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Abstract

This paper re-examines the classical problem of active and passive damping of a
piezoelectric truss. The active damping strategy is the so-called IFF (Integral Force
Feedback) which has guaranteed stability; both voltage control and charge (current)
control implementations are examined; they are compared to resistive shunting. It is
shown that in all three cases, the closed-loop eigenvalues follow a root-locus; closed
form analytical formulas are given for the poles and zeros and the maximum modal
damping. It is shown that the performances are controlled by two parameters: the
modal fraction of strain energy νi in the active strut and the electromechanical
coupling factor k. The paper also examines the damping via inductive shunting and
the enhancement of the electromechanical coupling factor by shunting a synthetic
negative capacitance.

In the second part, a numerical example is examined and the analytical formulae
are compared with predictions based on more elaborate models, including a full FE
representation of the truss, the transducer, the electrical network and the controller.
The limitations of the analytical formulae are pointed out.
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1 Introduction

The active damping of a truss with piezoelectric struts has been largely mo-
tivated by producing large, lightweight spacecrafts with improved dynamic
stability; this classical problem has received a lot of attention over the past 15
years and very effective solutions have been proposed (e.g.[1]). One of them
known as Integral Force Feedback (IFF) is based on a collocated force sensor
and has guaranteed stability [2].

Traditionally, the piezoelectric actuators have been controlled with a volt-
age amplifier; this is known to lead to substantial hysteresis caused by the
ferroelectric behavior of the material, which requires an external sensor and
closed-loop control for precision engineering applications. On the contrary,
charge control allows to achieve a nearly linear relationship between the driv-
ing electrical value and the free actuator extension (e.g.[3]). The theory of
IFF with charge control, and its implementation with a current amplifier, was
reexamined in [4].

For space applications, because of the inherent constraints of the launch loads,
the space environment, and the impossibility of in-orbit maintenance, there
is a strong motivation to reduce or eliminate the power electronics associated
to the piezoelectric actuators as well as the complex electronics associated
to sensing (particularly in the sub-micron range where the sensor sensitivity
becomes an issue). This has motivated the use of passive electrical networks as
damping mechanisms [5], [6], [7]. The efficiency of such a damping mechanism
depends very much on the ability to transform mechanical (strain) energy into
electrical energy, that is to transfer strain from the vibrating structure to the
transducer material, and to transform the strain energy into electrical energy
inside the active material; the latter is measured by the electromechanical
coupling factor k. Recent improvements have led to piezoelectric materials with
coupling factors of k33 = 0.7 and more, making them a very attractive option
for damping passively space structures. This paper compares the passive and
the active options; they are presented in a very similar formalism and closed-
loop results are presented, which allow a direct evaluation of the performances
in terms of two physical parameters: the modal fraction of strain energy νi

which controls the ability of every vibration mode to concentrate the strain
energy into the transducer element, and the electromechanical coupling factor
which measures the material ability to transform mechanical strain energy
into electrical energy. Furthermore, the electromechanical coupling factor can
be increased actively by shunting the piezoelectric transducer with a synthetic
negative capacitance, as proposed by Forward [14] and demonstrated in [11].

Inductive shunting was first proposed in [5]; if the piezoelectric transducer
is shunted on a RL circuit such that the natural frequency of the electrical
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circuit is tuned on the natural frequency of one mode, the system behaves like
a tuned mass damper [7]. Remarkable performances can be achieved if the
shunt parameters are perfectly tuned, but they drop rapidly when the natural
frequency drifts away from its design value. The extension to multiple modes
is addressed in [8], where the use of a set of parallel shunts is suggested; other
methods are reviewed in [9].

More recently, promising alternative methods based on state switching have
been proposed. The transducer is connected to a solid-state switch device
which discharges periodically the piezoelectric element on a small inductor,
producing a voltage inversion [15]. Nonlinear techniques will not be addressed
in this paper.

2 Governing equations

Consider the linear structure of Fig.1, assumed undamped for simplicity, and
equipped with a discrete piezoelectric transducer of the stacked design (d33).
The stack includes n disks; its stiffness with short-circuited electrode is Ka

and its unloaded capacitance is C. The structure is defined by its mass matrix
M and its stiffness matrix K (excluding the transducer). The dynamics of this
system can be handled with the Lagrange equations.

