymptotic result (10). However, for D > 1,
numerical solutions in Fig. 3 should be used instead for
H ′′

−∞
, which gives the film thickness by (9). The results

show that the film thickness h0 decreases as D increases,
i.e. as the imposed temperature gradient decreases.

Table I shows the physical properties of various metal-
lic elements, which allows an assessment of the dimen-
sionless parameter Γ for a fixed value of the temperature
difference ∆T = 100K. We see that Γ ≈ 10−2 for all of
the elements reported in Table I, except for silicon which
has a higher value. However, Zhou et al.

12 report smaller
values of γs = 0.72N/m and γT = 0.06mN/(mK) for sili-
con, which gives Γ = 0.01. The film thickness is therefore
of the order of 100 µm for all of the elements in Table I.

Taking a practical example, to produce an iron film of
150µm thick would require a value of Γ = 0.01, or a varia-
tion of surface tension by 20mN/m over a length smaller

than or about ℓ = ℓc

√
2Γ as found from Eq. (6) with

the asymptotic result (10). This case requires lowering
the temperature of the surface of the film by 50K over a
distance smaller than or about 0.8mm (i.e. D <∼ 1). If
the temperature difference is to be imposed over a longer
distance, the numerical results in Fig. 3 are to be used
with (9). For instance, for D = 10, it is necessary to in-
crease Γ by 60% to keep the same film thickness as that
obtained for D <∼ 1; in the case of a 150µm thick iron
foil, this approach requires a temperature difference of
80K over a distance of about 6mm.

We now determine the conditions that allow neglect of
gravity and inertia: both of them remain small as com-
pared to capillary effects, so long as G = ρgℓ2

c/γs ≪ 1
and We = ρℓcu

2

0
/γs ≪ 1, respectively. Note the largest

length scale of the system, ℓc, has been taken to en-
sure a conservative evaluation of G and We. For typical
molten materials, the first condition is always true since
G ≈ 10−1 for all of the elements in Table I. The second
condition indicates that inertial effects can be neglected
for speeds u0 ≪ √

gℓc. In the case of a 150 µm iron foil,
we require u0 ≪ 22 cm/s. For larger speeds, inertia will
tend to thin the film as compared to the present the-
ory. Detailed analysis including inertia is to be reported
elsewhere.

As mentioned earlier, the present results are applica-
ble in the ‘shear’ distinguished limit where thermocap-
illary stresses are large and extensional viscous stresses
are negligible. Using (1) together with (6) and (10) gives
a condition on the pulling speed, u0

<∼ (γs/η) Γ3/2, or in
the case of iron with η ≈ 10−3 Pa.s, u0

<∼ 1m/s.
In this letter, we show that a liquid film can be pulled

out of a bath by using thermocapillary stresses prescribed
at the free surfaces. The resulting film thickness is pro-
portional to the capillary length of the liquid ℓc and to a
parameter Γ that measures the amplitude of the surface
tension change at the interface. If this change is imposed
over a distance d that is larger than the characteristic
length ℓ = ℓc

√
2Γ of the system, the film thickness de-

creases with increasing d, otherwise it is independent of
d. A significant feature of the present theory is that the
film thickness is also independent of the pulling speed of
the film, at least when inertia is neglected, which means
that the flow rate can be changed without modifying the
film thickness.
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