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Abstract

It sometimes happens, for instance in case-control studies, that a
classifier is trained on a data set which does not reflect the true a
priori probabilities of the target classes on real-world data. This may
have a negative effect on the classification accuracy obtained on the
real-world data set, especially when the classifier’s decisions are based
on the a posteriori probabilities of class membership. Indeed, in this
case, the trained classifier provides estimates of the a posteriori prob-
abilities that are not valid for this real-world data set (they rely on
the a priori probabilities of the training set). Applying the classifier
as-is (without correcting its outputs with respect to these new condi-
tions) on this new data set may thus be sub-optimal. In this note, we
present a simple iterative procedure allowing to adjust the outputs of
the trained classifier with respect to these new a priori probabilities
without having to refit the model, even when these probabilities are
not known in advance. As a by-product, estimates of the new a priori
probabilities are also obtained. This iterative algorithm is a straight-
forward instance of the EM algorithm and is shown to maximize the
likelihood of the new data. Thereafter, we discuss a statistical test that
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can be applied in order to decide if, indeed, the a priori class proba-
bilities have changed from the training set to the real-word data. The
procedure is illustrated on different classification problems involving
a multi-layer neural network, and comparisons with a standard pro-
cedure for a priori probability estimation are provided. Our original
method, based on the EM algorithm, is shown to be superior to the
standard one for a priori probability estimation. Experimental results
also indicate that the classifier with adjusted outputs always performs
better than the original one in terms of classification accuracy, when
the a priori probabilities conditions differ from the training set to the
real-world data. The gain in classification accuracy can be significant.

1 Introduction

In supervised classification tasks, it is sometimes the case that the a priori
probabilities of the classes from a training set do not reflect the ‘true’ a
priori probabilities of real-world data, on which the trained classifier has to
be applied. For instance, this happens when the sample used for training is
stratified by the value of the discrete response variable (i.e. the class mem-
bership). Consider for example an experimental setting – a case-control
study – where we select 50% of individuals suffering from a disease (the
cases) and 50% of individuals that do not suffer from this disease (the con-
trols), and suppose that we make a set of measurements on these individuals.
The resulting observations are used in order to train a model that classifies
the data into the two target classes ‘disease’ and ‘no disease’. In this case,
the a priori probabilities of the two classes in the training set are 0.5 each.
Once we apply the trained model in a real-world situation (new cases), we
have no idea of the true a priori probability of disease (also labeled ‘dis-
ease prevalence’ in biostatistics). It has to be estimated from the new data.
Moreover, the outputs of the model have to be adjusted accordingly. In
other words, the classification model is trained on a data set with a priori
probabilities that are different from the real-world conditions.

In this situation, knowledge of the ‘true’ a priori probabilities of the
real-world data would be an asset for the following important reasons:

• Optimal Bayesian decision making is based on the a posteriori proba-
bilities of the classes conditional on the observation (we have to select
the class label that has maximum estimated a posteriori probability).
Now, following Bayes’ rule, these a posteriori probabilities depend in
a non-linear way on the a priori probabilities. Therefore, a change of
the a priori probabilities (as is the case for the real-world data versus
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the training set) may have an important impact on the a posteriori
probabilities of membership, which themselves affect the classification
rate. In other words, even if we use an optimal Bayesian model, if
the a priori probabilities of the classes change, the model will not be
optimal any more in these new conditions. But knowing the new a
priori probabilities of the classes would allow us to correct (by Bayes’
rule) the output of the model in order to recover the optimal decision.

• Many classification methods, including neural network classifiers, pro-
vide estimates of the a posteriori probabilities of the classes. From
the previous point, this means that applying such a classifier as-is on
new data having different a priori probabilities from the training set
can result in a loss of classification accuracy, in comparison with an
equivalent classifier that relies on the ”true” a priori probabilities of
the new data set.

This is the primary motivation of this paper: to introduce a procedure al-
lowing to correct the estimated a posteriori probabilities, i.e. the classifier’s
outputs, in accordance with the new a priori probabilities of the real-world
data, in order to make more accurate predictions, even if these a priori prob-
abilities of the new data set are not known in advance. As a by-product,
estimates of the new a priori probabilities are also obtained. The experi-
mental section (section 4) will indeed confirm that a significant increase in
classification accuracy can be obtained when correcting the outputs of the
classifier with respect to new a priori probabilities conditions.

For the sake of completeness, notice also that there exists another ap-
proach, the Min-Max criterion, that simply avoids the estimation of the a
priori probabilities on the new data. Basically, the Min-Max criterion says
that one should use the Bayes decision rule which corresponds to the least
favorable a priori probability distribution (see, for instance, Melsa & Cohn,
1978 or Hand, 1981).

In brief, we present a simple iterative procedure that estimates the new a
priori probabilities of a new data set and adjusts the outputs of the classifier
– supposed to approximate the a posteriori probabilities – accordingly, with-
out having to refit the model (section 2). This algorithm is a simple instance
of the EM algorithm (Dempster et al., 1977; McLachlan & Krishnan, 1997)
that aims to maximize the likelihood of the new observed data. We also
discuss a simple statistical test (a likelihood ratio test) that can be applied
in order to decide if the a priori probabilities have changed or not from the
training set to the new data set (section 3). We illustrate the procedure
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on artificial and real classification tasks, and analyze its robustness with
respect to imperfect estimation of the a posteriori probabilities provided by
the classifier (section 4). Comparisons with a standard procedure used for
a priori probabilities estimation (also in section 4) and a discussion with
respect to the related work (section 5) are also provided.