Using a flux linkage formulation for the electrical quantities, the Lagrangian
of the system reads

L = T ∗ + W ∗
e − V (1)

where

T ∗ =
1

2
ẋT Mẋ (2)

is the kinetic coenergy of the structure,

V =
1

2
xT Kx (3)

is the strain energy in the structure, excluding the piezoelectric transducer,
and

W ∗
e (λ̇) =

1

2
C(1− k2)λ̇2 + nd33Kaλ̇∆− 1

2
Ka∆

2 (4)

is the coenergy function of the piezoelectric transducer [16]. In (4), λ̇ = V is
the voltage at the electrodes of the transducer, ∆ = bT x is its total extension,
d33 the piezoelectric constant and n the number of disks in the piezo stack
(the free extension is δ = nd33V ). Note that the constitutive equations of the
transducer follow from

Q =
∂W ∗

e

∂λ̇
f = −∂W ∗

e

∂∆
(5)
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One finds 



Q

f





=




C(1− k2) nd33Ka

−nd33Ka Ka








V

∆





(6)

The virtual work of the non-conservative forces is

δWnc = Iδλ− λ̇

R
δλ + Fδx (7)

where I is the current source intensity and F is the vector of external forces
applied to the structure. We assume F = 0 in this discussion.

The Lagrange’s equations relative to the generalized coordinates x and λ give
respectively

Mẍ + (K + Kabb
T )x = bKand33V (8)

d

dt
[C(1− k2)V + nd33Kab

T x] +
V

R
= I (9)

where V = λ̇. These two equations govern the system dynamics when a current
source is used. When a voltage source is used instead (the shunted resistor
becomes irrelevant in this case), λ ceases to be a generalized variable and
Equ.(8) applies alone.

3 Active damping with IFF and voltage control

Equation (8) is rewritten in Laplace form

Ms2x + (K + Kabb
T )x = bKaδ (10)

where s is the Laplace variable and δ is the free expansion of the transducer
under V . We assume that a force sensor is collocated with the piezoelectric
transducer and measures the axial force f acting on the transducer. According
to the second constitutive equation (6),

y = f = Ka(∆− δ) = Ka(b
T x− δ) (11)

The Integral Force Feedback (IFF) consists of

δ =
g

Kas
y (12)

Combining (10-12), one easily gets the closed-loop equation

[Ms2 + (K + Kabb
T )− g

s + g
(Kabb

T )]x = 0 (13)
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The asymptotic roots for g → 0 (open-loop poles) satisfy

[Ms2 + (K + Kabb
T )]x = 0 (14)

The solutions of this eigenvalue problem are the natural frequencies of the
global structure when the electrodes of the transducer are short-circuited. On
the other hand, the asymptotic roots for g → ∞ are the open-loop zeros zi,
solutions of the eigenvalue problem

[Ms2 + K]x = 0 (15)

which corresponds to the situation where the axial stiffness of the active strut
has been removed.

3.1 Modal coordinates

The development follows closely that of [2]. The characteristic equation is
transformed in modal coordinates according to x = Φz, where Φ = (φ1, . . . , φn)
is the matrix of the mode shapes, solutions of the eigenvalue problem (14).
The mode shapes are normalized according to

ΦT MΦ = I

ΦT (K + Kabb
T )Φ = ω2 = diag(ω2

i ) (16)

where ωi are the natural frequencies of the structure with short-circuited
electrodes. Using the modal expansion of the dynamic flexibility matrix, the
open-loop Frequency Response Function (FRF) of the system can be writ-
ten ([2], p.61):

G(ω) =
y

δ
= Ka[

n∑

i=1

νi

1− ω2/ω2
i

− 1] (17)

where the sum extends to all the modes and

νi =
φT

i (Kabb
T )φi

φT
i (K + KabbT )φi

(18)

is the fraction of modal strain energy in the active strut when the truss vibrates
according to mode i. All the residues νi in the open-loop FRF are positive,
which guarantees alternating poles and zeros [12], Fig.2(a). The root locus
plot corresponding to the IFF is shown in Fig.3.

