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ANALYSIS OF AGGREGATION-BASED MULTIGRID∗

ADRIAN C. MURESAN† AND YVAN NOTAY‡

Abstract. Aggregation-based multigrid with standard piecewise constant like prolongation is
investigated. Unknowns are aggregated either by pairs or by quadruplets; in the latter case the
grouping may be either linewise or boxwise. A Fourier analysis is developed for a model two-
dimensional anisotropic problem. Most of the results are stated for an arbitrary smoother (which fits
with the Fourier analysis framework). It turns out that the convergence factor of two-grid schemes
can be bounded independently of the grid size. With a sensible choice of the (linewise or boxwise)
coarsening, the bound is also uniform with respect to the anisotropy ratio, without requiring a
specialized smoother. The bound is too large to guarantee optimal convergence properties with
the V-cycle or the standard W-cycle, but a W-cycle scheme accelerated by the recursive use of the
conjugate gradient method exhibits near grid independent convergence.

Key words. multigrid, aggregation, Fourier analysis, Krylov subspace method, conjugate gra-
dient, preconditioning
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1. Introduction. We consider multigrid methods (see, e.g., [14]) for solving
large sparse n× n linear systems

(1.1) Au = b

arising from the discretization of second order elliptic PDEs.

We focus on schemes that use so-called coarsening by aggregation. With such
schemes, the fine grid unknowns are grouped into disjoint subsets, and each such
subset is associated to a unique coarse level unknown. Prolongation from coarse level
to fine level is piecewise constant, that is, a vector defined on the coarse variable set is
prolongated by assigning the value at a given coarse variable to all fine grid variables
associated to it. Letting nc be the number of coarse variables, the prolongation P
is then a n × nc Boolean matrix with exactly 1 nonzero entry in each row. As seen
in section 2.1, the coarse grid matrices are then cheap to compute and generally as
sparse as the original fine grid matrix.

Such schemes are not new and trace back to [3, 5].1 They are, however, not very
popular because it is difficult to obtain grid independent convergence on this basis [13,
pp. 522–524]; see also [18, p. 663], where an accurate three grid analysis is presented
for the model Poisson problem. This may be connected to the fact that the piecewise
constant prolongation does not correspond to an interpolation which is at least first
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order accurate, as required by the theory of geometric multigrid [7, sections 3.5 and
6.3.2].

In [15, 16], it is proposed to overcome this difficulty by smoothing the interpolation
matrix; that is, from a “tentative” aggregation-based prolongation matrix P0 (Boolean
with 1 nonzero entry per row), an effective prolongation is obtained letting P = M P0,
where M is a matrix that smooths the interpolation (e.g., M = I − ωA, where ω is
a relaxation parameter). This approach is interesting, but leads to denser coarse grid
matrices with the type of aggregation schemes we are interested in (where there are
typically four nodes in each aggregate). Here we want to assess the potentialities of
“pure” aggregation schemes. In this view, it is worth noting that the above mentioned
analyses focus on the conditions to have grid independence convergence with the
V-cycle, whereas multigrid methods are more robust with W-cycles, and optimal
under mild conditions on the two-grid convergence rate; see [4, pp. 226–228], [14,
section 3.2.1], or [11].

In this paper, we first develop the Fourier analysis [14, 17] of several aggregation-
based two-grid schemes for a model anisotropic problem. It turns out that the condi-
tion number is independent of the grid size and, with a proper choice of the coarsening,
also uniformly bounded with respect to the anisotropy ratio.

This condition number is typically between 2 and 5 (or, equivalently, the conver-
gence factor is typically between 0.5 and 0.8). This is too large to hope for optimal
order convergence with the V-cycle or even with the standard W-cycle. However,
extra robustness can be obtained with K-cycle multigrid schemes introduced in [12].
In these schemes, the coarse-grid system is solved by μ ≥ 1 steps of a Krylov subspace
iterative method. This approach is followed recursively until the coarsest level where
an exact solve is performed. In [12], optimal convergence properties are then proved
when, at each level, the condition number of the two-grid method is smaller than the
number of inner iterations. In practice, the K-cycle with only 2 inner iterations at
each level (that is, the K2-cycle) is observed to be optimal even for condition numbers
up to 5 and close to optimal above that limit. This is confirmed by the numerical
results obtained here with aggregation-based multigrid.

The remainder of this paper is organized as follows. In section 2 we analyze
the spectral properties of aggregation-based two-grid schemes. Their recursive use is
discussed and numerically illustrated in section 3. Concluding remarks are given in
section 4.

2. Analysis of aggregation-based two-grid methods.

2.1. General setting. To build an aggregation-based two-grid scheme, one first
defines a partitioning of the n fine grid unknowns into aggregates (Gi), i = 1, . . . , nc,
where the number nc of aggregates is also the number of coarse variables. In our the-
oretical analysis, we consider several model (geometric-based) aggregations schemes.
They may be mimicked by “algebraic” algorithms working with matrix entries only,
as those proposed in [3, 10].

Once the aggregates are defined, the prolongation P is the n × nc matrix given
by

(2.1) Pij =

{
1 if i ∈ Gj ,

0 otherwise,
i = 1, . . . , n; j = 1, . . . , nc.

With such P , it is natural to consider Galerkin coarse grid matrices

Ac = PT AP,
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which implies that Ac is cheap to construct using

(2.2) (Ac)ij =
∑
k∈Gi

∑
�∈Gj

ak�.

With a sensible choice of the aggregates, Ac is then generally as sparse as the original
matrix A.

In our analysis, a slight difficulty comes from the fact that the matrix A for
our model problem is singular, more precisely symmetric positive semidefinite. The
kernel of A is spanned by the constant vector e = (1 · · · 1)T . Note that e = Pec,
where ec = (1 · · · 1)T has length nc. Then, Ac is singular, and its kernel is spanned by
ec. However, assuming the fine grid system compatible, coarse grid systems to solve
for a two-grid scheme are of the form

Ac vc = rc,

where rc = PT r with r ⊥ e, entailing eTc rc = eTc P
T r = eT r = 0. Thus, the coarse

grid systems are compatible, and it is sensible to assume that the method computes
the solution in the range of Ac; that is, vc = A+

c rc, where A+
c is the Moore–Penrose

inverse of Ac [2]. Note that if Ac = X diag(λi)X
T for some orthogonal matrix X,

then A+
c = X diag(λ+

i )XT , where

λ+
i =

{
λ−1
i if λi �= 0,

0 otherwise.

