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Abstract

This paper focuses on the evaluation of the homogeneous properties of the
active layer in Macro Fiber Composite (MFC) transducers using finite ele-
ment periodic homogenization. The proposed method is applied to both d31
and d33 MFCs and the results are compared to previously published analyt-
ical mixing rules, showing a good agreement. The main advantages of the
finite element homogenization is the possibility to take into account local
details in the representative volume element such as complicated electrode
patterns or local variations of the poling direction due to curved electric field
lines. Although these influences have been found to be rather small in the
present study, the method presented is useful for a better understanding of
the behavior of piezocomposite transducers.

Keywords: Piezoelectric material, piezocomposite transducer, Macro Fiber
Composite (MFC), Periodic homogenization, finite element method

1. Introduction

1.1. Piezocomposite transducers

Thin piezoelectric actuators and sensors are used in a variety of applica-
tions such as active vibration control, structural health monitoring or shape
control. In these applications, PZT ceramics are commonly used due to their
relatively low cost, high bandwidth and good actuation capabilities. The ma-
jor drawbacks of these ceramics are their brittleness and very low flexibility.
This problem can be overcome using piezocomposite transducers in which
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piezoelectric fibers are mixed with a softer passive epoxy matrix. A typical
piezocomposite transducer is made of an active layer sandwiched between two
soft thin encapsulating layers (Figure 1). The packaging plays two different
roles: (i) applying prestress to the active layer in order to avoid cracks, and
(ii) bringing the electric field to the active layer through the use of a specific
surface electrode pattern. The electrodes can be either continuous, in which
case a voltage difference is applied between the top and bottom electrodes
resulting in an electric field perpendicular to the plane of the transducer, or
interdigitated [1], resulting in a curved electric field mostly aligned in the
direction of the fibers (Figure 2). In the first case, the piezoelectric fibers
are driven in the d31 mode, while in the second case, the fibers are driven in
the d33-mode, resulting in a higher achievable free strain but for much higher
applied voltages. In the family of piezocomposite transducers, there exist
many different types, differing mainly in the electrode configuration and the
type of active layer which can consist of a bulk ceramic [2, 3, 4], large square
[5] or round fibers [6], or even small fibers (see for example [7] and [8] for a
review of these different types of piezocomposites).

Round fibers are usually not very effective due to the problem of dielec-
tric permittivity mismatch which forces the electrodes to be in direct contact
with the active fibers. For this reason and also for reasons linked to the
manufacturing, the most successful implementation of piezocomposite trans-
ducers is probably the Macro Fiber Composites (MFC) manufactured and
sold by the company Smart Material. Both d31 and d33 actuators and sensors
have been developed and are currently sold.

In general, for a correct design of active vibration control or structural
health monitoring systems, it is useful to develop numerical models (i.e. finite
element models) of the structure equipped with piezoelectric transducers. For
thin plate-like structures, three-dimensional volume finite elements should be
avoided and an adequate approach is the use of multi-layer shell elements in-
cluding piezoelectric layers [9]. Such elements are available in commercial
finite element softwares such as SAMCEF (http://www.samcef.com) or the
Structural Dynamics Toolbox (SDT) (http://www.sdtools.com) under Mat-
lab. In this approach, the active layer is not modeled in details, but by
an homogeneous active layer for which the equivalent properties need to be
known. Unfortunately, the information found in the datasheet is not suffi-
cient to determine all the mechanical, dielectric and piezoelectric equivalent
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Figure 1: Overview of flat piezocomposite transducers with surface electrodes

Figure 2: Electric field distribution for different electrode configurations
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properties. This was the reason for the development of mixing rules for the
determination of the equivalent properties of MFCs from the properties of
the constituents in [10]. The mixing rules were derived using the uniform
field method and compared to numerical results obtained using the method
described and discussed in more details here.

In this paper, after introducing the properties of homogeneous piezoelec-
tric active layers under plane stress driven either in the d31 or the d33 mode,
we develop a numerical method for the evaluation of the equivalent mechan-
ical, piezoelectric and dielectric properties of piezocomposite transducers.
The method is based on numerical periodic homogenization performed on
a representative volume element (RVE) using three-dimensionnal coupled
piezoelectric finite elements. It differs from the methods generally presented
in the literature (see for example [24, 20]) in three aspects: (i) the real
electrode configuration and the resulting equipotential conditions are taken
into account in the RVE, (ii) the peridocicity condition is enforced only in
the plane of the transducer, due to the size of the fibers which is of the same
order of magnitude as the thickness of the transducer, and (iii) the poling
vector is not constant in the RVE and follows the potentially curved electric
field lines resulting from the real electrodes configuration.

The method is applied to both d31 and d33 MFCs with different volume
fractions of fibers and the results are compared to the analytical results
using the mixing rules developed in [10]. For d33 MFCs, the influence of the
curved electric field lines as well as the direction of polarization vector on
the homogeneous properties are discussed in details.

1.2. Constitutive equations of piezocomposite transducers

Using the standard IEEE notations for linear piezoelectricity, the consti-
tutive equations for an orthotropic piezoelectric material are given by:
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(1)
where Ei and Di are the components of the electric field vector and the
electric displacement vector, and Ti and Si are the components of stress and
strain vectors, defined according to:
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1.2.1. d31 - piezocomposites

For d31 piezocomposites, the poling direction (conventionally direction 3)
is normal to the plane of the patches (Figure 3a) and according to the plane
stress assumption T3 = 0. The electric field is assumed to be aligned with
the polarization vector (E2 = E1 = 0). The constitutive equations reduce to:
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(3)

where the superscript ∗ denotes the properties under the plane stress
assumption (which are not equal to the properties in 3D). The constitutive
equations can be written in a matrix form, separating the mechanical and
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the electrical parts:

{T} =
[

cE∗

]

{S} − [e∗]T {E}

{D} = [e∗] {S}+
[

εS∗
]

{E}

E P

L=1

T=2

z=3

Homogenous d patch

with electrodes
31

E P

L=3

T=2

z=1
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with electrodes
33

Electrodes
Electrodes

(b)(a)

Figure 3: Homogeneous models of the piezoelectric layers with electrodes : d31 and d33
piezoelectric layers

1.2.2. d33 - piezocomposites

For d33 piezocomposites, although the electric field lines do not have a
constant direction (Figure 2b), when replacing the active layer by an equiv-
alent homogeneous layer, we consider that the poling direction is that of the
fibers (direction 3, Figure 3b), and that the electric field is in the same di-
rection. With this reference frame, the plane stress hypothesis implies that
T1 = 0. The constitutive equations are given by



