2 Correcting a posteriori probability estimates with

respect to new a priori probabilities

2.1 Data classification

One of the most common use of data is classification. Suppose that we want
to forecast the unknown discrete value of a dependent (or response) variable
ω based on a measurement vector – or observation vector – x. This discrete
dependent variable takes its value in Ω = (ω1, . . . , ωn) – the n class labels.

A training example is therefore a realization of a random feature vector,
x, measured on an individual and allocated to one of the n classes ∈ Ω. A
training set is a collection of such training examples recorded for the purpose
of model building (training), and forecasting based on that model.

The a priori probability of belonging to class ωi in the training set will
be denoted as pt(ωi) (in the sequel, subscript t will be used for estimates
carried out on the basis of the training set). In the case-control example
mentioned in the introduction, pt(ω1) = pt(disease) = 0.5, and pt(ω2) =
pt(no disease) = 0.5.

For the purpose of training, we suppose that, for each class ωi, observa-
tions on N i

t individuals belonging to the class (with
∑n

i=1 N i
t = Nt, the total

number of training examples) have been independently recorded according
to the within-class probability density, p(x|ωi). Indeed, case-control studies
involve direct sampling from the within-class probability densities, p(x|ωi).
In a case-control study with two classes (as reported in the introduction),
this means that we made independent measurements on N 1

t individuals that
contracted the disease (the cases), according to p(x|disease), and on N 2

t in-
dividuals that did not (the controls), according to p(x| no disease). The a
priori probabilities of the classes in the training set are therefore estimated
by their frequencies p̂t(ωi) = N i

t/Nt.
Let us suppose that we trained a classification model (the classifier),

and denote by p̂t(ωi|x) the estimated a posteriori probability of belonging
to class ωi provided by the classifier, given that the feature vector x has
been observed, in the conditions of the training set. The classification model
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(whose parameters are estimated on the basis of the training set as indicated
by subscript t) could be an artificial neural network, a logistic regression,
or any other model that provides, as output, estimates of the a posteriori
probabilities of the classes given the observation. This is for instance the
case if we use the least-squares error or the Kullback-Leibler divergence
as a criterion for training, and if the minimum of the criterion is reached
(see for instance Richard & Lippmann, 1991 or Saerens, 2000, for a recent
discussion). We therefore suppose that the model has n outputs, gi(x)
(i = 1, . . . , n), providing estimated posterior probabilities of membership
p̂t(ωi|x) = gi(x). In the experimental section (section 4), we will show that
even imperfect approximations of these output probabilities allow reasonably
good estimates.

Let us now suppose that the trained classification model has to be ap-
plied on another data set (new cases, e.g. real-world data to be scored)
for which the class frequencies, estimating the a priori probabilities p(ωi)
(no subscript t), are suspected to be different from p̂t(ωi). The a poste-
riori probabilities provided by the model for these new cases will have to
be corrected accordingly. As detailed in the two next sections, two cases
must be considered according to the fact that estimates of the new a priori
probabilities p̂(ωi) are, or are not, available for this new data set.

2.2 Adjusting the outputs to new a priori probabilities: New
a priori probabilities known

In the sequel, we will assume that the generation of the observations within
the classes, and thus the within-class densities, p(x|ωi), do not change from
the training set to the new data set (only the relative proportion of measure-
ments observed from each class has changed). This is a natural requirement
– it supposes that we choose the training set examples only on the basis
of the class labels ωi, and not on the basis of x. We also assume in this
sub-section that we have an estimate of the new a priori probabilities, p̂(ωi).

Suppose now that we are working on a new data set to be scored. Bayes’
theorem provides:

p̂t(x|ωi) =
p̂t(ωi|x)p̂t(x)

p̂t(ωi)
(1)

where the a posteriori probabilities p̂t(ωi|x) are obtained by applying the
trained model as-is (subscript t) on some observation x of the new data set
(i.e. by scoring the data). These are the estimated a posteriori probabilities
in the conditions of the training set (relying on the a priori probabilities of
the training set).
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The corrected a posteriori probabilities, p̂(ωi|x) (relying this time on
the estimated a priori probabilities of the new data set), obey the same
equation, but with p̂(ωi) as the new a priori probabilities and p̂(x) as the
new probability density function (no subscript t):

p̂(x|ωi) =
p̂(ωi|x)p̂(x)

p̂(ωi)
(2)

Since the within-class densities p̂(x|ωi) do not change from training to
real-world data (p̂t(x|ωi) = p̂(x|ωi)), by equating equation (1) to (2) and
defining f(x) = p̂t(x)/p̂(x), we find

p̂(ωi|x) = f(x)
p̂(ωi)
p̂t(ωi)

p̂t(ωi|x) (3)

Since
∑n

i=1
p̂(ωi|x) = 1, we easily obtain f(x) =

 n∑
j=1

p̂(ωj)
p̂t(ωj)

p̂t(ωj |x)

−1

,

and consequently

p̂(ωi|x) =

p̂(ωi)
p̂t(ωi)

p̂t(ωi|x)

n∑
j=1

p̂(ωj)
p̂t(ωj)

p̂t(ωj|x)
(4)

This well-known formula can be used in order to compute the corrected
a posteriori probabilities, p̂(ωi|x), in terms of the outputs provided by the
trained model, gi(x) = p̂t(ωi|x), and the new priors p̂(ωi). We observe
that the new a posteriori probabilities p̂(ωi|x) are simply the a posteriori
probabilities in the conditions of the training set, p̂t(ωi|x), weighted by the
ratio of the new priors to the old priors, p̂(ωi)/p̂t(ωi). The denominator of
(4) ensures that the corrected a posteriori probabilities sum to one.