We therefore consider two-grid schemes with the iteration matrix of the form

(2.3) T = (I −M−1A)ν (I − αP A+
c PT A) (I −M−1A)ν ,

where M is the smoother, ν is the number of pre- and postsmoothing steps, and α
is a parameter that allows us to take into account a possible scaling of the coarse
grid matrices as suggested in [3, 13]. We consider symmetric smoothers satisfying
ρ(I −M−1A) ≤ 1, where ρ(·) denotes the largest eigenvalue in modulus. Our results
are stated for any such smoother which is further compatible with the Fourier analysis
framework, that is, which has same eigenvectors as A for the model problem under
consideration.

Note that the vectors in the kernel of A are eigenvectors of T with a corresponding
eigenvalue equal to 1. These modes (that is, e for our model problem) do, however,
not affect the convergence of iterative methods when solving compatible singular
systems. We are therefore interested in eigenvalues associated with other modes. In
this respect, observe that if Tv = λv for some v not in the kernel of A, then, with
w = (I −M−1A)νv and z = A1/2w, one has, for α ≥ 1,

λ =
vH AT v

vH Av

=
wH A

(
I − αP A+

c PT A
)
w

wH Aw

wH Aw

vH Av

=

(
1 − α

zHA1/2 P A+
c PT A1/2 z

zH z

)
‖A1/2(I −M−1A)νv‖2

‖A1/2v‖2

≥ (1 − α)
(
ρ(I −M−1A)

)2
(2.4)

≥ 1 − α,(2.5)
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where (2.4) holds because A+
c (PT AP )A+

c = A+
c ; thus A1/2 P A+

c PT A1/2 is symmet-
ric and idempotent, i.e., is an orthogonal projector whose norm equals 1.

When α = 1 (no scaling of the coarse grid matrix), all eigenvalues of T are
nonnegative and the convergence is characterized by

(2.6) λ
(max)

e⊥ (T ) = max
λ: Tv=λv, Av �=0

λ,

which is the “effective” convergence factor. Note, however, that the methods con-
sidered here perform better as a preconditioner than as a stand-alone solver. The
K-cycle multigrid scheme considered in section 3 is also based on the recursive use
of the two-grid method seen as a preconditioner [12]. In this context, the relevant
quantity is the effective condition number

(2.7) κe⊥ =
1 − λ(min)(T )

1 − λ
(max)

e⊥ (T )
,

where λ(min)(T ) = minλ: Tv=λv λ. With (2.5), one has

(2.8) κe⊥ ≤ α

1 − λ
(max)

e⊥ (T )
,

and this upper bound is expected to be accurate since (2.4) is an equality for any w
in the range of P , whereas (2.5) is a near equality if v is a “smooth” mode (for which
(I−M−1A)v ≈ v). Note in this respect that e is such a smooth mode in the range of
P ; hence, Te ≈ (1 − α)e for any regular problem. This mode is therefore not crucial
for an analysis based on the upper bound (2.8). Hence the analysis below, in which
this mode is discarded because it is in the kernel of A, has, despite this particular
feature, the same relevance as Fourier analysis in general.

2.2. Model problem and notation. We consider the N × N periodic grid
equipped with stencil ⎡⎣ −1

−η 2(1 + η) −η
−1

⎤⎦ ,

where η is a parameter. Letting AN = tridiag(−1, 2,−1), the system matrix A is
ηIN ⊗AN + AN ⊗ IN , where ⊗ denotes the tensor product. For future reference we
define more generally

A
(η)
N,M = η IN ⊗AM + AN ⊗ IM

and thus A = A
(η)
N,N . The N normalized eigenvectors vN

k , k = 0, . . . , N−1, of AN are
given by (

vN
k

)
�
=

1√
N

ei�θ
N
k , l = 1 . . . , N,

where

(2.9) θNk =
2kπ

N
.
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The eigenvalue corresponding to vN
k is

(2.10) γN
k = 2

(
1 − cos

(
θNk
))

= 2
(
1 − cos

(
2kπ
N

))
.

Consequently, the NM eigenvectors of A
(η)
N,M are

v
(N,M)
k,l = vN

k ⊗ vM
l , k, l = 0, . . . , N − 1,

with corresponding eigenvalues

λ
(N,M,η)
k,l = η γM

l + γN
k = 2

(
(1 + η) − η cos(θMl ) − cos(θNk )

)
.

We write

VN =
(
vN

0 · · · vN
N−1

)
,

the matrix of eigenvectors of AN . One then has AN = VN ΓN VH
N , where

ΓN =

⎛⎜⎝ γN
0

. . .

γN
N−1

⎞⎟⎠ .

Further, the matrix of eigenvectors of A
(η)
N,M is VN ⊗ VM , and one has

A
(η)
N,M = (VN ⊗ VM ) (η IN ⊗ ΓM + ΓN ⊗ IM ) (VH

N ⊗ VH
M ).

With respect to the smoother, we assume that it has the same eigenvectors as A;
that is,

(2.11) (I −M−1A)2ν
(
vN
k ⊗ vM

l

)
= σk,l

(
vN
k ⊗ vM

l

)
, k, l = 0, . . . , N − 1.

Hence

(I −M−1A)2ν = (VN ⊗ VN ) Σ (VH
N ⊗ VH

N ),

where Σ is the diagonal matrix with the σk,l on its diagonal. Note that the symmetry
of M , ρ(I−M−1A) ≤ 1 and the fact that we consider even power of I−M−1A imply
that the σk,l are real and such that

0 ≤ σk,l ≤ 1.

Theorems 2.3, 2.4, and 2.5 are stated for any smoother such that the σk,l further
satisfies some technical assumptions; see (2.19), (2.20), (2.28), (2.29), (2.33), and
(2.34). In fact all of these assumptions are met when the smoother better damps the
rougher modes (as it is expected to do); that is,

(2.12) |θMl − π| < |θMl′ − π| ⇒ σk,l ≤ σk,l′

and

(2.13) |θNk − π| < |θNk′ − π| ⇒ σk,l ≤ σk′,l.
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For damped Jacobi smoothing with a relaxation factor ω = 1
2 (i.e., M = 2 diag(A)),

one has

(2.14) σk,l =

(
η
(
1 + cos

(
θMl

))
+
(
1 + cos

(
θNk
))

2 (1 + η)

)2ν

=

(
η
(
1 + cos

(
2lπ
M

))
+
(
1 + cos

(
2kπ
N

))
2 (1 + η)

)2ν

,

and one may check that (2.12), (2.13) indeed hold.
An important tool for the methods analyzed in the following subsections is, as-

suming N even, the N × N
2 prolongation matrix

PN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
0 1
0 1

. . .

1 0
1 0
0 1
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Proposition 2.1. There holds that

PN = VN CN VH
N
2

and PT
N = VN

2
CH

N VH
N ,

where

CN =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cN0
. . .

cNN
2 −1

cNN
2

. . .

cNN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with cNk =

√
2 cos(kπN ) e−i kπ

N , k = 0, . . . , N − 1.