T2

T3

T4

T5

T6

D3



























=















cE∗

22 cE∗

23 0 0 0 −e∗32
cE∗

32 cE∗

33 0 0 0 −e∗33
0 0 cE∗

44 0 0 0
0 0 0 cE∗

55 0 0
0 0 0 0 cE∗

66 0
e∗32 e∗33 0 0 0 εS∗33









































S2

S3

S4

S5

S6

E3



























(4)

For both types of piezocomposites, matrix
[

cE∗

]

is a function of the longi-
tudinal (in the direction of the fibers) and transverse in-plane Young’s moduli
(EL and ET ), the in plane Poisson’s ratio νLT , the in-plane shear modulus
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GLT , and the two out-of-plane shear moduli GLz and GTz. Matrix [e∗] is
given by

[e∗] = [d]
[

cE∗

]

(5)

where
[d] =

[

d31 d32 0 0 0
]

(6)

in the case of d31 piezocomposites and

[d] =
[

d32 d33 0 0 0
]

(7)

in the case of d33 piezocomposites. Note that the coefficients dij are un-
changed under the plane stress hypothesis.

2. Numerical evaluation of equivalent properties of piezocompos-
ites

Homogenization techniques are widely used in composite materials. They
consist in computing the homogeneous, equivalent properties of multi-phase
heterogeneous materials. An example of a 1-3 composite is shown on Figure 4
(1-3 refers to the fact that the fibers are connected in one direction and the
matrix in all 3 directions). The material is a periodic repetition in all three
directions of a so-called representative volume element (RVE) also shown in
the figure.

Equivalent properties are obtained by writing the constitutive equations
(Equation (3) or (4) in this case) in terms of the average values of Ti, Si, Di, Ei

on the RVE:

Ti =
1

V

∫

V

TidV Di =
1

V

∫

V

DidV

Si =
1

V

∫

V

SidV Ei =
1

V

∫

V

EidV (8)

where denotes the average value.

A tremendous amount of literature exists on homogenization of elastic
and inelastic materials [11, 12, 13]. Extensions have also been made to elas-
tic piezoelectric materials in [14, 15, 16, 17, 18, 19] where analytical results
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have been developed. The difficulty with analytical approaches is that they
are often restricted to particular geometries (circular or elliptical fibers) and
do not take into account complicated electrode patterns such as interdigi-
tated electrodes. The use of numerical approaches such as the finite element
method allows to overcome this problem. The principle consists in meshing
the RVE and computing approximations of the solution on this RVE using
numerical techniques. To our knowledge, this technique has only been ap-
plied for Active Fiber Composites (AFC) actuated in the d33-mode. In
the model of the RVE, some simplifying assumptions are often made. The
first one consists in applying a uniform electric field instead of the real curved
electric field [20, 21]. The second one consists in considering that the poling
direction is uniform and in the fiber direction [22]. Both these aspects have
been taken into account recently in [23] for the evaluation of stress concen-
tration in AFCs, but no homogenization was performed. In addition, the
hypothesis that the faces of the RVE remain plane is also often made. The
first problem related with this hypothesis is that it results in a large over-
estimation of the shear stiffness constants. The second problem is that it is
not representative of the fact that these transducers are periodic only in two
directions (in the plane of the actuator).

The method developed in this paper is inspired from [24] but, due to
the specificities of MFC transducers, and the remarks formulated above,
differs in the following points: (i) we consider periodicity only in the plane
of the actuator, since the thickness of the rectangular fibers is of the same
order of magnitude as the thickness of the transducer, (ii) the electrodes are
modeled in the RVE (Figure 5), and the macro variable V representing the
voltage difference across the electrodes is used instead of the electric field,
resulting in additional electrical equipotential conditions, as well as curved
electric field lines in the case of d33 MFCs, (iii) the poling direction is not
necessarily aligned in the direction of the fibers, but follows the electric field
lines imposed by the electrodes configuration. Note that a MFC contains
more than fifty fibers so that it can be considered as periodic in
the direction perpendicular to the fibres.

2.1. Finite element based periodic homogenization of MFCs

When used as sensors or actuators, piezocomposite transducers are typi-
cally equipped with two electrodes. These electrodes impose an equipotential

8



Fiber

Representative volume
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Figure 4: Example of a 1-3 composite and its representative volume element (RVE)

Electrodes

Electrodes

Figure 5: Representative volume element (RVE) for a d31 and a d33 MFC including the
electrodes
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voltage on their surfaces, and the electrical variables are the voltage differ-
ence V across the electrodes, and the electrical charge Q. These two variables
are representative of the electrical macro variables which will be used in the
numerical models of structures equipped with such transducers: transducers
are used either in open-circuit conditions (Q = 0 or imposed) or short-circuit
conditions (V = 0 or imposed). Instead of the average values of Di and Ei,
the macro variables Q and V are therefore used in the homogenization pro-
cess. For a homogeneous d33 transducer (Figure 6), the constitutive equations
can be rewritten in terms of these macro variables:
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(9)
where SC stands for ’short-circuit’ (V = 0), p is the length of the trans-

ducer, A is the surface of the electrodes of the equivalent homogeneous trans-
ducer and Q is the charge collected on the electrodes.

E= -V/p
DV

p

A
0

V

Figure 6: Homogeneous model of the d33 piezocomposite and definition of the macro
variables

For d31-piezocomposites, the approach is identical.

2.1.1. Definition of local problems

The RVE is made of two different materials. In order to find the homoge-
neous constitutive equations, Equation (9) is written in terms of the average
values of the mechanical quantities Si and Ti in the RVE and the electrical
variables Q and V defined on the electrodes:
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(10)
The different terms in Equation (10) can be identified by defining local

problems on the RVE. The technique consists in imposing conditions on the
different strain components and V and computing the average values of the
stress and the charge in order to find the different coefficients. For the electric
potential, two different conditions (V = 0, 1) are used. For the mechanical
part, we assume that the displacement field is periodic in the plane of the
transducer (see i.e [24]): on the boundary of the RVE (but not on the upper
and lower surfaces since the piezocomposite is not periodic in that direction),
the displacement can be written:

ui = Sij xj + vi (11)

where ui is the ith component of displacement, Sij is the average strain in
the RVE (tensorial notations are used), xj is the jth spatial coordinate of
the point considered on the boundary, and vi is the periodic fluctuation on
the RVE. The fluctuation v is periodic in the plane of the transducer so that
between two opposite faces (noted B−/B+ and C−/C+, Figure 7), one can
write (v(xK+

j ) = v(xK−

j ), K = B,C):

uK+
i − uK−

i = Sij (x
K+

j − xK−

j ) K = B,C (12)

For a given value of the average strain tensor (Sij), Equation (12) defines
constraints between the points on each pair of opposite faces. This is illus-
trated in Figure 8, where an average strain S2 is imposed on the RVE and
the constraints are represented for u2 on faces B− and B+.