However, in many real-world cases, we ignore what the real-world a priori
probabilities p(ωi) are since we do not know the class labels for these new
data. This is the subject of the next section.

2.3 Adjusting the outputs to new a priori probabilities: New
a priori probabilities unknown

When the new a priori probabilities are not known in advance, we cannot
use the equation (4), and the p(ωi) probabilities have to be estimated from
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the new data set. In this section, we first present an already known standard
procedure used for new a priori probability estimation (the only one available
in the literature to our knowledge); then we introduce our original method
based on the EM algorithm.

2.3.1 Method 1: Confusion matrix

The standard procedure used for a priori probabilities estimation is based
on the computation of the confusion matrix, p̂(δi|ωj), an estimation of the
probability of taking the decision δi to classify an observation in class ωi,
while in fact it belongs to class ωj (see for instance McLachlan, 1992 or
McLachlan & Basford, 1988). In the sequel, this method will be referred to
as the confusion matrix method. Here is its rationale. First, the confusion
matrix p̂t(δi|ωj) is estimated on the training set from cross-tabulated clas-
sification frequencies provided by the classifier. Once this confusion matrix
has been computed on the training set, it is used in order to infer the a
priori probabilities on a new data set by solving the following system of n
linear equations

p̂(δi) =
n∑

j=1

p̂t(δi|ωj)p̂(ωj), i = 1, . . . , n (5)

with respect to the p̂(ωj), where the p̂(δi) is simply the marginal of
classifying an observation in class ωi, estimated by the class label frequency
after application of the classifier on the new data set. Once the p̂(ωj) are
computed from (5), we use equation (4 ) in order to infer the new a posteriori
probabilities.

2.3.2 Method 2: EM algorithm

We now present a new procedure for a priori and a posteriori probabilities
adjustment, based on the EM algorithm (Dempster et al., 1977; McLachlan
and Krishnan, 1997). This iterative algorithm increases the likelihood of the
new data at each iteration until a local maximum is reached.

Once again, let us suppose that we record a set of N new independent
realizations of the stochastic variable x, XN

1 = (x1, x2, . . . , xN), sampled
from p(x), in a new data set to be scored by the model. The likelihood of
these new observations is defined as:

L(x1, x2, . . . , xN) =
N∏

k=1

p(xk)
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=
N∏

k=1

[
n∑

i=1

p(xk, ωi)

]

=
N∏

k=1

[
n∑

i=1

p(xk|ωi)p(ωi)

]
(6)

where the within-class densities, i.e. the probabilities of observing xk

given class ωi, remain the same (p(xk|ωi) = pt(xk|ωi)) since we assume that
only the a priori probabilities change from the training set to the new data
set. We have to determine the estimates p̂(ωi) that maximize the likelihood
(6) with respect to p(ωi). While a closed-form solution to this problem
cannot be found, we can obtain an iterative procedure for estimating the
new p(ωi) by applying the EM algorithm.

As before, let us define gi(xk) as the model’s output value corresponding
to class ωi for the observation xk of the new data set to be scored. The model
outputs provide an approximation of the a posteriori probabilities of the
classes given the observation in the conditions of the training set (subscript
t), while the a priori probabilities of the training set are estimated by class
frequencies:

p̂t(ωi|xk) = gi(xk) (7)

p̂t(ωi) =
N i

t

Nt
(8)

Let us define as p̂(s)(ωi) and p̂(s)(ωi|xk) the estimations of the new a
priori and a posteriori probabilities at step s of the iterative procedure. If
the p̂(s)(ωi) are initialized by the frequencies of the classes in the training set
(equation 8), the EM algorithm provides the following iterative steps (see
Appendix), for each new observation xk and each class ωi:

p̂(0)(ωi) = p̂t(ωi)

p̂(s)(ωi|xk) =

p̂(s)(ωi)
p̂t(ωi)

p̂t(ωi|xk)
n∑

j=1

p̂(s)(ωj)
p̂t(ωj)

p̂t(ωj|xk)

p̂(s+1)(ωi) =
1
N

N∑
k=1

p̂(s)(ωi|xk)

(9)
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where p̂t(ωi|xk) and p̂t(ωi) are given by (7) and (8). The reader will
notice the similarity between equations (4) and (9). At each iteration step
s, both the a posteriori (p̂(s)(ωi|xk)) and the a priori probabilities (p̂(s)(ωi))
are re-estimated sequentially for each new observation xk and each class
ωi. The iterative procedure proceeds until the convergence of the estimated
probabilities p̂(s)(ωi).

Of course, if we have some a priori knowledge about the values of the
prior probabilities, we can take these starting values for the initialization of
the p̂(0)(ωi). Notice also that, although we did not encounter this problem in
our simulations, we must keep in mind that, potentially, local maxima prob-
lems may occur (the EM algorithm finds a local maximum of the likelihood
function).