Proof. For any eigenvector vN
k of AN and  = 1, . . . , N − 1,(

PT
NvN

k

)
�
= 1√

N

(
ei(2�−1)θN

k + ei(2�)θ
N
k

)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1√
N
2

(
cNk ei�θ

N
2

k

)
= cNk

(
v

N
2

k

)
�

if k < N
2 ,

1√
N
2

(
cNk e

i�θ
N
2

k−N
2

)
= cNk

(
v

N
2

k−N
2

)
�

if k ≥ N
2 .

The required results then follow from the orthogonality of VN and VN
2
.

On the other hand, it is worth noting that

(2.15) PT
N PN = 2 IN

2
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and

(2.16) PT
N AN PN = AN

2
.

We conclude this subsection with a useful lemma, actually an extension of [6,
Theorem 8.6.2].

Lemma 2.2. Let y be a vector in Cm, and Σ = diag(σi), Δ = diag(δi) two real
nonnegative diagonal matrices. Assume σ1 ≥ σ2 ≥ · · · ≥ σm. For any positive number
β, the matrix (

I − β y yH Δ
)

Σ

has the characteristic equation

m∏
j=1

(σj − λ) − β

m∑
i=1

δi σi |yi|2

⎛⎜⎝ m∏
j=1
j �=i

(σj − λ)

⎞⎟⎠ = 0,

and, with a proper ordering, the eigenvalues satisfy σ1 ≥ λ1 ≥ σ2 ≥ λ2 ≥ · · · ≥ σm ≥
λm.

Moreover, if, in addition, β−1 = yHΔy, then the largest eigenvalue satisfies

(2.17) β δ1 |y1|2 σm + (1 − β δ1 |y1|2)σ1 ≤ λ1 ≤ β δ1 |y1|2 σ2 + (1 − β δ1 |y1|2)σ1.

Proof. First, consider the case where y has no zero components, while all σi, δi
are positive and σ1 > σ2 > · · · > σm.The considered matrix has the same eigenvalues

as Σ − β
(
Δ1/2Σ1/2y

) (
Δ1/2Σ1/2y

)H
. Then, Theorem 8.6.2 in [6] may be applied to

prove the given form of the characteristic equation with σ1 > λ1 > σ2 > λ2 > · · · >
σm > λm.

Further, the eigenvalues are the same as those of the generalized eigenproblem

I − β
(
Δ1/2y

)(
Δ1/2y

)H
= λ Σ−1.

If β−1 = yHΔy, then the left-hand side matrix is positive semidefinite, entailing that
the largest eigenvalue

λ1 = max
z �=0

zH
(
I − β

(
Δ1/2y

) (
Δ1/2y

)H)
z

zH Σ−1 z

is an increasing function of the σi. Hence, a lower bound on λ1 is obtained by
exchanging σ2, . . . , σm−1 for σm, which leads to the characteristic equation

λ (σm − λ)m−2
(
(1 − β δ1 |y1|2) (σ1 − λ) + β δ1 |y1|2 (σm − λ)

)
= 0.

The given lower bound on λ1 straightforwardly follows. The upper bound is proven
in a similar way, exchanging σ3, . . . , σm for σ2.

Finally, consider the general case where some components of y and/or some σi,
δi may be equal to zero, and/or where some σi may be equal to each other. One may
define Σε, Δε, and yε depending continuously on a parameter ε and such that all
requirements above are satisfied for any ε > 0, whereas, for ε → 0, Σε → Σ, Δε → Δ
and yε → y. The required results then follow because both the characteristic equation
and the eigenvalues depend continuously on the matrix entries. (For the second part
of the lemma we let βε = (yH

ε Δεyε)
−1.)
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2.3. Pairwise aggregation. This technique aggregates nodes by pairs aligned

with x direction. Thus, we assume N is even and the prolongation is the N2 × N2

2
matrix

(2.18) P = IN ⊗ PN .

With (2.15), (2.16), one sees that the coarse grid matrix is

PT AP = η IN ⊗AN
2

+ 2 AN ⊗ IN
2

= 2A
( η
2 )

N,N2
.

Hence, T has same eigenvalues as(
I − α (IN ⊗ CN )

(
ηIN ⊗ ΓN

2
+ 2ΓN ⊗ IN

2

)+

(
IN ⊗ CH

N

)
(ηIN ⊗ ΓN + ΓN ⊗ IN )

)
Σ.

The latter matrix is block diagonal with (after symmetric permutation) 2 × 2
diagonal blocks

Tkl =

(
I − α

(
cNl
cN
l+N

2

)(
2λ

(N,N2 , η2 )

k,l

)+ (
cl cl+N

2

)(λ
(N,N,η)
k,l 0

0 λ
(N,N,η)

k,l+N
2

))
(
σk,l 0
0 σk,l+N

2

)
(k = 0, . . . , N − 1 and l = 0, . . . , N

2 − 1). We can now state the following theorem.

Theorem 2.3. Let A = A
(η)
N,N with N even, let P be given by (2.18), and let M

be a symmetric matrix satisfying (2.11). Assume α ≥ 1. If, for k = 1, . . . , N − 1 and
l = 0, . . . , N

2 − 1,

(2.19)

{
σk,l ≥ σk,l+N

2
if l < N

4 ,

σk,l ≤ σk,l+N
2

otherwise

and if, for l = 1, . . . , N − 1,

(2.20) max
k=0,...,N−1

σk,l = σ0,l,

then, letting for l = 0, . . . , N
2 − 1,

sl =

{σ0,l+σ
0,l+N

2

2 if l > 0,

σ0,N2
otherwise,

(2.21)

gl =

{√
σ0,l σ0,l+N

2
if l > 0,

σ0,N2
otherwise,

(2.22)

λ
(max)

e⊥ (T ) defined by (2.3), (2.6) is given by

(2.23) λ
(max)

e⊥ (T ) = max
l=0,...,N2 −1

(
1 − α

2

)
sl +

√(
1 − α

2

)2
s2
l + (α− 1) g2

l .
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Proof. Observe first that the block T00 plays a particular role because (2λ
(N,N2 , η2 )
0,0 )+

= 0. Hence, T00 has eigenvalues σ0,0 and σ0,N2
, but only the latter has to be taken

into account since σ0,0 is the eigenvalue (in fact equal to 1) corresponding to the

singular mode e = N v
(N,N)
0,0 . Now, one sees that σ0,N2

= s0 = g0 is properly taken

into account as a possible maximum in (2.23) since the expression in the right-hand
side reduces to sl when gl = sl. We now consider blocks Tk0, k ≥ 1. Because cNN

2

= 0,

one has

Tk0 =

(
0 0
0 σk,N2

)
, k = 1, . . . , N − 1.