Note that these constraints do not impose that the faces of the RVE
remain plane, which is important for the evaluation of the shear stiffness
coefficients. For faces A− and A+, the displacement is unconstrained in the
normal direction, because the MFC is not periodic in this direction.
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Figure 7: Definition of pairs of opposite faces on the RVE
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Figure 8: Example of an average strain S2 imposed on the RVE and associated periodic
conditions
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In total, six local problems are needed to identify all the coefficients in (10)
(Figure 9). The first problem consists in applying a difference of potential
V to the electrodes of the RVE and imposing zero displacement on all the
faces (except the top and bottom). The deformed mesh resulting from the
finite element computation for this local problem is represented in Figure 10
for a d31-MFC. In the next five local problems, the difference of potential
is set to 0 (short-circuited condition), and five deformation mechanisms are
induced. Each of the deformation mechanisms consists in a unitary strain
in one of the directions (with zero strain in all the other directions). For
each case, the average values of Ti and Si, and the charge accumulated on
the electrodes Q, are computed, and used to determine all the coefficients
in (10), from which the engineering constants are determined. Note that
the electrodes are included in a particular layer which is in direct
contact with the active layer considered for homogenization, so
that they are modeled as an electrical boundary condition on the
RVE only. The mechanical properties of the electrodes should be
taken into account when modeling the full MFC, as detailed in [10].

1
2

3
V

V=0

d31

All faces blocked

except top and bottom

S =11
S =12 S =16

S =14 S =15

Figure 9: The six local problems solved by the finite element method in order to compute
the homogenized properties of d31-MFCs
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Figure 10: Deformation of the RVE of a d31-MFC under applied electric potential difference
V between the top and bottom electrodes computed using finite element 3D piezoelectric
elements. All faces are fixed except top and bottom (fiber volume fraction ρ = 0.9).

2.2. Comparison with the analytical mixing rules

2.2.1. d31 MFCs

The homogeneous properties of d31-MFCs have been computed for dif-
ferent volume fractions between ρ = 0 and ρ = 1 (bulk ceramic) using the
mixing rules developed in [10] and the numerical method presented in sec-
tion 2.1. A comparison with experimental results would also be very
useful but MFC properties have only been measured for a single
volume fraction of fibers (ρ = 0.86). A comparison with these mea-
surements can be found in [10].

The properties of the fibers are given in Table 1 (it is assumed that the
fibers are made of SONOX P502 from CeramTec, direction 3 is the poling
direction. For more details, see [25]). For the matrix, typical values for epoxy
are considered: E = 2.9GPa, ν = 0.3 and εT11/ε0 = εT22/ε0 = εT33/ε0 = 4.25.

The evolution of the different mechanical, piezoelectric and dielectric
properties as a function of the fiber volume fraction is represented on Fig-
ures 11 and 12. Direction L corresponds to the fiber direction, T is the
transverse direction, and z is the out-of-plane direction.

For the mechanical properties, the match is very good for EL, ET , GLT

and νLT . For GLz and GTz, the numerical results are higher, especially for
high volume fractions of fibers. This is due to the presence of an inhomoge-
neous electric field in the Lz plane, mainly in the L direction for GLz, and in
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Figure 11: Evolution of the mechanical properties of d31 MFCs as a function of the fiber
volume fraction: comparison between the mixing rules and periodic finite element homog-
enization
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Figure 12: Evolution of piezoelectric and dielectric properties of d31 MFCs as a function of
the fiber volume fraction: comparison between the mixing rules and periodic finite element
homogenization
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MFC Fiber Engineering constants Symbol Unit SONOX P502
(set 1)

Young’s modulus E1 = E2 GPa 54.05
E3 GPa 48.30

Shear modulus G23 = G31 GPa 19.48
G12 GPa 19.14

Poisson’s ratio ν23 = ν13 - 0.44
ν12 - 0.41

Piezoelectric charge constants d32 = d31 pC/N -185
d33 pC/N 440
d15 = d24 pC/N 560

Dieletric relative constants (free) εT11/ε0 = εT22/ε0 - 1950
εT33/ε0 - 1850

Table 1: MFC fibers engineering constants

the Tz plane, mainly in the T direction for GTz (Figure 13). If zero electric
potential was imposed on all the faces of the RVE instead of the real short-
circuit conditions (this is done for example in [24, 20, 21]), these electric fields
would not be present and there would be no stiffening of the piezocomposite
for high volume fractions. This corresponds to the hypothesis made in the
uniform field method (UFM) used to derive the mixing rules. Imposing zero
potential on the actual electrodes only, leads therefore to interesting results
different from the ones traditionally found in the literature.

For the piezoelectric properties, the match is very good for d31, and good
for d32 despite of a larger discrepancy for low volume fractions. Note however
that the match is good for e31 and e32 which are most often used in shell
finite element formulations. The difference between the mixing rules and
the numerical approach is due to the inhomogeneity of the different fields
in the finite element approach. It has been found that this inhomogeneity
comes mainly from the plane stress assumption which results in deformed
shapes of the kind reported in Figure 14, where one sees that the out-of-
plane stresses and strains are not uniform in the fiber and the matrix. Note
that this analysis is different from the one presented in [25] where the fields
were much more uniform because the periodicity conditions was imposed in
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Figure 13: Electric fields in the piezocomposite due to a shear strain in short-circuited
conditions. RVE with ρ = 0.9

the direction perpendicular to the plane of the actuator.

2.2.2. d33 MFCs

The RVE used for the periodic finite element homogenization is shown
in Figure 15. It includes the definition of the interdigitated electrodes. The
length of the RVE (p), corresponding to the distance between the finger
electrodes, is 6 times the thickness h of the transducer (for a study of the
influence of this ratio, see [1]) and the width of the electrodes is equal to
this thickness. In a first study, it is assumed that the poling direction is
parallel to the fiber direction. This hypothesis will be further discussed in
section 2.2.3.