In order to obtain good a priori probability estimates, it is necessary
that the a posteriori probabilities relative to the training set are reason-
ably well-approximated, i.e., sufficiently well estimated by the model. The
robustness of the EM procedure with respect to imperfect a posteriori prob-
ability estimates will be investigated in the experimental section (section
4).

3 Testing for different a priori probabilities

In this section, we show that the likelihood ratio test can be used in order
to decide if the a priori probabilities have significantly changed from the
training set to the new data set. Before adjusting the a priori probabilities
(when the trained classification model is simply applied to the new data),
the likelihood of the new observations is:

Lt(x1, x2, . . . , xN) =
N∏

k=1

p̂t(xk)

=
N∏

k=1

[
p̂(xk|ωi)p̂t(ωi)

p̂t(ωi|xk)

]
(10)

whatever the class label ωi, and where we used the fact that pt(xk|ωi) =
p(xk|ωi).

After the adjustment of the a priori and a posteriori probabilities, we
compute the likelihood in the same way:

L(x1, x2, . . . , xN) =
N∏

k=1

p̂(xk)
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=
N∏

k=1

[
p̂(xk|ωi)p̂(ωi)

p̂(ωi|xk)

]
(11)

So that the likelihood ratio is:

L(x1, x2, . . . , xN)
Lt( x1, x2, . . . , xN)

=

N∏
k=1

[
p̂(xk|ωi)p̂(ωi)

p̂(ωi|xk)

]
N∏

k=1

[
p̂(xk|ωi)p̂t(ωi)

p̂t(ωi|xk)

]

=

N∏
k=1

[
p̂(ωi)

p̂(ωi|xk)

]
N∏

k=1

[
p̂t(ωi)

p̂t(ωi|xk)

] (12)

And the log-likelihood ratio is:

log
[

L(x1, x2, . . . , xN)
Lt(x1, x2, . . . , xN)

]
=

N∑
k=1

log [p̂t(ωi|xk)] −
N∑

k=1

log [p̂(ωi|xk)]

+N log [p̂(ωi)]− N log [p̂t(ωi)] (13)

From standard statistical inference (see for instance Mood et al., 1974; Pa-
poulis, 1991), 2×log [L(x1, x2, . . . , xN)/Lt(x1, x2, . . . , xN)] is asymptotically
distributed as a chi-square with (n − 1) degrees of freedom (χ2

(n−1), where
n is the number of classes). Indeed, since

∑n
i=1 p̂(ωi) = 1 , there are only

(n− 1) degrees of freedom. This allows us to test if the new a priori proba-
bilities differ significantly from the original ones and thus to decide if the a
posteriori probabilities (i.e. the model outputs) need to be corrected.

4 Experimental evaluation

4.1 Simulations on artificial data

In this first subsection, we present a simple experiment that illustrates the
iterative adjustment of the a priori and a posteriori probabilities. We chose
a conventional multilayer perceptron (with one hidden layer, softmax output
functions, trained with the Levenberg-Marquardt algorithm) as classification
model, as well as a database labeled ‘Ringnorm’, introduced by Breiman
(1998)1. This database is constituted of 7400 cases described by 20 nu-
merical features, and divided into two equidistributed classes (each drawn

1Available at http://www.cs.utoronto.ca/˜delve/data/datasets.html.
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True priors Estimated prior by using Log-likelihood ratio test:
EM Confusion Number of times

matrix the test is significant

10% 14.7% 18.1% 10
20% 21.4% 24.2% 10
30% 33.0% 34.4% 10
40% 42.5% 42.7% 10
50% 49.2% 49.0% 0
60% 59.0% 57.1% 10
70% 66.8% 64.8% 10
80% 77.3% 73.9% 10
90% 85.6% 80.9% 10

Table 1: Results of the estimation of priors on the test sets, averaged on
ten runs, for the Ringnorm artificial data set. The neural network has been
trained on a learning set with a priori probabilities of (50%, 50%).

from a multivariate normal distribution with a different variance-covariance
matrix).

Ten replications of the following experimental design were applied. Firstly,
a training set constituted of 500 cases of each class was extracted from the
data (pt(ω1) = pt(ω2) = 0.50) and was used for training a neural network
with 10 hidden units. For each training set, nine independent test sets of
1000 cases were selected according to the following a priori probability se-
quence: p(ω1) = 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90 (with
p(ω2) = 1 − p(ω1)). Then, for each test set, the EM procedure (9) as well
as the confusion matrix procedure (5) were applied in order to estimate the
new a priori probabilities and to adjust the a posteriori probabilities pro-
vided by the model (p̂t(ω1|x) = g(x)). In each experiment, a maximum of 5
iteration steps of the EM algorithm was sufficient to ensure the convergence
of the estimated probabilities.