Since by (2.20) σk,N2
≤ σ0,N2

, and since σ0,N2
has already been registered as a possible

maximum, none of these blocks can lead to the maximal eigenvalue we are seeking.
We are thus left with the analysis of blocks Tkl with l ≥ 1. Let

ζk,l =
|cNl |2 λ(N,N,η)

k,l

2λ
(N,N2 , η2 )

k,l

.

One may check that

|cN
l+N

2
|2 λ(N,N,η)

k,l+N
2

(
2λ

(N,N2 , η2 )

k,l

)−1

= 1 − ζk,l

either using the explicit formulas or observing that this relation is a consequence of
Ac = PT AP , which entails

2λ
(N,N2 , η2 )

k,l =
(
cNl cN

l+N
2

)(λ
(N,N,η)
k,l 0

0 λ
(N,N,η)

k,l+N
2

)(
cNl
cN
l+N

2

)
.

We may then apply Lemma 2.2, showing that the characteristic equation may be
written as

(σk,l − λ)(σk,l+N
2
− λ) − α

(
ζk,l σk,l (σk,l+N

2
− λ) + (1 − ζk,l)σk,l+N

2
(σk,l − λ)

)
= 0,

which amounts to

λ2 −
(
α
(
(1 − ζk,l)σk,l + ζk,l σk,l+N

2

)
+ 2 (1 − α) sk,l

)
λ − (α− 1) g2

k,l = 0,

where sk,l =
σk,l+σ

k,l+N
2

2 and g2
k,l = σk,l σk,l+N

2
. Using

γ
N
2

l = 2
(
1 − cos

(
4lπ
N

))
= 4

(
1 − cos2

(
2lπ
N

))
= γN

l γN
l+N

2
,

one sees that λ
(N,N2 , η2 )

k,l = η
2γ

N
l γN

l+N
2

+ γN
k . Because |cNl |2 = 1

2γ
N
l+N

2

, one then finds

ζk,l =
1

2
+ γN

k

1
2γ

N
l+N

2

− 1

ηγN
l γN

l+N
2

+ 2γN
k

=
1

2
+

γN
k cos

(
2lπ
N

)
ηγN

l γN
l+N

2

+ 2γN
k

.

Since γN
k ≥ 0, one sees that ζk,l ≥ 1

2 if l < N
4 and ζk,l ≤ 1

2 otherwise (with ζ0,l = 1
2

for all l). Hence, with (2.19), we have in all cases

(2.24) (1 − ζk,l) σk,l + ζk,l σk,l+N
2

≤ sk,l.
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Now, the positive root of λ2 − b λ − c = 0 with c ≥ 0 is an increasing function of b.
Thus, the positive root of

(2.25) λ2 − 2
(
1 − α

2

)
sk,lλ− (α− 1) g2

k,l = 0

is an upper bound on the largest eigenvalue of Tkl for l ≥ 1. With the previous
discussion of blocks Tk0 and (2.20), this shows that the right-hand side of (2.23) is an

upper bound on λ
(max)

e⊥ (T ).
On the other hand, a lower bound is obtained by computing the largest eigenvalue

of a subset of the blocks. Consider then T0l for l = 1, . . . , N
2 −1. Since ζ0,l = 1

2 , (2.24)
is then an equality, showing that the positive root of (2.25) gives exactly the largest
eigenvalue of Tkl for k = 0. The conclusion readily follows.

By way of illustration, we apply this result to a damped Jacobi smoothing (σk,l

given by (2.14)). One has, for all l,

sl ≤ lim
N→∞

s1 =
1 +

(
1

1+η

)2ν

2

and

gl ≤ gN
4

=

(
1 + η

2

1 + η

)2ν

.

For α = 1, λ
(max)

e⊥ (T ) = maxl sl and (2.8) gives

κe⊥ ≤ 2

1 −
(

1
1+η

)2ν ;

whereas, for α = 2, λ
(max)

e⊥ (T ) = maxl gl, whence

κe⊥ ≤ 2

1 −
(

1+ η
2

1+η

)2ν .

Numerical computation reveals that the upper bound (2.8) is very tight. Hence, the
above expressions also give the exact asymptotic value for N → ∞. Comparing them,
one sees that the condition number is always better for α = 1, although the difference
decreases as ν increases, that is, as the smoother improves. This is illustrated in
Figure 1, where we have plotted the condition number as a function of α. One sees
that α = 1 is optimal for all tested values of η and ν. Hence, scaling the coarse grid
matrix does not improve the convergence of the two-grid method.

Our results also show that the condition number decreases as η increases and is
in fact very bad for η < 1. In the latter case, it is be better to coarsen along the y
direction.

2.4. Linewise quadruplet aggregation. A faster coarsening can be obtained
by repeating the process, defining aggregates by forming pairs of pairs—more precisely,
by forming pairs of aggregates from the first pass in x direction. When these pairs
of aggregates also follow the x direction, we will then call this linewise quadruplet
aggregation. Boxwise quadruplet aggregation is considered in the next subsection.
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Fig. 1. Asymptotic (N → ∞) condition number (estimated by (2.8)) for pairwise aggregation
with damped Jacobi smoothing, as a function of α.

From Figure 1, one sees that scaling the coarse grid matrix does not improve the
condition number in the case of pairwise aggregation. Numerical investigations reveal
that this conclusion carries over linewise and boxwise quadruplet aggregation. Hence,
here and in the following subsection, we restrict ourselves to the case α = 1.

We assume that N is an integer multiple of 4, and the prolongation is the N2× N2

4
matrix

(2.26) P = IN ⊗ PN PN
2
,

where

PN PN
2

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
1 0
1 0

. . .

0 1
0 1
0 1
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

From Proposition 2.1, one has

PN PN
2

= VN CN CN
2
VH

N
2

and PT
N = VN

2
CH

N
2
CH

N VH
N .

On the other hand, with (2.15), (2.16), one sees that the coarse grid matrix is

(2.27) PT AP = η IN ⊗AN
4

+ 4AN ⊗ IN
4

= 4A
( η
4 )

N,N4
.
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Hence, T (with α = 1) has the same eigenvalues as(
I −

(
IN ⊗ CN CN

2

)(
ηIN ⊗ ΓN

4
+ 4ΓN ⊗ IN

4

)+

(
IN ⊗ CH

N
2
CH

N

)
(ηIN ⊗ ΓN + ΓN ⊗ IN )

)
Σ.