The evolution of the different mechanical, piezoelectric and dielectric
properties as a function of the fiber volume fraction is represented in Fig-
ures 16 and 17 where they are compared with the analytical mixing rules.

For the mechanical properties, the match is good, but there is a stiffening
for the longitudinal modulus and the two shear moduli GLz and GTz for high
volume fractions of PZT. This is due to the presence of an electric field in
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Figure 14: Deformed shaped under the plane stress assumption when an electric potential
diffierence is applied to the electrodes. The out-of-plane stresses and strains are not
uniform. RVE with ρ = 0.9

P

Electrodes

h

h/2

p

Figure 15: Representative volume element (RVE), p/h=6
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Figure 16: Evolution of the mechanical properties of d33 MFCs as a function of the fiber
volume fraction: comparison between the mixing rules and periodic finite element homog-
enization
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Figure 17: Evolution of piezoelectric and dielectric properties of d33 MFCs as a function of
the fiber volume fraction: comparison between the mixing rules and periodic finite element
homogenization
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the composite in short-circuited conditions (Figure 18, similar to what was
observed for d31-MFCs). It is interesting to note that for the shear moduli,
the stiffening is stronger than in the case of d31-MFCs. This is due to the
fact that the electrode is not continuous on the top and bottom faces, so that
a stronger and more homogeneous electric field can develop in the region be-
tween the electrodes. For the longitudinal modulus, the appearance of the
electric field is due to the existence of curved electric field lines.

For the piezoelectric properties, the match is good for e31 and e32. The
values of d32 and d33 are slightly lower than the values computed using the
mixing rules. This effect is directly related to the stiffening of the piezocom-
posite in the longitudinal direction due to the presence of electric fields in
short-circuited conditions.

Another interesting remark is that the free strain is not uniform (Fig-
ure 19). In the region below the electrodes, the electric field is not aligned
with the poling direction and changes direction and magnitude quickly. The
average induced stress is however equivalent to an ideal d33 actuator for
which E3 = −V/p. This is because the value of the electric field in the
region between the electrodes has been found to be approximately equal to
E3 = −V/(p − h) so that it is stronger than for the ideal d33 (for which
E3 = −V/p) and compensates for the inactive zone below the electrodes.

2.2.3. Influence of the poling direction for d33 MFCs

Figure 20 shows the amplitude and direction of the electric field for a
d33-MFC (ρ = 0.9) resulting from the application of a potential difference
on the interdigitated electrodes. During the manufacturing, the poling of
the piezoelectric fibers is done by imposing very high electric fields to the
interdigitated electrodes. This results in a poling direction aligned with the
applied electric field. The hypothesis that the poling direction is in the fiber
direction is therefore only valid in the region between the finger electrodes.

In order to take this into account, we have corrected the finite element
computations by introducing a local polarization vector in each element
which is aligned with the electric field. In a first step, the electric field
lines are computed with the poling vector aligned with the fiber direction
L. In a second step, the poling direction is adjusted and aligned with the
electric field lines as shown in Figure 20. In Figures 21 and 22, we compare
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Figure 18: Electric fields in the piezocomposite due to a longitudinal strain and shear
strains in short-circuited conditions. RVE with ρ = 0.9
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Figure 19: Induced strain S3 and electric field E3 due to the application of a potential
difference V . RVE with ρ = 0.9

the results obtained with the polarization in the direction of the fibers and
the polarization aligned with the electric field. The figures show that there
is a minor difference due to a stronger stiffening in the longitudinal direc-
tion. This is due to an increase in non-zero electric field between the short
circuited electrodes when the polarization is aligned with the electric field.

The direction of poling has a small influence on the average behavior
of the d33 piezocomposite because the regions below the electrodes do not
contribute very much to the overall behavior. If one is concerned with more
local values such as stress concentrations which occur in the regions below
the electrodes, this influence may be important and should be further studied
[23].

3. Conclusion

In this paper, finite element periodic homogenization has been applied to
both d31 and d33 MFC transducers. The method presented differs from the
ones traditionally found in the literature in three main aspects: (i) periodicity

24



Figure 20: Electric field (direction and amplitude) due to the application of an electrical
potential difference V . RVE with ρ = 0.9
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Figure 21: Evolution of the mechanical properties of d33 MFCs as a function of the fiber
volume fraction: comparison between the mixing rules and periodic finite element homog-
enization (fibers poled in direction L or aligned with the electric field)
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Figure 22: Evolution of piezoelectric and dielectric properties of d33 MFCs as a function of
the fiber volume fraction: comparison between the mixing rules and periodic finite element
homogenization (fibers poled in direction L or aligned with the electric field)
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is enforced only in the plane of the transducer and not in all three directions,
which is more representative of the fact that only one fiber is present through
the thickness, (ii) the electrodes are modeled in the RVE, and the macro
variables V and Q representing the voltage difference across the electrodes
and the charge collected on the electrodes is used instead of the electric field,
resulting in additional electrical equipotential conditions, as well as curved
electric field lines in the case of d33 MFCs, (iii) the poling direction is not
necessarily aligned in the direction of the fibers, but follows the electric field
lines imposed by the electrodes configuration. The homogeneous properties
of both d31 and d33 MFCs have been computed using this method for different
volume fractions of fibers, and compared to previously published analytical
mixing rules. Although there is in general a good agreement between the
numerical and the analytical results, some differences were found due to: (i)
the electrical boundary conditions and the curved electric field lines (in the
case of d33-MFCs) imposed by the specific electrodes configuration which are
not taken into account in the analytical approach, and (ii) the non uniformity
of the stress and strain fields resulting from the release of the periodicity
condition in the perpendicular direction. This highlights the importance of
correctly modeling the electrodes and performing the homogenization using
the macro electrical variables V and Q rather than the local electric fields and
electric displacements. For d33 MFCs, the influence of the poling direction,
either aligned in the fiber direction, or aligned with the electric field lines
(which corresponds to the reality for these types of transducers) has been
studied. It has been shown that the influence on the homogenized properties
was minor, although the influence on some local values (stress concentrations)
can be high. The method presented is general and could be applied to other
types of piezocomposites than the Macro Fiber Composites treated in this
paper.
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Abstract

This paper focuses on the evaluation of the homogeneous properties of the
active layer in Macro Fiber Composite (MFC) transducers using finite ele-
ment periodic homogenization. The proposed method is applied to both d31
and d33 MFCs and the results are compared to previously published analyt-
ical mixing rules, showing a good agreement. The main advantages of the
finite element homogenization is the possibility to take into account local
details in the representative volume element such as complicated electrode
patterns or local variations of the poling direction due to curved electric field
lines. Although these influences have been found to be rather small in the
present study, the method presented is useful for a better understanding of
the behavior of piezocomposite transducers.