Transforming (13) in modal coordinates, one gets

[Is2 + ω2 − g

s + g
ΦT (Kabb

T )Φ]z = 0 (19)
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where the matrix ΦT (Kabb
T )Φ is in general fully populated. Assuming that

it is diagonally dominant, and neglecting the off-diagonal terms, it can be
rewritten

ΦT (Kabb
T )Φ ' diag(νiω

2
i ) (20)

In this case, (19) is reduced to a set of uncoupled equations:

s2 + ω2
i −

g

s + g
νiω

2
i = 0 (21)

If one uses the notation
z2

i = ω2
i (1− νi) (22)

(21) can be transformed into

1 + g
s2 + z2

i

s(s2 + ω2
i )

= 0 (23)

which shows that every mode follows a root locus with poles at ±jωi and at
s = 0, and zeros at ±jzi (Fig.4). Comparing with (15), the latter are readily
identified as the natural frequencies of the structure when the axial stiffness of
the active strut has been cancelled. If zi ≥ ωi/3, the maximum modal damping
is given by

ξmax
i =

ωi − zi

2zi

(24)

and is achieved for g = ωi

√
ωi/zi [2]. If zi < ωi/3, ξi > 1, see Fig.11.

Note that, since (22) is approximate, one can use the roots of (15) as zi when
drawing the root locus (23).

4 Active Damping with IFF and charge control

If one considers a pure current source, R → ∞ in (9). Upon eliminating V
between (8) and (9), it is easily established that the dynamics of the system
is now governed by

Mẍ + [K + bbT Ka

1− k2
]x = b

Ka

1− k2
.d33n

I

sC
(25)

where

k2 =
d2

33

sEεT
=

n2d2
33Ka

C
(26)

k is the electromechanical coupling factor of the transducer material. I/s is
the electric charge Q and δ = nd33Q/C is the free expansion of the transducer
under Q (and f = 0). Equation (25) is very similar to (10), except that
the piezoelectric transducer behaves with an increased stiffness, Ka/(1− k2),
corresponding to open electrodes (Q = 0).
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Using the same force feedback as in section 3 (IFF on Q, which amounts to
proportional feedback on I), after modifying slightly (11) and (12) to account
for the increased stiffness of the transducer, one easily gets that the closed-loop
poles are solution of the eigenvalue problem

[Ms2 + (K +
Ka

1− k2
bbT )− g

s + g

Ka

1− k2
bbT ]x = 0 (27)

The asymptotic roots for g = 0 satisfy

[Ms2 + (K +
Ka

1− k2
bbT )]x = 0 (28)

The solutions are the natural frequencies of the global structure, Ωi, when the
transducer electrodes are open. On the other hand, the asymptotic roots when
g →∞, which are the open-loop zeros, zi, are again solutions of the eigenvalue
problem (15).

Following the same procedure as in the previous section, (27) can be trans-
formed into modal coordinates; it is readily found that the closed-loop poles
are solutions of

1 + g
s2 + z2

i

s(s2 + Ω2
i )

= 0 (29)

which is the same as (23), except that the natural frequencies Ωi with open
electrodes are used instead of ωi (with short-circuited electrodes). The root
locus is again that of Fig.4, and the maximum damping ratio is given by (24)
with Ωi instead of ωi. Note that, assuming that the displacement mode shapes
are independent of the electric boundary conditions,

Ω2
i = φT

i (K +
Ka

1− k2
bbT )φi = φT

i (K + Kabb
T )φi +

k2

1− k2
φT

i Kabb
T φi

or, using (16) and (18),

Ω2
i ' ω2

i (1 +
k2

1− k2
νi) (30)

5 Admittance of the transducer

The admittance of the transducer installed in the structure can be analyzed
with (8) and (9), after removing the resistive shunting (R →∞). Upon elim-
inating x between the two equations, one can show that (see [16] p.117 for
details)

I

sCV
= 1 + k2[

n∑

i=1

νi

1− ω2/ω2
i

− 1] (31)

7



which is quite similar to (17). It is represented in Fig.2(b); it also exhibits
alternating poles and zeros. The poles are at ωi, the natural frequencies of the
structure with short-circuited electrodes, and it can be shown that the zeros
are at Ωi, the natural frequencies with open electrodes (I = 0). The interesting
thing is that a single admittance test allows to determine both ωi and Ωi.