The latter matrix is block diagonal with (after symmetric permutation) 4 × 4
diagonal blocks

Tkl =

⎛⎜⎜⎜⎜⎜⎝I − pl

(
4λ

(N,N4 , η4 )

k,l

)+

pH
l

⎛⎜⎜⎜⎜⎜⎝
λ

(N,N,η)
k,l

λ
(N,N,η)

k,l+N
4

λ
(N,N,η)

k,l+N
2

λ
(N,N,η)

k,l+ 3N
4

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝
σk,l

σk,l+N
4

σk,l+N
2

σk,l+ 3N
4

⎞⎟⎟⎠ ,

where

pl =

⎛⎜⎜⎜⎜⎝
pNl
pN
l+N

4

pN
l+N

2

pN
l+ 3N

4

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
cNl c

N
2

l

cN
l+N

4

c
N
2

l+N
4

cN
l+N

2

c
N
2

l

cN
l+ 3N

4

c
N
2

l+N
4

⎞⎟⎟⎟⎟⎟⎟⎠
with cNi as in Proposition 2.1 (k = 0, . . . , N − 1 and l = 0, . . . , N

4 − 1).

Theorem 2.4. Let A = A
(η)
N,N with an N integer multiple of 4, let P be given by

(2.26), and let M be a symmetric matrix satisfying (2.11). If, for k = 1, . . . , N − 1
and l = 0, . . . , N

4 − 1,

(2.28)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
σk,l ≥ max

(
σk,l+N

4
, σk,l+N

2
, σk,l+ 3N

4

)
if l < N

8 ,

σk,l+ 3N
4

≥ max
(
σk,l, σk,l+N

4
, σk,l+N

2

)
if l > N

8 ,

max
(
σk,l, σk,l+ 3N

4

)
≥ max

(
σk,l+N

4
, σk,l+N

2

)
if l = N

8 ,

and if, for l = 1, . . . , N − 1,

(2.29) max
k=0,...,N−1

σk,l = σ0,l,

then, for l = 0, . . . , N
4 − 1, letting τ

(1)
l , τ

(2)
l ,τ

(3)
l , τ

(4)
l be such that

for l > 0 :

{{
τ

(1)
l , τ

(2)
l , τ

(3)
l , τ

(4)
l

}
=

{
σ0,l, σ0,l+N

4
, σ0,l+N

2
, σ0,l+ 3N

4

}
,

τ
(1)
l ≥ τ

(2)
l ≥ τ

(3)
l ≥ τ

(4)
l ,

τ
(1)
0 = τ

(2)
0 = τ

(3)
0 = τ

(4)
0 = max

(
σ0,N4

, σ0,N2
, σ0, 3N4

)
,
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λ
(max)

e⊥ (T ) defined by (2.3) with α = 1 and (2.6) satisfies

(2.30) max
l=0,...,N4 −1

(
3
4 τ

(1)
l + 1

4 τ
(4)
l

)
≤ λ

(max)

e⊥ (T ) ≤ max
l=0,...,N4 −1

(
3
4 τ

(1)
l + 1

4 τ
(2)
l

)
.

Proof. We first consider the block T00. Since (4λ
(N,N4 , η4 )
0,0 )+ = 0, T00 has eigen-

values σ0,0, σ0,N4
, σ0,N2

, and σ0, 3N4
, but only the last three have to be taken into

account, which is properly done with the τ
(i)
0 . (σ0,0 is the eigenvalue (in fact equal to

1) corresponding to the singular mode e = N v
(N,N)
0,0 .) We next consider the blocks

Tk0, k ≥ 1. Because pNN
4

= pNN
2

= pN3N
4

= 0, Tk0 is diagonal with diagonal entries 0,

σk,N4
, σk,N2

, and σk, 3N4
. By assumption (2.29), these eigenvalues never exceed those

already taken into account previously for the block T00.
We are thus left with the analysis of blocks Tkl with l ≥ 1. Observe that

Lemma 2.2 may be applied and that (2.17) holds with m = 4 and

β δi |yi|2 =
|pNli |

2 λ
(N,N,η)
k,li

4λ
(N,N4 , η4 )

k,l

,

where {l1, l2, l3, l4} = {l, l + N
4 , l +

N
2 , l +

3N
4 }. Defining γN

k by (2.10) (but without
assuming k < N), one sees that for any such li,

4λ
(N,N4 , η4 )

k,l = η γ
N
4

li
+ 4 γN

k .

Since |pNli |
2 = 4 cos2

(
liπ
N

)
cos2

(
2liπ
N

)
= 1

4 γ
N
li+

N
2

γ
N
2

li+
N
4

, one then finds

|pNli |
2 λ

(N,N,η)
k,li

4λ
(N,N4 , η4 )

k,l

=

1
2 γ

N
li+

N
2

(
η γN

li
+ γN

k

)
η γ

N
2

li
+ 2 γN

k

1
2 γ

N
2

li+
N
4

(
η γ

N
2

li
+ 2 γN

k

)
η γ

N
4

li
+ 4 γN

k

=
η γN

li+
N
2

γN
li

+ γN
li+

N
2

γN
k

2
(
η γN

li
γN
li+

N
2

+ 2 γN
k

) η γ
N
2

li+
N
4

γ
N
2

li
+ 2 γ

N
2

li+
N
4

γN
k

2
(
η γ

N
2

li
γ

N
2

li+
N
4

+ 4 γN
k

)
=

(
1

2
+

γN
k cos

(
2liπ
N

)
η γN

li
γN
li+

N
2

+ 2 γN
k

)⎛⎜⎝1

2
+

2 γN
k cos

(
4liπ
N

)
η γ

N
2

li
γ

N
2

li+
N
4

+ 4 γN
k

⎞⎟⎠ .

To apply Lemma 2.2, the li are to be ordered so that the σk,li are in nonincreasing
order. With assumption (2.28), it means that l1 = l if l < N

8 , l1 = l + 3N
4 if l > N

8

and one of these two if l = N
8 . In all cases, one checks with the above expression that

β δ1 |y1|2 =
|pNl1 |

2 λ
(N,N,η)
k,l1

4λ
(N,N4 , η4 )

k,l

≥ 1

4
,

which, together with (2.17) and (2.29), yields the required upper bound.
To prove the lower bound, we restrict our attention to the blocks T0,l. The block

T0,0 is already discussed above. On the other hand, for l ≥ 1, we apply Lemma 2.2 as
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Fig. 2. Actual condition number and its upper and lower bounds for linewise quadruplet aggre-
gation with damped Jacobi smoothing, as a function of η (α = 1).

above. But since γN
0 = 0, we now have exactly β δi |yi|2 = 1

4 for all i. The required
lower bound straightforwardly follows.

For damped Jacobi smoothing (σk,l given by (2.14)), the maximum in both the
left- and right-hand sides of (2.30) is obtained for l = 1. Hence,

4

1 −
(

1
1+η

)2ν + O
(

1

N2

)
≤ κe⊥ ≤ 4

1 −
(

1+ η
2

1+η

)2ν .