Keywords: Piezoelectric material, piezocomposite transducer, Macro Fiber
Composite (MFC), Periodic homogenization, finite element method

1. Introduction

1.1. Piezocomposite transducers

Thin piezoelectric actuators and sensors are used in a variety of applica-
tions such as active vibration control, structural health monitoring or shape
control. In these applications, PZT ceramics are commonly used due to their
relatively low cost, high bandwidth and good actuation capabilities. The ma-
jor drawbacks of these ceramics are their brittleness and very low flexibility.
This problem can be overcome using piezocomposite transducers in which
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piezoelectric fibers are mixed with a softer passive epoxy matrix. A typical
piezocomposite transducer is made of an active layer sandwiched between two
soft thin encapsulating layers (Figure 1). The packaging plays two different
roles: (i) applying prestress to the active layer in order to avoid cracks, and
(ii) bringing the electric field to the active layer through the use of a specific
surface electrode pattern. The electrodes can be either continuous, in which
case a voltage difference is applied between the top and bottom electrodes
resulting in an electric field perpendicular to the plane of the transducer, or
interdigitated [1], resulting in a curved electric field mostly aligned in the
direction of the fibers (Figure 2). In the first case, the piezoelectric fibers
are driven in the d31 mode, while in the second case, the fibers are driven in
the d33-mode, resulting in a higher achievable free strain but for much higher
applied voltages. In the family of piezocomposite transducers, there exist
many different types, differing mainly in the electrode configuration and the
type of active layer which can consist of a bulk ceramic [2, 3, 4], large square
[5] or round fibers [6], or even small fibers (see for example [7] and [8] for a
review of these different types of piezocomposites).

Round fibers are usually not very effective due to the problem of dielec-
tric permittivity mismatch which forces the electrodes to be in direct contact
with the active fibers. For this reason and also for reasons linked to the
manufacturing, the most successful implementation of piezocomposite trans-
ducers is probably the Macro Fiber Composites (MFC) manufactured and
sold by the company Smart Material. Both d31 and d33 actuators and sensors
have been developed and are currently sold.

In general, for a correct design of active vibration control or structural
health monitoring systems, it is useful to develop numerical models (i.e. finite
element models) of the structure equipped with piezoelectric transducers. For
thin plate-like structures, three-dimensional volume finite elements should be
avoided and an adequate approach is the use of multi-layer shell elements in-
cluding piezoelectric layers [9]. Such elements are available in commercial
finite element softwares such as SAMCEF (http://www.samcef.com) or the
Structural Dynamics Toolbox (SDT) (http://www.sdtools.com) under Mat-
lab. In this approach, the active layer is not modeled in details, but by
an homogeneous active layer for which the equivalent properties need to be
known. Unfortunately, the information found in the datasheet is not suffi-
cient to determine all the mechanical, dielectric and piezoelectric equivalent
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Figure 1: Overview of flat piezocomposite transducers with surface electrodes

Figure 2: Electric field distribution for different electrode configurations
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properties. This was the reason for the development of mixing rules for the
determination of the equivalent properties of MFCs from the properties of
the constituents in [10]. The mixing rules were derived using the uniform
field method and compared to numerical results obtained using the method
described and discussed in more details here.

In this paper, after introducing the properties of homogeneous piezoelec-
tric active layers under plane stress driven either in the d31 or the d33 mode,
we develop a numerical method for the evaluation of the equivalent mechan-
ical, piezoelectric and dielectric properties of piezocomposite transducers.
The method is based on numerical periodic homogenization performed on
a representative volume element (RVE) using three-dimensionnal coupled
piezoelectric finite elements. It differs from the methods generally presented
in the literature (see for example [24, 20]) in three aspects: (i) the real elec-
trode configuration and the resulting equipotential conditions are taken into
account in the RVE, (ii) the peridocicity condition is enforced only in the
plane of the transducer, due to the size of the fibers which is of the same
order of magnitude as the thickness of the transducer, and (iii) the poling
vector is not constant in the RVE and follows the potentially curved electric
field lines resulting from the real electrodes configuration.

The method is applied to both d31 and d33 MFCs with different volume
fractions of fibers and the results are compared to the analytical results
using the mixing rules developed in [10]. For d33 MFCs, the influence of the
curved electric field lines as well as the direction of polarization vector on
the homogeneous properties are discussed in details.

1.2. Constitutive equations of piezocomposite transducers

Using the standard IEEE notations for linear piezoelectricity, the consti-
tutive equations for an orthotropic piezoelectric material are given by:
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(1)
where Ei and Di are the components of the electric field vector and the
electric displacement vector, and Ti and Si are the components of stress and
strain vectors, defined according to:
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1.2.1. d31 - piezocomposites

For d31 piezocomposites, the poling direction (conventionally direction 3)
is normal to the plane of the patches (Figure 3a) and according to the plane
stress assumption T3 = 0. The electric field is assumed to be aligned with
the polarization vector (E2 = E1 = 0). The constitutive equations reduce to:
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(3)

where the superscript ∗ denotes the properties under the plane stress
assumption (which are not equal to the properties in 3D). The constitutive
equations can be written in a matrix form, separating the mechanical and
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the electrical parts:

{T} =
[

cE∗

]

{S} − [e∗]T {E}

{D} = [e∗] {S}+
[

εS∗
]

{E}

E P
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Homogenous d patch

with electrodes
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33

Electrodes
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(b)(a)

Figure 3: Homogeneous models of the piezoelectric layers with electrodes : d31 and d33
piezoelectric layers

1.2.2. d33 - piezocomposites

For d33 piezocomposites, although the electric field lines do not have a
constant direction (Figure 2b), when replacing the active layer by an equiv-
alent homogeneous layer, we consider that the poling direction is that of the
fibers (direction 3, Figure 3b), and that the electric field is in the same di-
rection. With this reference frame, the plane stress hypothesis implies that
T1 = 0. The constitutive equations are given by
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For both types of piezocomposites, matrix
[

cE∗

]

is a function of the longi-
tudinal (in the direction of the fibers) and transverse in-plane Young’s moduli
(EL and ET ), the in plane Poisson’s ratio νLT , the in-plane shear modulus
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GLT , and the two out-of-plane shear moduli GLz and GTz. Matrix [e∗] is
given by

[e∗] = [d]
[

cE∗

]

(5)

where
[d] =

[

d31 d32 0 0 0
]

(6)

in the case of d31 piezocomposites and

[d] =
[

d32 d33 0 0 0
]

(7)

in the case of d33 piezocomposites. Note that the coefficients dij are un-
changed under the plane stress hypothesis.