6 Passive damping via resistive shunting

Setting I = 0 in (9) and eliminating V between (8) and (9), one gets the
eigenvalue problem

[Ms2 + (K + Kabb
T ) +

k2Kabb
T

(1− k2) + 1/sRC
]x = 0 (32)

One sees that when R = 0, it is identical to (14), leading to the frequencies
ωi (short-circuited). For R → ∞, it becomes identical to (28), leading to Ωi

(open electrodes). Going into modal coordinates, denoting % = RC, one finds
that every mode follows the characteristic equation

s2 + ω2
i +

k2νiω
2
i

1− k2 + 1/%s
= 0 (33)

which can be rewritten in a root locus form

1 +
1

%(1− k2)

s2 + ω2
i

s(s2 + Ω2
i )

= 0 (34)

where (30) has been used. According to this equation, when % varies from ∞
to 0, the poles follow a root locus similar to that of Fig.4. The poles are in this
case at ±jΩi (open electrodes) while the zeros are at ±jωi (short-circuited).
As in Fig.4, the maximum achievable damping is given by

ξmax
i =

Ωi − ωi

2 ωi

' Ω2
i − ω2

i

4 ω2
i

(35)

and, using again (30),

ξmax
i =

k2νi

4(1− k2)
(36)

(it is achieved for [ρ(1 − k2)]−1 = Ωi

√
Ωi/ωi.) This equation points out the

influence of the fraction of modal strain energy νi and the electromechanical
coupling factor on passive damping with resistive shunting. Note that all the
modes cannot be optimally damped simultaneously, because there is a single
tuning parameter %.
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Figure 5 and Table 1 summarize the results of the three control configurations.
Column 4 of Table 1 gives an approximation of the maximum achievable modal
damping based on (35); these expressions show clearly the influence of the
fraction of modal strain energy νi and that of the electromechanical coupling
factor k. Note that: (i) For the IFF with voltage control, the maximum damp-
ing is independent of the electromechanical coupling factor. (ii) The IFF with
charge control gives always better performances than with voltage control;
the advantage increases with k. (iii) Significant modal damping with resistive
shunting can be achieved only when the electromechanical coupling factor is
large; piezoelectric materials with k ≥ 0.7 are available.

7 Generalized electromechanical coupling factor

It is well known that the electromechanical coupling factor of a piezoelectric
transducer alone can be derived from an admittance measurement. If p and z
are respectively the pole and the zero in the admittance curve,

k2 =
z2 − p2

z2
(37)

By analogy, if we consider the poles ωi and zeros Ωi in the admittance curve
of the transducer when it is mounted in the structure, one can define the
generalized electromechanical coupling factor of mode i as

K2
i =

Ω2
i − ω2

i

Ω2
i

(38)

Using (30), one finds

K2
i =

k2νi

1− k2 + k2νi

(39)

K2
i combines material data with information about the structure; K2

i = k2 if
νi = 1. Note that, in the literature, the definition

K2
i =

Ω2
i − ω2

i

ω2
i

=
k2νi

1− k2
(40)

is often used instead of (38). The difference between the two definitions is
insignificant in most practical applications, but (40) does not supply Ki = k
if νi = 1. The maximum performance of resistive shunting, (36), is directly
related to the generalized electromechanical coupling factor.
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8 Damping enhancement via negative capacitive shunting

Equation (36) indicates that the damping performance of the resistive shunting
depends critically on the electromechanical coupling factor, and that it may
become significant if k > 0.7. The electromechanical coupling factor of the
transducer can be increased by placing a negative capacitance in parallel to
the transducer (Fig.6).

The properties (C?, k?) of the equivalent transducer can be determined by
equating the joint coenergy function of the original transducer and the negative
capacitance −C1

W ∗
e (λ̇) =

1

2
C(1− k2)λ̇2 + nd33Kaλ̇∆− 1

2
Ka∆

2 − 1

2
C1λ̇

2 (41)

with the coenergy function of the equivalent transducer

W ∗
e (λ̇) =

1

2
C∗(1− k∗2)λ̇2 + nd33Kaλ̇∆− 1

2
Ka∆

2 (42)

One finds easily that the equivalent properties are

C∗ = C − C1 (43)

k∗2 = k2 C

C − C1

(44)

Note that, since k?2 < 1, one must have C1 < C(1− k2).