Table 1 shows the estimated a priori probabilities for ω1. With respect
to the EM algorithm, it also shows the number of times the likelihood ratio
test was significant at p < 0.01 on these 10 replications. Table 2 presents the
classification rates (computed on the test set) before and after the probabil-
ity adjustments, as well as when the true priors of the test set (p(ωi), which
are unknown in a real-world situation) were used to adjust the classifier’s
outputs (using equation 4). This latter result can be consider as an optimal
reference in the present experimental context.
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True priors Percentage of correct classification
No After adjustment by using

adjustment EM Confusion matrix True priors

10% 90.1% 93.6% 93.1% 94.0%
20% 90.3% 91.9% 91.7% 92.2%
30% 88.6% 89.9% 89.8% 90.0%
40% 90.4% 90.4% 90.4% 90.6%
50% 87.0% 86.9% 86.8% 87.0%
60% 90.0% 90.0% 90.0% 90.0%
70% 89.2% 89.8% 89.7% 90.2%
80% 89.5% 90.7% 90.7% 91.0%
90% 88.5% 91.6% 91.3% 92.0%

Table 2: Classification rates on the test sets, averaged on ten runs, for the
Ringnorm artificial data set.

The results reported in Table 1 show that the EM algorithm was clearly
superior to the confusion matrix method for a priori probability estimation,
and that the a priori probabilities are reasonably well estimated. Except in
the cases where p(ωi) = pt(ωi) = 0.50, the likelihood ratio test revealed in
each replication a significant difference (at p < 0.01) between the training
and the test set a priori probabilities (p̂t(ωi) �= p̂(ωi)). The a priori estimates
appeared as slightly biased towards 50%; this appears as a bias affecting the
neural network classifier trained on an equidistributed training set.

By looking at Table 2 (classification results), we observe that the impact
of the adjustment of the outputs on classification accuracy can be significant.
The effect was most beneficial when the new a priori probabilities, p(ωi), are
far from the training set ones (pt(ωi) = 0.50). Notice that, in each case, the
classification rates obtained after adjustment were close to those obtained by
using the true a priori probabilities of the test sets. While the EM algorithm
provides better estimates of the a priori probabilities, we found no difference
between the EM algorithm and the confusion matrix method in terms of
classification accuracy. This could be due to the high recognition rates
observed for this problem. Notice also that we observe a small degradation
in classification accuracy if we adjust the a priori probabilities when not
necessary (pt(ωi) = p(ωi) = 0.5), as indicated by the likelihood ratio test.
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4.2 Robustness evaluation on artificial data

This section aims to investigate the robustness of the EM-based procedure
with respect to imperfect estimates of the a posteriori probability values
provided by the classifier, as well as to the size of the training and the test
set (the test set alone is used to estimate the new a priori probabilities).
In order to degrade the classifier outputs, we gradually decreased the size
of the training set in steps. Symmetrically, in order to reduce the amount
of data available to the EM and the confusion matrix algorithms, we also
gradually decreased the size of the test set. For each condition, we compared
the classifier outputs with those obtained with a Bayesian classifier based on
the true data distribution (which is known for an artificial data set such as
‘Ringnorm’). We were thus able to quantify the error level of the classifier
with respect to the true a posteriori probabilities (how far is our neural
network from the Bayesian classifier) and to evaluate the effects of a decrease
in the training and/or test sizes on the a priori estimates provided by EM
and the classification performances.

As for the experiment reported above, a multilayer perceptron was trained
on the basis of an equidistributed training set (pt(ω1) = 0.5 = pt(ω2)). An
independent and unbalanced test set (with p(ω1) = 0.20 and p(ω2) = 0.80)
was selected and scored by the neural network. The experiments (10 repli-
cations in each condition) were carried out on the basis of training and test
sets with decreasing sizes (1000, 500, 200 and 100 cases) as detailed in Table
3.

We first compared the artificial neural network’s output values (g(x) =
p̂t(ω1|x), obtained by scoring the test sets with the trained neural network)
with those provided by the Bayesian classifier (b(x) = pt(ω1|x), obtained
by scoring the test sets with the Bayesian classifier) on the test sets before
outputs readjustment, i.e. we measured the discrepancy between the outputs
of the neural and the Bayesian classifiers before outputs adjustment. For this
purpose, we computed the averaged absolute deviation between the output
value of the neural and the Bayesian classifiers (the average of |b(x)− g(x)|)
before outputs adjustment.

Then, for each test set, the EM and the confusion matrix procedures
were applied to the outputs of the neural classifier in order to estimate the
new a priori probabilities and the new a posteriori probabilities. The results
for a priori probability estimation are detailed in Table 3.

By looking at the mean absolute deviation in Table 3, it can be seen that,
as expected, decreasing the training set size results in a degradation in the
estimation of the a posteriori probabilities (an increase of absolute deviation
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Training set Test set Mean absolute Estimated prior for ω1

size size deviation (p(ω1) = 0.20) by using
(#ω1, #ω2) (#ω1, #ω2) 1

N

∑N
k=1 |b(xk)− g(xk)| EM Confusion matrix

(500, 500) (200, 800) 0.107 22.0% 24.7%
(100, 400) 0.110 21.6% 24.5%
(40, 160) 0.104 20.4% 23.5%
(20, 80) 0.122 22.7% 26.7%

(250, 250) (200, 800) 0.139 22.1% 25.3%
(100, 400) 0.140 22.6% 25.6%
(40, 160) 0.134 23.1% 25.8%
(20, 80) 0.167 22.7% 26.0%

(100, 100) (200, 800) 0.183 24.1% 27.5%
(100, 400) 0.185 24.4% 28.2%
(40, 60) 0.181 23.5% 27.3%
(20, 80) 0.180 26.6% 29.2%