2. Numerical evaluation of equivalent properties of piezocompos-
ites

Homogenization techniques are widely used in composite materials. They
consist in computing the homogeneous, equivalent properties of multi-phase
heterogeneous materials. An example of a 1-3 composite is shown on Figure 4
(1-3 refers to the fact that the fibers are connected in one direction and the
matrix in all 3 directions). The material is a periodic repetition in all three
directions of a so-called representative volume element (RVE) also shown in
the figure.

Equivalent properties are obtained by writing the constitutive equations
(Equation (3) or (4) in this case) in terms of the average values of Ti, Si, Di, Ei

on the RVE:

Ti =
1

V

∫

V

TidV Di =
1

V

∫

V

DidV

Si =
1

V

∫

V

SidV Ei =
1

V

∫

V

EidV (8)

where denotes the average value.

A tremendous amount of literature exists on homogenization of elastic
and inelastic materials [11, 12, 13]. Extensions have also been made to elas-
tic piezoelectric materials in [14, 15, 16, 17, 18, 19] where analytical results
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have been developed. The difficulty with analytical approaches is that they
are often restricted to particular geometries (circular or elliptical fibers) and
do not take into account complicated electrode patterns such as interdigi-
tated electrodes. The use of numerical approaches such as the finite element
method allows to overcome this problem. The principle consists in meshing
the RVE and computing approximations of the solution on this RVE using
numerical techniques. To our knowledge, this technique has only been ap-
plied for Active Fiber Composites (AFC) actuated in the d33-mode. In the
model of the RVE, some simplifying assumptions are often made. The first
one consists in applying a uniform electric field instead of the real curved
electric field [20, 21]. The second one consists in considering that the poling
direction is uniform and in the fiber direction [22]. Both these aspects have
been taken into account recently in [23] for the evaluation of stress concen-
tration in AFCs, but no homogenization was performed. In addition, the
hypothesis that the faces of the RVE remain plane is also often made. The
first problem related with this hypothesis is that it results in a large over-
estimation of the shear stiffness constants. The second problem is that it is
not representative of the fact that these transducers are periodic only in two
directions (in the plane of the actuator).

The method developed in this paper is inspired from [24] but, due to
the specificities of MFC transducers, and the remarks formulated above,
differs in the following points: (i) we consider periodicity only in the plane
of the actuator, since the thickness of the rectangular fibers is of the same
order of magnitude as the thickness of the transducer, (ii) the electrodes are
modeled in the RVE (Figure 5), and the macro variable V representing the
voltage difference across the electrodes is used instead of the electric field,
resulting in additional electrical equipotential conditions, as well as curved
electric field lines in the case of d33 MFCs, (iii) the poling direction is not
necessarily aligned in the direction of the fibers, but follows the electric field
lines imposed by the electrodes configuration. Note that a MFC contains
more than fifty fibers so that it can be considered as periodic in the direction
perpendicular to the fibres.

2.1. Finite element based periodic homogenization of MFCs

When used as sensors or actuators, piezocomposite transducers are typi-
cally equipped with two electrodes. These electrodes impose an equipotential
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Figure 4: Example of a 1-3 composite and its representative volume element (RVE)
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Figure 5: Representative volume element (RVE) for a d31 and a d33 MFC including the
electrodes
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voltage on their surfaces, and the electrical variables are the voltage differ-
ence V across the electrodes, and the electrical charge Q. These two variables
are representative of the electrical macro variables which will be used in the
numerical models of structures equipped with such transducers: transducers
are used either in open-circuit conditions (Q = 0 or imposed) or short-circuit
conditions (V = 0 or imposed). Instead of the average values of Di and Ei,
the macro variables Q and V are therefore used in the homogenization pro-
cess. For a homogeneous d33 transducer (Figure 6), the constitutive equations
can be rewritten in terms of these macro variables:
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(9)
where SC stands for ’short-circuit’ (V = 0), p is the length of the trans-

ducer, A is the surface of the electrodes of the equivalent homogeneous trans-
ducer and Q is the charge collected on the electrodes.

E= -V/p
DV

p

A
0

V

Figure 6: Homogeneous model of the d33 piezocomposite and definition of the macro
variables

For d31-piezocomposites, the approach is identical.

2.1.1. Definition of local problems

The RVE is made of two different materials. In order to find the homoge-
neous constitutive equations, Equation (9) is written in terms of the average
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values of the mechanical quantities Si and Ti in the RVE and the electrical
variables Q and V defined on the electrodes:
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(10)
The different terms in Equation (10) can be identified by defining local

problems on the RVE. The technique consists in imposing conditions on the
different strain components and V and computing the average values of the
stress and the charge in order to find the different coefficients. For the electric
potential, two different conditions (V = 0, 1) are used. For the mechanical
part, we assume that the displacement field is periodic in the plane of the
transducer (see i.e [24]): on the boundary of the RVE (but not on the upper
and lower surfaces since the piezocomposite is not periodic in that direction),
the displacement can be written:

ui = Sij xj + vi (11)

where ui is the ith component of displacement, Sij is the average strain in
the RVE (tensorial notations are used), xj is the jth spatial coordinate of
the point considered on the boundary, and vi is the periodic fluctuation on
the RVE. The fluctuation v is periodic in the plane of the transducer so that
between two opposite faces (noted B−/B+ and C−/C+, Figure 7), one can
write (v(xK+

j ) = v(xK−

j ), K = B,C):

uK+
i − uK−

i = Sij (x
K+

j − xK−

j ) K = B,C (12)

For a given value of the average strain tensor (Sij), Equation (12) defines
constraints between the points on each pair of opposite faces. This is illus-
trated in Figure 8, where an average strain S2 is imposed on the RVE and
the constraints are represented for u2 on faces B− and B+.