Returning to (30) and Fig.5, one sees that a negative capacitance increases
the natural frequency with open electrodes, Ωi, and widens the loop of the
root locus for resistive shunting.

The idea of using a negative capacitance to enhance the damping was first
proposed by Forward [14]; this idea is also developed in [11]. The synthesis of
a negative capacitance is discussed in [13].

9 Passive damping via inductive shunting

The principle of inductive shunting is well known; the shunt consists of an
inductor and a resistor in series which are combined with the capacitance of
the transducer to create a damped electric resonance; if the electrical resonance
is tuned on the mechanical resonance, the resonant shunt acts as a vibration
absorber. The theory of inductive shunting was first presented by Hagood and
von Flotow [6]; it is not easy to present it in a simple way.
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Consider the system of Fig.7. In this case, it is simpler to use the electric charge
as electric variable in the formulation of the Lagrange equations (rather than
the flux linkage used earlier in this paper). Let q̇ be the current in the single
electrical loop of the system; the Lagrangian reads in this case

L = T ? + W ?
m − V −We (45)

where T ? and V refer, as usual, to the mechanical part of the system, W ?
m =

(1/2)Lq̇2 is the magnetic coenergy of the inductor and We is the electrome-
chanical energy of the piezoelectric transducer,

L =
1

2
ẋT Mẋ+

1

2
Lq̇2− 1

2
xT Kx− q2

2C(1− k2)
+

nd33Ka

C(1− k2)
qbT x− Ka

1− k2

(bT x)2

2
(46)

The Lagrange equation relative to the coordinates x and q are respectively

Mẍ + (K +
Ka

1− k2
bbT )x− bnd33Ka

C(1− k2)
q = 0 (47)

Lq̈ + Rq̇ +
q

C(1− k2)
− nd33Ka

C(1− k2)
bT x = 0 (48)

The electrical frequency and the electrical damping are defined respectively
by

ω2
e =

1

LC(1− k2)
(49)

2ξeωe =
R

L
(50)

With these notations, (48) is rewritten (in Laplace form)

q =
ω2

e

s2 + 2ξeωes + ω2
e

nd33Kab
T x (51)

Substituting into (47), one finds

(Ms2 + K +
Ka

1− k2
bbT )x +

k2

1− k2
Kabb

T x[
−ω2

e

s2 + 2ξeωes + ω2
e

] = 0 (52)

and, after transformations into modal coordinates, one finds that every mode
is governed by the characteristic equation

s2 + Ω2
i +

k2νiω
2
i

1− k2
[

−ω2
e

s2 + 2ξeωes + ω2
e

] = 0 (53)

This equation can be rearranged into a root locus form

1 + 2ξeωe
s(s2 + Ω2

i )

s4 + (Ω2
i + ω2

e)s
2 + ω2

i ω
2
e

= 0 (54)
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In this formulation, 2ξeωe plays the role of the gain in a classical root locus.
Note that, for large R, the poles tend to ±jΩi, as expected. For R = 0 (i.e.
ξe = 0), they are the solutions p1 and p2 of the characteristic equation s4 +
(Ω2

i +ω2
e)s

2+ω2
i ω

2
e = 0 which accounts for the classical double peak of resonant

dampers, with p1 above jΩi and p2 below jΩi. Fig.8 shows the root locus for
a fixed value of ωi/Ωi and various values of the electrical tuning, expressed by
the ratio

αe =
ωeωi

Ω2
i

(55)

The locus consists of two loops, starting respectively from p1 and p2; one of
them goes to jΩi and the other goes to the real axis, near −Ωi. If αe > 1
[Fig.8(a)], the upper loop starting from p1 goes to the real axis, and that
starting from p2 goes to jΩi, and the upper pole is always more heavily damped
than the lower one (note that, if ωe → ∞, p1 → ∞ and p2 → jωi; the lower
branch of the root locus becomes that of the resistive shunting). The opposite
situation occurs if αe < 1 [Fig.8(b)]: the upper loop goes from p1 to jΩi and
the lower one goes from p2 to the real axis; the lower pole is always more
heavily damped. If αe = 1 [Fig.8(c)], the two poles are always equally damped
until the two branches touch each other in Q. This double root is achieved for