(50, 50) (200, 800) 0.202 24.9% 28.5%
(100, 400) 0.199 25.3% 29.0%
(40, 160) 0.203 24.3% 27.6%
(20, 80) 0.189 22.3% 26.0%

Table 3: Averaged results for the estimation of the priors, in function of
training and test sets of different sizes, for the Ringnorm data set. The
results are averaged on 10 runs. Notice that the true priors of the test sets
are (20%,80%).
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of about 0.10 between large, i.e. Nt = 1000, and small, i.e. Nt = 100,
training set sizes). Of course, the prior estimates degraded accordingly,
but only slightly. The EM algorithm appeared to be more robust than the
confusion matrix method. Indeed, in average (on all the experiments), the
EM method overestimated the prior p(ω1) by 3.3%, while the confusion
matrix method overestimated by 6.6%. In contrast, decreasing the size of
the test set seems to have very few effect on the results.

Figure 1 shows the classification rates (averaged on the 10 replications)
of the neural network before and after the output adjustments made by the
EM and the confusion matrix methods. It also illustrates the degradation
in classifier performances due to the decrease in the size of the training
sets (a loss of about 8% between large, i.e. Nt = 1000, and small, i.e.
Nt = 100, training set sizes). The classification rates obtained after the
adjustments made by the confusion matrix method are very close to those
obtained with the EM method. In fact, the EM method almost always (15
times on the 16 conditions) provided better results, but the differences in
accuracy between the two methods are very small (0.3% in average). As
already observed in the first experiment reported above (see Table 2), the
classification rates obtained after adjustment by the EM or the confusion
matrix method are very close to those obtained by using the true a priori
probabilities (a difference of 0.2% in average). Finally, we clearly observe
(figure 1) that by adjusting the outputs of the classifier, we always increase
significantly classification accuracy.

4.3 Tests on real data

We also tested the a priori estimation and outputs readjustment method on
three real medical data sets from the UCI repository (Blake et al., 1998) in
order to confirm our results on more realistic data. These data are ‘Pima
Indian Diabetes’ (2 classes of 268 and 500 cases, 8 features), ‘Breast Cancer
Wisconsin’ (2 classes of 239 and 444 cases after omission of the 16 cases with
missing values, 9 features) and ‘Bupa Liver Disorders’ (2 classes of 145 and
200 cases, 6 features). A training set constituted of 50 cases of each class was
selected in each data set and used for training a multilayer neural network;
the remaining cases were used for selecting an independent test set. In order
to increase the difference between the class distributions in the training (0.50,
0.50) and the test sets, we omitted a number of cases from the smallest class
in order to obtain a class distribution of (p(ω1) = 0.20, p(ω2) = 0.80) for the
test set. Ten different selections of training and test set were carried out,
and for each of them the training phase was replicated 10 times, giving a
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Results on RingNorm

Using true priors
No adjustment
After adjustment by EM
After adjustment by confusion matrix

Figure 1: Classification rates obtained on the RingNorm data set. Results
are reported for four different conditions: (1) Without adjusting the classifier
output (i.e. No adjustment); (2) Adjusting the classifier output by using
the confusion matrix method (i.e. After adjustment by confusion matrix);
(3) Adjusting the classifier output by using the EM algorithm (i.e. After
adjustment by EM); (4) Adjusting the classifier output by using the true a
priori probability of the new data (i.e. Using true priors). The results are
plotted in function of different sizes of both the training and the test sets.
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Data True Priors estimated by Percentage of correct classification
set priors EM Confusion No After adjustment by using

matrix adjustment EM Confusion True
matrix priors

Diabetes 20% 24.8% 31.3% 67.4% 76.3% 74.4% 78.3%
Breast 20% 18.0% 26.2% 91.3% 92.0% 92.1% 92.6%
Liver 20% 24.6% 21.5% 68.0% 75.7% 75.5% 79.1%

Table 4: Classification results on three real data sets. The neural network
has been trained on a learning set with a priori probabilities of (50%, 50%).

total of 100 trained neural networks for each data set.
In average over the 100 experiments, Table 4 details the a priori proba-

bilities estimated by means of the EM and the confusion matrix methods as
well as the classification rates before and after the probability adjustments.
These results show that the EM prior estimates were generally better than
the confusion matrix ones (except for ‘Liver’). Moreover, adjusting the
classifier outputs on the basis of the new a priori probabilities always in-
creased classification rates, and provided accuracy levels not too far from
those obtained by using the true priors for adjusting the outputs (given in
the last column of Table 4). However, except for ‘Diabetes’ for which EM
gave better results, the adjustments made on the basis of the EM and the
confusion matrix methods seemed to have the same effect on the accuracy
improvement.

5 Related work

The problem of estimating parameters of a model by including unlabeled
data in addition to the labeled samples has been studied in both the ma-
chine learning and the artificial neural network communities. In this case, we
speak about learning from partially labeled data (see for instance Shahsha-
hani & Landgrebe, 1994; Ghahramani & Jordan, 1994; Castelli & Cover,
1995; Towell, 1996; Miller & Uyar, 1997; Nigam et al., 2000). The purpose
is to use both labeled and unlabeled data for learning since unlabeled data
are usually easy to collect, while labeled data are much more difficult to
obtain. In this framework, the labeled part (the training set in our case)
and the unlabeled part (the new data set in our case) are combined in one
data set, and a partly-supervised EM algorithm is used in order to fit the
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model (a classifier) by maximizing the full likelihood of the complete set of
data (training set + new data set). For instance, Nigam et al. (2000) use
the EM algorithm to learn classifiers that take advantage of both labeled
and unlabeled data.