Note that these constraints do not impose that the faces of the RVE
remain plane, which is important for the evaluation of the shear stiffness
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Figure 7: Definition of pairs of opposite faces on the RVE

B- B+

a b

x -x2 2

B+ B-

u -u =S (x -x )2 2 2 2 2

B+ B- B+ B-

boundary

T=2

z=1

Figure 8: Example of an average strain S2 imposed on the RVE and associated periodic
conditions
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coefficients. For faces A− and A+, the displacement is unconstrained in the
normal direction, because the MFC is not periodic in this direction.

In total, six local problems are needed to identify all the coefficients in (10)
(Figure 9). The first problem consists in applying a difference of potential
V to the electrodes of the RVE and imposing zero displacement on all the
faces (except the top and bottom). The deformed mesh resulting from the
finite element computation for this local problem is represented in Figure 10
for a d31-MFC. In the next five local problems, the difference of potential
is set to 0 (short-circuited condition), and five deformation mechanisms are
induced. Each of the deformation mechanisms consists in a unitary strain
in one of the directions (with zero strain in all the other directions). For
each case, the average values of Ti and Si, and the charge accumulated on
the electrodes Q, are computed, and used to determine all the coefficients in
(10), from which the engineering constants are determined. Note that the
electrodes are included in a particular layer which is in direct contact with
the active layer considered for homogenization, so that they are modeled as
an electrical boundary condition on the RVE only. The mechanical properties
of the electrodes should be taken into account when modeling the full MFC,
as detailed in [10].

2.2. Comparison with the analytical mixing rules

2.2.1. d31 MFCs

The homogeneous properties of d31-MFCs have been computed for dif-
ferent volume fractions between ρ = 0 and ρ = 1 (bulk ceramic) using the
mixing rules developed in [10] and the numerical method presented in sec-
tion 2.1. A comparison with experimental results would also be very useful
but MFC properties have only been measured for a single volume fraction of
fibers (ρ = 0.86). A comparison with these measurements can be found in
[10].

The properties of the fibers are given in Table 1 (it is assumed that the
fibers are made of SONOX P502 from CeramTec, direction 3 is the poling
direction. For more details, see [25]). For the matrix, typical values for epoxy
are considered: E = 2.9GPa, ν = 0.3 and εT11/ε0 = εT22/ε0 = εT33/ε0 = 4.25.

The evolution of the different mechanical, piezoelectric and dielectric
properties as a function of the fiber volume fraction is represented on Fig-
ures 11 and 12. Direction L corresponds to the fiber direction, T is the
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V

V=0

d31

All faces blocked

except top and bottom

S =11
S =12 S =16

S =14 S =15

Figure 9: The six local problems solved by the finite element method in order to compute
the homogenized properties of d31-MFCs

Figure 10: Deformation of the RVE of a d31-MFC under applied electric potential difference
V between the top and bottom electrodes computed using finite element 3D piezoelectric
elements. All faces are fixed except top and bottom (fiber volume fraction ρ = 0.9).
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MFC Fiber Engineering constants Symbol Unit SONOX P502
(set 1)

Young’s modulus E1 = E2 GPa 54.05
E3 GPa 48.30

Shear modulus G23 = G31 GPa 19.48
G12 GPa 19.14

Poisson’s ratio ν23 = ν13 - 0.44
ν12 - 0.41

Piezoelectric charge constants d32 = d31 pC/N -185
d33 pC/N 440
d15 = d24 pC/N 560

Dieletric relative constants (free) εT11/ε0 = εT22/ε0 - 1950
εT33/ε0 - 1850

Table 1: MFC fibers engineering constants

transverse direction, and z is the out-of-plane direction.

For the mechanical properties, the match is very good for EL, ET , GLT

and νLT . For GLz and GTz, the numerical results are higher, especially for
high volume fractions of fibers. This is due to the presence of an inhomoge-
neous electric field in the Lz plane, mainly in the L direction for GLz, and in
the Tz plane, mainly in the T direction for GTz (Figure 13). If zero electric
potential was imposed on all the faces of the RVE instead of the real short-
circuit conditions (this is done for example in [24, 20, 21]), these electric fields
would not be present and there would be no stiffening of the piezocomposite
for high volume fractions. This corresponds to the hypothesis made in the
uniform field method (UFM) used to derive the mixing rules. Imposing zero
potential on the actual electrodes only, leads therefore to interesting results
different from the ones traditionally found in the literature.

For the piezoelectric properties, the match is very good for d31, and good
for d32 despite of a larger discrepancy for low volume fractions. Note however
that the match is good for e31 and e32 which are most often used in shell
finite element formulations. The difference between the mixing rules and
the numerical approach is due to the inhomogeneity of the different fields
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Figure 11: Evolution of the mechanical properties of d31 MFCs as a function of the fiber
volume fraction: comparison between the mixing rules and periodic finite element homog-
enization
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Figure 12: Evolution of piezoelectric and dielectric properties of d31 MFCs as a function of
the fiber volume fraction: comparison between the mixing rules and periodic finite element
homogenization
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Figure 13: Electric fields in the piezocomposite due to a shear strain in short-circuited
conditions. RVE with ρ = 0.9

in the finite element approach. It has been found that this inhomogeneity
comes mainly from the plane stress assumption which results in deformed
shapes of the kind reported in Figure 14, where one sees that the out-of-
plane stresses and strains are not uniform in the fiber and the matrix. Note
that this analysis is different from the one presented in [25] where the fields
were much more uniform because the periodicity conditions was imposed in
the direction perpendicular to the plane of the actuator.

2.2.2. d33 MFCs

The RVE used for the periodic finite element homogenization is shown
in Figure 15. It includes the definition of the interdigitated electrodes. The
length of the RVE (p), corresponding to the distance between the finger
electrodes, is 6 times the thickness h of the transducer (for a study of the
influence of this ratio, see [1]) and the width of the electrodes is equal to
this thickness. In a first study, it is assumed that the poling direction is
parallel to the fiber direction. This hypothesis will be further discussed in
section 2.2.3.

The evolution of the different mechanical, piezoelectric and dielectric
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Figure 14: Deformed shaped under the plane stress assumption when an electric potential
diffierence is applied to the electrodes. The out-of-plane stresses and strains are not
uniform. RVE with ρ = 0.9
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Figure 15: Representative volume element (RVE), p/h=6
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properties as a function of the fiber volume fraction is represented in Fig-
ures 16 and 17 where they are compared with the analytical mixing rules.