αe =
ωeωi

Ω2
i

= 1 , ξ2
e = 1− ω2

i

Ω2
i

(56)

This can be regarded as the optimum tuning of the inductive shunting (note
that, comparing with (38), ξ2

e = K2
i ; thus, the optimum electrical damping

ratio exactly matches the generalized electromechanical coupling factor). The
corresponding eigenvalues satisfy

s2 + Ω2
i + Ωi(

Ω2
i

ω2
i

− 1)1/2s = 0 (57)

For various values of ωi/Ωi (or Ki), the optimum poles at Q move along a circle
of radius Ωi [Fig.8(d)]. The corresponding damping ratio can be obtained easily
by identifying the previous equation with the classical form of the damped
oscillator, s2 + 2ξiΩis + Ω2

i = 0, leading to

ξi =
1

2
(
Ω2

i

ω2
i

− 1)1/2 =
1

2
(

K2
i

1−K2
i

)1/2 ' Ki

2
(58)

Using (30), we can express the optimum damping ratio in terms of the elec-
tromechanical coupling factor and the fraction of modal strain energy:

ξi =
1

2
(

k2νi

1− k2
)1/2 (59)

This value is significantly higher than that achieved with purely resistive
shunting [it is exactly the square-root of (36)]; it has been added to Table 1
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for comparison. Note, however, that it is much more sensitive to the tuning of
the electrical parameters on the targeted modes. This is illustrated in Fig.9,
which displays the evolution of the damping ratio ξi when the actual natural
frequency ω′i moves away from the nominal frequency ωi for which the shunt
has been optimized (the damping ratio associated with p1 and p2 is plotted in
dotted lines; the ratio ω′i/Ω

′
i is kept constant in all cases). One sees that the

performance of the inductive shunting drops rapidly below that of the resistive
shunting when the de-tuning increases. Note that, for low frequency modes,
the optimum inductance value can be very large; such large inductors can
be synthesized electronically. The multimodal passive damping via resonant
shunt has been investigated by Hollkamp [8].

10 Numerical example

In this section, we illustrate the foregoing theory and we point out the limi-
tations of the analytical formulae.

Consider the truss structure of Fig.10. It consists of 12 bays of 140 mm each,
made of steel bars of 4 mm diameter connected with plastic joints; it is clamped
at the bottom. It is equipped with two active struts as indicated in the figure.
This truss was already considered in the experimental set up of [1], but in this
study, a new type of active strut is used, build from a stacked actuator (PI P-
010-30H) prestressed in compression with an internal wire (Ka = 30N/µm,
C = 135nF and k = 0.6) and a force sensor. The truss model consists of
beam elements, except for the piezoelectric actuator which, for convenience,
is obtained by Guyan’s reduction of a separate model with piezoelectric vol-
ume elements. After reduction, the transducer model has only 12 mechanical
variables (6 d.o.f. at its end points) and 1 electrical variable (voltage). The
structural damping is assumed ξ = 0.1%.

The natural frequencies with short-circuited electrodes, ωi, and the fraction of
modal strain energy, νi, predicted with the nominal model are given in Table 2.

In this study, we analyze the active and passive damping of modes 1 and 2,
using successively the two piezoelectric struts (one at a time, but not simul-
taneously). The results are predicted in three different ways:

• (1) Using the approximate formulae of Table 1, formula (39) in the text
and the numerical values of Table 2.

• (2) Using a specific FE model (SAMCEF) to evaluate Ωi and zi, by
changing the electrical boundary conditions to evaluate Ωi, or removing the
axial stiffness of the actuator to evaluate zi. Formulae (24), (35) and (58)
are used to evaluate the damping.
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• (3) Using a full MATLAB model which couples the FE model, the elec-
trical network, including the non-diagonal terms in (19), and the control
law. The comparison with (2) gives an idea of the influence of the modal
coupling.