This procedure could easily be applied to our problem at hand, i.e. ad-
justing the a posteriori probabilities provided by a classifier to new a priori
conditions. Moreover, it makes fully efficient use of the available data. How-
ever, at the down side, the model has to be completely refitted each time it is
applied to a new data set. This is to be opposed to the approach discussed
in this paper, where the model is fitted only on the training set. When
applied to a new data set, the model is not modified: only its outputs are
recomputed based on the new observations.

Related problems involving missing data have also been studied in ap-
plied statistics. Some good recent reference pointers are Scott & Wild (1997)
and Lawless, Kalbfleisch & Wild (1999).

6 Conclusion

We presented a simple procedure allowing to adjust the outputs of a classifier
to new a priori class probabilities. This procedure is a simple instance
of the EM algorithm. When deriving this procedure, we relied on three
fundamental assumptions:

1. The a posteriori probabilities provided by the model (our readjust-
ment procedure can only be applied if the classifier provides as out-
put an estimate of the a posteriori probabilities) are reasonably well-
approximated, which means that it provides predicted probabilities
of belonging to the classes that are sufficiently close to the observed
probabilities.

2. The training set selection (the sampling) has been performed on the
basis of the discrete dependent variable (the classes), and not of the ob-
served input variable x (the explanatory variable), so that the within-
class probability densities do not change.

3. The new data set to be scored is large enough in order to be able to
estimate accurately the new a priori class probabilities.

If sampling also occurs on the basis of x, the usual sample survey so-
lution to this problem is to use weighted maximum likelihood estimators
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with weights inversely proportional to the selection probabilities, which are
supposed to be known (see for instance Kish and Frankel, 1974).

Experimental results show that our new procedure based on EM per-
forms better than the standard method (based on the confusion matrix) for
new a priori probabilities estimation. The results also show that, even if the
classifier’s output provides imperfect a posteriori probability estimates

• The EM procedure is able to provide reasonably good estimates of the
new a priori probabilities;

• The classifier with adjusted outputs always performs better than the
original one if the a priori conditions differ from the training set to the
real-world data. The gain of classification accuracy can be significant;

• The classification performances after adjustment by EM are relatively
close to the results obtained by using the true priors (which are un-
known in a real-world situation), even when the a posteriori probabil-
ities are imperfectly estimated.

Additionally, the quality of the estimates does not appear to depend
strongly on the size of the new data set. All these results enable us to relax
to a certain extend the first and third assumptions here above.

We also observed that adjusting the outputs of the classifier when not
needed (i.e. when the a priori probabilities of the training set and the real-
world data do not differ) can result in a decrease in classification accuracy.
We therefore showed that a likelihood ratio test can be used in order to de-
cide if the a priori probabilities have significantly changed from the training
set to the new data set. The readjustment procedure should be applied only
when we find a significant change of a priori probabilities.

Notice that the EM-based adjustment procedure could be useful in the
context of disease prevalence estimation. In this application, the primary
objective is the estimation of the class proportions in an unlabeled data set
(i.e. class a priori probabilities); classification accuracy is not important per
se.

Another important problem, also encountered in medicine, concerns the
automatic estimation of the proportions of different cell populations consti-
tuting, for example, a smear or a lesion (such as a tumor). Mixed tumors
are composed of two or more cell populations with different lineages, as for
example in brain glial tumors (Decaestecker et al., 1997). In this case, a
classifier is trained on a sample of images of ‘reference cells’ providing from
tumors with a pure lineage (which did not present diagnostic difficulties) and
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labeled by experts. When a tumor is suspected to be mixed, the classifier
is applied to a sample of cells from this tumor (a few hundred) in order to
estimate the proportion of the different cell populations. The main motiva-
tion for the determination of the proportion of the different cell populations
in these mixed tumors is that the different lineage components may signif-
icantly differ with respect to their susceptibility for aggressive progression
and may thus influence patients’ prognoses. In this case, the primary goal
is the determination of the proportion of cell populations, corresponding to
the new a priori probabilities.

Another practical use of our readjustment procedure is the automatic
labeling of geographical maps based on remote sensing information. Each
portion of the map has to be labeled according to its nature (forest, agri-
cultural zone, urban zone, etc). In this case, the a priori probabilities are
unknown in advance and vary considerably from one image to another, since
they directly depend on the geographical area that has been observed (urban
area, country area, etc).

The authors are now actively working on these biomedical and geograph-
ical problems.

Acknowledgements

Part of this work was supported by the project RBC-BR 216/4041 from the
‘Région de Bruxelles-Capitale’, and funding from the SmalS-MvM. Patrice
Latinne is supported by a grant under an ARC (Action de Recherche Con-
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A Appendix: Derivation of the EM algorithm

Our derivation of the iterative process (9) closely follows the estimation
of mixing proportions of densities (see McLachlan and Krishnan, 1997).
Indeed, p(x|ωi) can be viewed as a probability density defined by equation
(1).