This result is illustrated in Figure 2, where we have plotted both bounds (for N = ∞)
and the actual condition number (for N = 256) as a function of η. As for pairwise
aggregation, the condition number increases when η decreases, and only results for
η ≥ 1 are meaningful because otherwise it is better to coarsen along the y direction.

2.5. Boxwise quadruplet aggregation. Here we consider quadruplets ob-
tained by grouping the nodes boxwise, as obtained with a pairwise aggregation in
the x direction followed by a pairwise aggregation in the y direction. We assume N

even and the prolongation is the N2 × N2

4 matrix

(2.31) P = PN ⊗ PN .

With (2.15), (2.16), one then sees that the coarse grid matrix is

(2.32) PT AP = 2 η IN
2
⊗AN

2
+ 2AN

2
⊗ IN

2
= 2A

(η)
N
2 ,N2

.

Hence, T (with α = 1) has the same eigenvalues as

(
I − 1

2
(CN ⊗ CN )

(
ηIN

2
⊗ ΓN

2
+ ΓN

2
⊗ IN

2

)+

(
CH

N ⊗ CH
N

)
(ηIN ⊗ ΓN + ΓN ⊗ IN )

)
Σ.
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The latter matrix is block diagonal with (after symmetric permutation) 4×4 diagonal
blocks

Tkl =

⎛⎜⎜⎜⎜⎜⎝I − ck,l

(
2λ

(N
2 ,N2 ,η)

k,l

)+

cHk,l

⎛⎜⎜⎜⎜⎜⎝
λ

(N,N,η)
k,l

λ
(N,N,η)

k,l+N
2

λ
(N,N,η)

k+N
2 ,l

λ
(N,N,η)

k+N
2 ,l+N

2

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝
σk,l

σk,l+N
2

σk+N
2 ,l

σk+N
2 ,l+N

2

⎞⎟⎟⎠ ,

where

ck,l =

⎛⎜⎜⎜⎜⎝
cNk cNl
cNk cN

l+N
2

cN
k+N

2

cNl

cN
k+N

2

cN
l+N

2

⎞⎟⎟⎟⎟⎠
with cNi as in Proposition 2.1 (k = 0, . . . , N

2 − 1 and l = 0, . . . , N
2 − 1).

Theorem 2.5. Let A = A
(η)
N,N with N even, let P be given by (2.31), and let M

be a symmetric matrix satisfying (2.11). If, for k = 0, . . . , N−1 and l = 0, . . . , N
2 −1,

(2.33)

{
σk,l ≥ σk,l+N

2
and σl,k ≥ σl+N

2 ,k if l < N
4 ,

σk,l ≤ σk,l+N
2

and σl,k ≤ σl+N
2 ,k otherwise

and if, for l = 1, . . . , N − 1,

(2.34) max
k=0,...,N−1

σk,l = σ0,l and max
k=0,...,N−1

σl,k = σl,0,

then, for l = 0, . . . , N
2 − 1, letting

tl =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max

(
3σl,0 + σ

l+N
2
,0

4 ,
3σ0,l + σ

0,l+N
2

4

)
if 0 < l < N

4 ,

max

(
σl,0 + 3σ

l+N
2
,0

4 ,
σ0,l + 3σ

0,l+N
2

4

)
if l ≥ N

4 ,

max
(
σN

2 ,0, σ0,N2

)
if l = 0,

(2.35)

sl =

⎧⎪⎪⎨⎪⎪⎩
max

(
σl,0 + σ

l+N
2
,0

2 ,
σ0,l + σ

0,l+N
2

2

)
if l > 0,

max
(
σN

2 ,0, σ0,N2

)
if l = 0,

(2.36)

λ
(max)

e⊥ (T ) defined by (2.3) with α = 1 and (2.6) satisfies

(2.37) max
l=0,...,N2 −1

sl ≤ λ
(max)

e⊥ (T ) ≤ max
l=0,...,N2 −1

tl.
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Proof. We first consider the block T00. Since (λ
(N

2 ,N2 ,η
0,0 )+ = 0, T00 has eigenvalues

σ0,0, σ0,N2
, σN

2 ,0, and σN
2 ,N2

, but only the last three have to be taken into account,

which is properly done with the given definitions of t0 and s0, noting that by (2.33)
(with k = N

2 and l = 0), σN
2 ,N2

≤ σN
2 ,0.

For other blocks, Lemma 2.2 may be applied with m = 4 and

β δi |yi|2 =
|cNki

cNli |
2 λ

(N,N,η)
ki,li

2λ
(N

2 ,N2 ,η)

k,l

,

where {(k1, l1), (k2, l2), (k3, l3), (k4, l4)} = {(k, l), (k, l + N
2 ), (k + N

2 , l), (k + N
2 , l +

N
2 )}. Using the same tricks as in the proof of Theorem 2.4, one finds

β δi |yi|2 =
γN
ki+

N
2

γN
li+

N
2

(
η γN

li
+ γN

ki

)
8
(
η γN

li
γN
li+

N
2

+ γN
ki
γN
ki+

N
2

)
=

1

4
+

η γN
li
γN
li+

N
2

cos
(

2kiπ
N

)
+ γN

ki
γN
ki+

N
2

cos
(

2liπ
N

)
4
(
η γN

li
γN
li+

N
2

+ γN
ki
γN
ki+

N
2

) .(2.38)

We now consider the blocks Tk0, k ≥ 1. One then has γN
li
γN
li+

N
2

= 0, and

β δi |yi|2 = 1
2 for the pairs (k, 0), (k+ N

2 , 0), whereas β δi |yi|2 = 0 for the pairs (k, N
2 ),

(k+ N
2 ,

N
2 ). From the characteristic equation given in Lemma 2.2, it then follows that

the four eigenvalues are 0, (σk,0 + σk+N
2
, 0)/2, σk,N2

, and σk+N
2 ,N2

. Note that by

(2.34), σk,N2
, σk+N

2 ,N2
≤ σ0,N2

. Similarly, the blocks T0l with l ≥ 1 have the four

eigenvalues 0, (σ0,l + σ0,l+N
2
)/2, σN

2 ,l ≤ σN
2 ,0, and σN

2 ,l+N
2
≤ σN

2 ,0. With the above

discussion of T00, it is shown that the lower bound in (2.37) is in fact equal to the
maximal eigenvalue of blocks Tkl with either k = 0 or l = 0.

This proves the left inequality (2.37). To prove the right one, and because (2.33)
implies tl ≥ sl, we are left with the analysis of blocks Tkl with k, l ≥ 1. With (2.33),
(2.38) shows that β δi |yi|2 ≥ 1

4 for i = 1 corresponding to the largest σki,li . Further,
by virtue of (2.33) again, the two largest σki,li are either σki,l, σki,l+

N
2

(with ki = k

or ki = k + N
2 ), or σk,li , σk+N

2 ,li
(with li = l or li = l + N

2 ). In the first case, and if

l < N
4 , Lemma 2.2 yields the upper bound

3σki,l + σki,l+
N
2

4
≤

3σ0,l + σ0,l+N
2

4
≤ tl.