For the mechanical properties, the match is good, but there is a stiffening
for the longitudinal modulus and the two shear moduli GLz and GTz for high
volume fractions of PZT. This is due to the presence of an electric field in
the composite in short-circuited conditions (Figure 18, similar to what was
observed for d31-MFCs). It is interesting to note that for the shear moduli,
the stiffening is stronger than in the case of d31-MFCs. This is due to the
fact that the electrode is not continuous on the top and bottom faces, so that
a stronger and more homogeneous electric field can develop in the region be-
tween the electrodes. For the longitudinal modulus, the appearance of the
electric field is due to the existence of curved electric field lines.

For the piezoelectric properties, the match is good for e31 and e32. The
values of d32 and d33 are slightly lower than the values computed using the
mixing rules. This effect is directly related to the stiffening of the piezocom-
posite in the longitudinal direction due to the presence of electric fields in
short-circuited conditions.

Another interesting remark is that the free strain is not uniform (Fig-
ure 19). In the region below the electrodes, the electric field is not aligned
with the poling direction and changes direction and magnitude quickly. The
average induced stress is however equivalent to an ideal d33 actuator for
which E3 = −V/p. This is because the value of the electric field in the
region between the electrodes has been found to be approximately equal to
E3 = −V/(p − h) so that it is stronger than for the ideal d33 (for which
E3 = −V/p) and compensates for the inactive zone below the electrodes.

2.2.3. Influence of the poling direction for d33 MFCs

Figure 20 shows the amplitude and direction of the electric field for a
d33-MFC (ρ = 0.9) resulting from the application of a potential difference
on the interdigitated electrodes. During the manufacturing, the poling of
the piezoelectric fibers is done by imposing very high electric fields to the
interdigitated electrodes. This results in a poling direction aligned with the
applied electric field. The hypothesis that the poling direction is in the fiber
direction is therefore only valid in the region between the finger electrodes.

20



0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

10

ρ

E
T

 

 

periodic FE
Mixing rules

(a)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

10

ρ

E
L

 

 

periodic FE
Mixing rules

(b)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
x 10

10

ρ

G
LT

 

 

periodic FE
Mixing rules

(c)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
x 10

10

ρ

G
Lz

 

 

periodic FE
Mixing rules

(d)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2
x 10

10

ρ

G
T

z

 

 

periodic FE
Mixing rules

(e)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

ρ

ν L
T

 

 

periodic FE
Mixing rules

(f)

Figure 16: Evolution of the mechanical properties of d33 MFCs as a function of the fiber
volume fraction: comparison between the mixing rules and periodic finite element homog-
enization
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Figure 17: Evolution of piezoelectric and dielectric properties of d33 MFCs as a function of
the fiber volume fraction: comparison between the mixing rules and periodic finite element
homogenization
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Figure 18: Electric fields in the piezocomposite due to a longitudinal strain and shear
strains in short-circuited conditions. RVE with ρ = 0.9
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Figure 19: Induced strain S3 and electric field E3 due to the application of a potential
difference V . RVE with ρ = 0.9

In order to take this into account, we have corrected the finite element
computations by introducing a local polarization vector in each element
which is aligned with the electric field. In a first step, the electric field
lines are computed with the poling vector aligned with the fiber direction
L. In a second step, the poling direction is adjusted and aligned with the
electric field lines as shown in Figure 20. In Figures 21 and 22, we compare
the results obtained with the polarization in the direction of the fibers and
the polarization aligned with the electric field. The figures show that there
is a minor difference due to a stronger stiffening in the longitudinal direc-
tion. This is due to an increase in non-zero electric field between the short
circuited electrodes when the polarization is aligned with the electric field.

The direction of poling has a small influence on the average behavior
of the d33 piezocomposite because the regions below the electrodes do not
contribute very much to the overall behavior. If one is concerned with more
local values such as stress concentrations which occur in the regions below
the electrodes, this influence may be important and should be further studied
[23].

24



Figure 20: Electric field (direction and amplitude) due to the application of an electrical
potential difference V . RVE with ρ = 0.9
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Figure 21: Evolution of the mechanical properties of d33 MFCs as a function of the fiber
volume fraction: comparison between the mixing rules and periodic finite element homog-
enization (fibers poled in direction L or aligned with the electric field)
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Figure 22: Evolution of piezoelectric and dielectric properties of d33 MFCs as a function of
the fiber volume fraction: comparison between the mixing rules and periodic finite element
homogenization (fibers poled in direction L or aligned with the electric field)
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3. Conclusion

In this paper, finite element periodic homogenization has been applied to
both d31 and d33 MFC transducers. The method presented differs from the
ones traditionally found in the literature in three main aspects: (i) periodicity
is enforced only in the plane of the transducer and not in all three directions,
which is more representative of the fact that only one fiber is present through
the thickness, (ii) the electrodes are modeled in the RVE, and the macro
variables V and Q representing the voltage difference across the electrodes
and the charge collected on the electrodes is used instead of the electric field,
resulting in additional electrical equipotential conditions, as well as curved
electric field lines in the case of d33 MFCs, (iii) the poling direction is not
necessarily aligned in the direction of the fibers, but follows the electric field
lines imposed by the electrodes configuration. The homogeneous properties
of both d31 and d33 MFCs have been computed using this method for different
volume fractions of fibers, and compared to previously published analytical
mixing rules. Although there is in general a good agreement between the
numerical and the analytical results, some differences were found due to: (i)
the electrical boundary conditions and the curved electric field lines (in the
case of d33-MFCs) imposed by the specific electrodes configuration which are
not taken into account in the analytical approach, and (ii) the non uniformity
of the stress and strain fields resulting from the release of the periodicity
condition in the perpendicular direction. This highlights the importance of
correctly modeling the electrodes and performing the homogenization using
the macro electrical variables V and Q rather than the local electric fields and
electric displacements. For d33 MFCs, the influence of the poling direction,
either aligned in the fiber direction, or aligned with the electric field lines
(which corresponds to the reality for these types of transducers) has been
studied. It has been shown that the influence on the homogenized properties
was minor, although the influence on some local values (stress concentrations)
can be high. The method presented is general and could be applied to other
types of piezocomposites than the Macro Fiber Composites treated in this
paper.
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