The EM algorithm supposes that there exists a set of unobserved data
that, in the present case, are defined as the class labels of the observations
of the new dataset. In order to pose the problem as an incomplete-data one,
associated to the new observed data, XN

1 = (x1, x2, . . . , xN), we introduce,
as the unobservable data, ZN

1 = (z1, z2, . . . , zN), where each vector zk is
associated to one of the n mutually exclusive classes: zk will represent the
class label ∈ (ω1, . . . , ωn) of the observation xk. More precisely, each zk will
be defined as an indicator vector : if zki is the component i of vector zk, then
zki = 1 and zkj = 0 for each j �= i if and only if the class label associated to
observation xk is ωi. For instance if the observation xk is assigned to class
label ωi, then zk = [0

1
, . . . , 0

i−1
, 1

i
, 0
i+1

, . . . , 0
n
]T .

Let us denote by π = [p(ω1), p(ω2), . . . , p(ωn)]T the vector of a priori
probabilities (the parameters) to be estimated. The likelihood of the com-
plete data (for the new data set) is

L(XN
1 , ZN

1 |π) =
N∏

k=1

n∏
i=1

[p(xk,ωi)]
zki

=
N∏

k=1

n∏
i=1

[p(xk|ωi)p(ωi)]
zki (14)

where p(xk|ωi) is constant (it does not depend on the parameter vector
π) and the p(ωi) probabilities are the parameters to be estimated.

The log-likelihood is

l(XN
1 , ZN

1 |π) = log
[
L(XN

1 , ZN
1 |π)

]
=

N∑
k=1

n∑
i=1

zki log [p(ωi)] +
N∑

k=1

n∑
i=1

zki log [p(xk|ωi)] (15)

Since the ZN
1 data are unobservable, during the E-step, we replace the

log-likelihood function by its conditional expectation over p(ZN
1 |XN

1 , π):
EZN

1

[
l|XN

1 , π
]
. Moreover, since we need to know the value of π in or-

der to compute EZN
1

[
l|XN

1 , π
]

(the expected log-likelihood), we use, as a
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current guess for π, the current value (at iteration step s) of the parameter
vector, π̂(s) = [p̂(s)(ω1), p̂(s)(ω2), . . . , p̂(s)(ωn)]T :

Q(π, π̂(s)) = EZN
1

[
l(XN

1 , ZN
1 |π)

∣∣XN
1 , π̂(s)

]
=

N∑
k=1

n∑
i=1

EZN
1

[
zki| xk, π̂

(s)
]
log [p(ωi)]

+
N∑

k=1

n∑
i=1

EZN
1

[
zki| xk, π̂

(s)
]
log [p(xk|ωi)] (16)

where we assumed that the complete-data observations {(xk, zk), k = 1, . . . , N}
are independent. We obtain for the expectation of the unobservable data

EZN
1

[
zki|xk, π̂

(s)
]

= 0 · p(zki = 0|xk, π̂
(s)) + 1 · p(zki = 1|xk, π̂

(s))

= p(zki = 1|xk, π̂
(s))

= p̂(s)(ωi|xk)

=

p̂(s)(ωi)
p̂t(ωi)

p̂t(ωi|xk)

n∑
j=1

p̂(s)(ωj)
p̂t(ωj)

p̂t(ωj|xk)

(17)

where we used the equation (4) at the last step. The expected likelihood
is therefore

Q(π, π̂(s)) =
N∑

k=1

n∑
i=1

p̂(s)(ωi|xk) log [p(ωi)]

+
N∑

k=1

n∑
i=1

p̂(s)(ωi|xk) log [p(xk|ωi)] (18)

where p̂(s)(ωi|xk) is given by (17).
For the M-step, we compute the maximum of Q(π, π̂(s)) (equation 18)

with respect to the parameter vector π = [p(ω1), p(ω2), . . . , p(ωn)]T . The
new estimate at time step (s + 1) will therefore be the value of the pa-
rameter vector π that maximizes Q(π, π̂(s)). Since we have the constraint,∑n

i=1 p(ωi) = 1, we define the Lagrange function as

�(π) = Q(π, π̂(s)) + λ

[
1 −

n∑
i=1

p(ωi)

]
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=
N∑

k=1

n∑
i=1

p̂(s)(ωi|xk) log [p(ωi)] +
N∑

k=1

n∑
i=1

p̂(s)(ωi|xk) log [p(xk|ωi)]

+λ

[
1 −

n∑
i=1

p(ωi)

]
(19)

By computing
∂�(π)
∂p(ωj)

= 0, we obtain

N∑
k=1

p̂(s)(ωj|xk) = λ p(ωj) (20)

for j = 1, . . . , n. If we sum this equation over j, we obtain the value of
the Lagrange parameter, λ = N , so that

p(ωj) =
1
N

N∑
k=1

p̂(s)(ωj |xk) (21)

and the next estimate of p(ωi) is therefore

p̂(s+1)(ωi) =
1
N

N∑
k=1

p̂(s)(ωi|xk) (22)

So that the equations (17) (E-step) and (22) (M-step) are repeated until the
convergence of the parameter vector π. The overall procedure is summarized
in (9). It can be shown that this iterative process increases the likelihood
(6) at each step (see for instance Dempster et al., 1977; McLachlan and
Krishnan, 1997). �
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