Other cases can be discussed similarly, showing altogether that the largest eigenvalue
of Tkl does not exceed max(tk, tl). The required upper bound straightforwardly fol-
lows.

Note that here the x and y directions play a symmetric role. If the smoother
preserves this symmetry, then the condition number will have same value for η and
1/η. Considering damped Jacobi smoothing (σk,l given by (2.14)), we may thus
assume η ≥ 1 without loss of generality. The maximum in both the left- and right-
hand sides of (2.37) is obtained for l = 1 and

2

1 −
(

η
1+η

)2ν + O
(

1

N2

)
≤ κe⊥ ≤ 4

1 −
(

η
1+η

)2ν .
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Fig. 3. Actual condition number and its upper and lower bounds for boxwise quadruplet aggre-
gation with damped Jacobi smoothing, as a function of η (α = 1).

This result is illustrated in Figure 3, where we have plotted both bounds (for N = ∞)
and the actual condition number (for N = 256) as a function of η. One sees that
the actual condition number matches the lower bound and that the upper bound
overestimates it by a factor of 2. This stems from the fact that the lower bound
is the maximal eigenvalue of the blocks Tkl with either k = 0 or l = 0, while the
actual maximum is in one of these blocks (namely T10). In view of (2.34), one may
conjecture that these blocks Tk0 or T0l will indeed most often contain this actual
maximum; hence, the gap between the upper and the lower bounds represents a
shortcoming in our analysis.

On the other hand, one sees that the condition number here increases as η in-
creases. Our results, which depends only on σk,l, show that this may be cured with
a smoother that properly handles anisotropy, such as a line Jacobi [14]. One may
also follow the philosophy of “algebraic” multigrid (AMG) methods [13], in which
the smoother is fixed and the coarsening adapted to the problem. Considering the
results obtained in the preceding subsection, one must shift from boxwise to linewise
quadruplet aggregation when η is above a given threshold. Note that the optimal
threshold depends on the smoother. This approach is illustrated in the next section.

3. Multigrid cycles. As written in the introduction, the results obtained in the
preceding section do not allow one to prove optimal order convergence of a multigrid
method with V- or W-cycle. They are, however, compatible with the practical re-
quirements stated in [12] for near optimal order convergence with K2-cycle multigrid.
In this scheme, the multigrid method is used as a preconditioner. It is may be seen as
an “inexact” two-grid scheme in which the coarse-grid systems are solved by 2 steps
of a Krylov subspace iterative method, using the same preconditioning scheme on the
coarser level. This procedure is recursively followed until the coarsest level where an
exact solve is performed. Note that one has to select for these inner iterations and
for the outer iteration a method that accommodates slightly variable precondition-
ing. For symmetric positive definite systems, the choice method is the “flexible” (or
“generalized”) conjugate gradient method from [1, 9] (on which the analysis in [12]
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is based). In Figure 4, we give the algorithm for the two-grid scheme and both the
K2- and V-cycle multigrid schemes. For the sake of clarity, we simplified somewhat
the original formulation of the K2-cycle, enforcing the use of the same scheme at each
level (the algorithm in [12] allows for hybrid schemes; in the numerical experiments
reported later we always use the version of Figure 4). On the other hand, we supple-
ment the K2-cycle with a threshold technique: If, after 1 inner iteration, the relative
residual error for the coarse system being solved is below some threshold t, then the
second inner iteration is skipped. We indeed observed that, setting t ≈ 0.25, the
convergence remains the same but each iteration is, on average, somewhat cheaper.
This version is referred to as K2(t)-cycle multigrid.

Input: rk; Output: zk = MGprec(rk).
1. Relax using smoother Mk : vk = M−1

k rk.
2. Compute new residual: r̃k = rk −Ak vk.
3. Restrict residual: rk−1 = PT

k r̃k.
4. Compute an (approximate) solution x̃k−1 to Ak−1 xk−1 = rk−1:

if Two-grid or k = 1 then x̃k−1 = A−1
k−1 rk−1

else if V-Cycle then x̃k−1 = MGprec(rk−1)
else if K2(t)-cycle then
Perform 1 or 2 flexible CG iterations with the multigrid preconditioner:
dk−1 =MGprec(rk−1)

αk−1 =
rTk−1dk−1

dT
k−1Ak−1dk−1

xk−1 = αk−1 dk−1

r̃k−1 = rk−1 − αk−1 Ak−1dk−1

if ‖r̃k−1‖ ≤ t ‖rk−1‖ then x̃k−1 = xk−1

else
ck−1 =MGprec(r̃k−1)

d̃k−1 = dk−1 −
cT
k−1Ak−1dk−1

dT
k−1Ak−1dk−1

ck−1

x̃k−1 = xk−1 −
r̃Tk−1d̃k−1

d̃T
k−1Ak−1d̃k−1

d̃k−1

end if
end if

5. Prolongate coarse-grid correction: xk = Pk x̃k−1.
6. Compute new residual: rk = r̃k −Ak xk.
7. Relax using smoother Mk : wk = M−1

k rk.
8. zk = vk + xk + wk.

Fig. 4. Algorithm defining two-grid, V-cycle multigrid, and K2(t)-cycle multigrid precondition-
ing at level k (k ≥ 1) for matrix Ak, based on prolongation Pk, on 1 pre- and 1 postsmoothing step
with smoother Mk, and on flexible CG as an inner Krylov subspace solver for the K2(t)-cycle.

We first illustrate these multigrid cycles on a model anisotropic problem like in
section 2, but with Dirichlet boundary conditions. We select a coarsening method
that performs linewise quadruplet aggregation when η > 2 and boxwise quadruplet
aggregation otherwise. We set the threshold to 2 because then the model aggregation
investigated here performs roughly as the “black box” aggregation algorithm proposed
in [10]. Note that the type of coarsening is not fixed once for all on the finest grid; that
is, at each level, the selection of the coarsening scheme is performed independently,
based on the matrix as defined at the considered level. Consider, for instance, η =
16. According to the rule, linewise quadruplet aggregation is selected on the finest
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grid. This induces, on the next level, a matrix with the same structure but with the
anisotropy ratio η1 = η/4 = 4 (see (2.27)). Thus, linewise quadruplet aggregation
is again selected on this first coarse level. However, the matrix induced at the next
level has the anisotropy ratio η2 = η1/4 = η/16 = 1. Hence, the selected coarsening
scheme will be boxwise quadruplet aggregation. Since this leaves the anisotropy ratio
unchanged (see (2.32)), boxwise quadruplet aggregation will be further applied at all
subsequent levels. Thus, when η = 16, the aggregation rule automatically selects twice
linewise quadruplet aggregation and then shifts to boxwise quadruplet aggregation.