Table 3 shows the values of Ωi, Ki and zi, when either strut 1 or strut 2 is
active. The values reported in column (1) have been obtained with formulae
(22), (30) and (39), while those in column (2) have been obtained by changing
the FE model. In the latter case, the values of Ωi and Ki exactly match those
obtained from an impedance or admittance curve. Notice the very large error
on the approximate formulae for zi, due to the violation of the assumptions
used in deriving (22), especially the fact that the mode shapes are drastically
different after removing the axial stiffness of the strut. Formula (22) must be
used with caution.

Table 4 gives the maximum modal damping ξi predicted for the two active
struts and three control strategies: IFF with voltage control, IFF with charge
control, resistive shunting. Column (1) is based on the approximate formulae
of Table 1, column (2) is based on the FE prediction of the poles and zeros
and formulae (24) and (35), and column (3) is obtained with the full model.
“critical” means that ξi > 1. The explanation for these very large damping
values is as follows: because of the particular design of the truss, removing the
axial stiffness of the actuator almost produces a mechanism, which corresponds
to one zero pair being very close to the origin. With this location of the
zeros, the root locus departs significantly from the shape of Fig.4. Figure 11
illustrates how the root locus of the IFF evolves when the open loop zeros
migrate towards the origin.

Figure 12 shows the root locus of the closed-loop poles of the IFF with volt-
age control, charge control, and resistive shunting. For strut 1, Fig.12(a), the
curves relative to mode 1 differ significantly from Fig.4, for the reason men-
tioned before; those relative to mode 2 can hardly be seen, because mode 2 is
almost uncontrollable from strut 1 (ν2 close to 0). The vicinity of ω1 and ω2

has been enlarged. Note that the natural frequencies with open electrodes, Ω1

is very close to ω1, in spite of the reasonable value of ν1 and the electrome-
chanical coupling factor (k = 0.6); this is translated into a modest value of
the damping ratio achievable with resistive shunting. Examining the root locus
for strut 2, Fig.11(b), one sees that, due to the weak controllability of mode 1
from strut 2, there is a permutation in the zeros z1 and z2: the pole at ω2 goes
to the low frequency zero while the loop of mode 1 moves towards the zero
z1 with a slightly higher frequency. Figure 13 shows the predicted admittance
FRF of strut 1 and 2, obtained with the full MATLAB model; such curves
contain information about ωi, Ωi, and Ki. Figure 13 essentially confirms the
results of Fig.12, in particular that mode 2 is not controllable from strut 1.
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Table 5 considers the inductive shunting. Columns (1) and (2) are based on
(56) and the values of ωi and Ωi from Tables 2 and 3. Column (3) corresponds
to the optimum condition Q in Fig.8. Figure 14 shows a detail of the root locus
in the vicinity of mode 1 for perfect tuning of the electrical circuit (i.e. that
providing equal damping to the two modes). Figure 15 shows a FRF between
a lateral force applied along the truss (as indicated in Fig.10) and the velocity
at the top. Fig.15(a) considers the inductive shunting with optimal frequency
tuning and shows the evolution of the FRF with the electrical damping ξe.
Figure 15(b) compares the resistive shunting and the inductive shunting (both
at optimum value).

11 Conclusions

The first part of this paper reexamines the classical problem of active and
passive damping of a piezoelectric truss. The active damping uses an Integral
Force Feedback based on a collocated force sensor. Both voltage control and
charge (current) control are considered. The passive damping considers both
resistive and inductive shunting. The enhancement of the electromechanical
coupling factor via a synthetic negative capacitance is also examined. The
distinctive features of our contribution are:
(i) The system dynamics is formulated with the Lagrange equations, which
provides fairly compact results (especially for inductive shunting)
(ii) All the strategies are presented in a unified way, using a root locus ap-
proach
(iii) Approximate analytical results are expressed in terms of two meaningful
design parameters: the electromechanical coupling factor k2 and the fraction
of modal strain energy νi.

In the second part of the paper, a numerical example is considered. Two lo-
cations are considered for the active strut, and the various control strategies
are compared. It is observed that:
(i) The active control by IFF is very effective and is able, at least in theory,
to achieve critical damping.
(ii) The map of fraction of modal strain energy constitutes an excellent guide
for actuator location, but the approximate analytical results, which are based
on the assumption that the mode shapes are unchanged, grossly underesti-
mate the control performance of the IFF. Especially formula (22) should be
used with caution. In all circumstances, accurate performance evaluation can
be obtained from (24), (35) and (58) provided separate modal analyses are
conducted with appropriate boundary conditions to estimate the poles and
the zeros. The influence of modal coupling is only marginal.
(iii) As long as the mode shapes do not change significantly and that the poles
and zeros are not too far apart, the approximate analytical formulae based on
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k and νi are fairly accurate and can be used for prediction purposes. This
applies to resistive and inductive shunting.
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Fig. 1. Linear structure equipped with a piezoelectric transducer, a current source
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(a) (b)

Fig. 2. (a) Open loop FRF of the active strut mounted in the structure. (b) Admit-
tance of the transducer mounted in the structure
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Fig. 11. Evolution of the root locus of the closed-loop poles of the IFF when the
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z3 = ω/3. The dotted line corresponds to the maximum damping given by (24).
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top (see Fig.10). (a) Inductive shunting with optimal frequency tuning: evolution
of the FRF with the electrical damping. (b) Comparison of resistive and inductive
shunting (both at optimum value).

Table 1
Open-loop poles and zeros and maximum achievable modal damping in the
root locus of Fig.5. The inductive shunting is added for comparison.

Control Open-loop poles Open-loop zeros Max. Damping ξi

IFF ±jzi

(Voltage control) ±jωi ' νi
4(1−νi)

(short-circuit) ±jωi

√
1− νi

IFF ±jΩi

(Charge control) ' ±jzi
νi

4(1−νi)(1−k2)

±jωi

√
1 + k2νi

1−k2 (transducer removed)

Resistive ±jΩi ±jωi
k2νi

4(1−k2)
shunting (open electrodes)

Inductive p1, p2 0 , ±jΩi
1
2

√
k2νi
1−k2

shunting
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Table 2
Natural frequencies (in Hz ) with short-circuited electrodes and fractions of modal
strain energies for strut 1 and 2.

ωi/2π νi (%)

mode strut 1 strut 2

1 18.63 9.65 2.07

2 23.14 0.17 8.60

3 102.98 1.32 0.17

4 109.51 1.05 4.84

5 124.32 0.13 2.47

6 228.15 0.50 2.65

Table 3
Predicted Ωi (in Hz ), Ki, zi (in Hz ) (1) approximate formulae and (2) specific FE
models.

Ωi/2π Ki (%) zi (%)

mode (1) (2) (1) (2) (1) (2)

strut 1 1 19.13 18.96 22.69 18.61 17.71 2.14

2 23.15 23.14 3.09 2.58 23.12 23.07

strut 2 1 18.74 18.69 10.73 8.25 18.44 19.57

2 23.69 23.51 21.48 17.67 22.12 2.40

Table 4
Predicted maximum modal damping ξi (in %) for the IFF and resistive shunting.
(1) approximate formulae, (2) specific FE models, (3) full MATLAB model.

IFF (Voltage) IFF (Charge) Resistive shunting

mode (1) (2) (3) (1) (2) (3) (1) (2) (3)

strut 1 1 2.60 critical critical 4.01 critical critical 1.34 0.90 0.89

2 0.04 0.15 0.15 0.07 0.17 0.17 0.024 0.017 0.017

strut 2 1 0.53 2.40 2.86 0.82 2.07 2.60 0.29 0.17 0.17

2 2.30 critical critical 3.55 critical critical 1.20 0.80 0.80
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Table 5
Inductive shunting, optimum electrical parameters (ωe/2π in Hz ) and predicted
maximum modal damping. (1) approximate formulae, (2) specific FE models, (3)
full MATLAB model.

ωe/2π ξe (%) ξi (%)

mode (1) (2) (3) (1) (2) (3) (1) (2) (3)

strut 1 1 19.64 19.30 19.78 22.69 18.61 18.19 11.65 9.47 9.45

strut 2 2 24.26 23.88 24.56 21.48 17.67 17.44 11.00 8.98 8.91
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