Note that there are critical values of η corresponding to a transition between
coarsening schemes. Below, we pay attention to these critical values and always
report the results obtained with both η slightly below and η slightly above the limit
where the coarsening scheme changes.

In Table 1 we report the CPU time and the number of (outer) conjugate gradient
iterations needed to reduce the relative residual error by 10−6, when solving a linear

system with the right-hand side equal to
(
1 · · · 1

)T
and the zero vector as initial

approximation. In all cases, we use the symmetric Gauss–Seidel smoother with 1
pre- and 1 postsmoothing step. The K2(t0.25)-cycle refers to the K2(t)-cycle multigrid
scheme described previously with a threshold t = 0.25. For the two-grid and V-
cycle variants, the standard implementation of the conjugate gradient method is used,
whereas for the K2(t0.25)-cycle the flexible variant is used. The coarsest grid has in
most cases 256 nodes. That is, we use 7 levels (6 coarsenings) for the 1024 × 1024
grid and 5 levels (4 coarsenings) for the 256 × 256 grid. There are two exceptions,
corresponding to the cases where η = 104 and η = 105. For the 1024 × 1024 grid, 5
linewise quadruplet aggregations result in a coarse grid matrix with 1024 nodes that
has a one-dimensional structure, and we keep this matrix as the coarsest one, fixing
thereby the number of levels to 6 (5 coarsenings).

One sees that the V-cycle is not optimal, whereas iteration counts for the K2(t0.25)

are nearly independent of the grid size, and only slightly larger than those observed
for the two-grid method on a grid with moderate size.

We further consider the following more difficult example, with coefficient jumps
and a mix of isotropic and anisotropic regions. More precisely, we consider the linear
system resulting from the five point finite difference approximation of

− ∂

∂x

(
ax

∂u

∂x

)
− ∂

∂y

(
ay

∂u

∂y

)
= f in Ω = (0, 1) × (0, 1)

with boundary conditions{
u = 0 on x = 0, 0 ≤ y ≤ 1 and y = 0, 0 ≤ x ≤ 1 ,

∂u
∂n = 0 elsewhere on ∂Ω

and coefficients given by⎧⎨⎩
ax = 103, ay = 1, f = 0 in (0, 1) × (0, 0.5),
ax = 1, ay = 1, f = 0 in (0, 0.5) × (0.5, 1),
ax = 10−3, ay = 10−3, f = 1 in (0.5, 1) × (0.5, 1).

We use a uniform mesh with a constant mesh size h in both directions, h−1 = 256 or
h−1 = 1024.

For this problem, according our general philosophy, we adapt the coarsening to
the coefficients. That is, linewise quadruplet aggregation is applied in the anisotropic
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Table 1

Number of iterations and CPU time (in seconds) needed to reduce the relative residual error by
10−6 for the model anisotropic problem; the second column indicates the successive coarsenings, each
� referring to linewise aggregation and each b referring to boxwise aggregation (thus, for instance,
(��bbbb) means 2 linewise quadruplet aggregations followed by 4 boxwise quadruplet aggregations).

Two-grid K2(t0.25)-cycle V-cycle

grid 256 × 256 256 × 256 1024 × 1024 256 × 256 1024 × 1024
#it. #it. time #it. time #it. time #it. time

η coars.

1.0 (bbbbbb) 10 10 0.85 11 17.8 27 1.55 58 57.4
1.9 (bbbbbb) 10 10 0.82 11 17.4 27 1.54 58 57.2
2.1 (�bbbbb) 15 16 1.33 17 27.2 33 1.90 69 70.7
4.0 (�bbbbb) 15 16 1.37 17 28.0 34 1.98 79 82.0
7.9 (�bbbbb) 15 16 1.34 17 27.2 33 1.90 67 68.8
8.1 (��bbbb) 15 19 1.60 21 33.2 38 2.20 78 78.1
16 (��bbbb) 16 19 1.63 21 33.2 40 2.37 84 84.1
31 (��bbbb) 16 19 1.57 21 32.4 38 2.25 76 76.2
33 (���bbb) 16 19 1.54 22 34.0 42 2.40 88 86.3
64 (���bbb) 16 19 1.54 22 34.4 45 2.56 90 90.0

127 (���bbb) 16 19 1.56 22 33.8 48 2.74 95 93.1
129 (����bb) 16 19 1.53 22 33.7 48 2.76 106 104.
256 (����bb) 16 19 1.55 22 33.8 48 2.75 105 103.
511 (����bb) 16 19 1.55 22 33.9 47 2.71 101 99.1
513 (�����b) 16 19 1.55 22 34.0 47 2.71 101 98.9
1.e3 (�����b) 16 19 1.55 22 33.8 47 2.71 99 97.2
1.e4 (����� ) 16 18 1.47 22 33.9 46 2.61 97 95.0
1.e5 (����� ) 16 18 1.45 20 30.5 42 2.40 93 91.2

region (the first half of the matrix rows when using a rowwise ordering), and boxwise
quadruplet aggregation elsewhere. We use 6 coarsenings (7 levels) for h−1 = 256 and
8 coarsenings (9 levels) for h−1 = 1024. Hence, the coarsest grid always has 16 nodes.2

Note that, here again, this model aggregation scheme performs roughly as the “black
box” aggregation algorithm in [10].

The results are given in Table 2. For the sake of completeness, we consider
scaling the coarse grid matrices according to the parameter α as in (2.3) (that is, all
entries in the successive coarse grid matrices are multiplied by α−1). As for the model
anisotropic problem, the V-cycle is not optimal whereas the K2(t0.25)-cycle exhibits
near grid independent convergence. As expected from the results in [3, 18], scaling
improves the behavior of the V-cycle, but to a limited extent. On the other hand, the
convergence of two-grid and K2(t0.25)-cycle multigrid schemes is nearly independent of
the scaling.

4. Conclusion. We have developed the Fourier analysis of multigrid methods
with coarsening based on “pure” aggregation schemes. Our results show that the two-
grid convergence rates are independent of the grid size and can be made independent
of anisotropies by a proper choice of the coarsening direction, as is natural in an
AMG-like approach. These two-grid convergence rates are too large for having an
optimal order method with standard multigrid cycles. However, the K2-cycle (where
the coarse systems are solved by two steps of a Krylov subspace iterative method)

2It means that, at some point in the coarsening process, the matrix graph for the anisotropic
region reduces to a vertical line; hence, linewise aggregation along the x direction is no longer
possible, and linewise aggregation along that vertical line (y direction) is used instead to ensure that
the number of variables is still reduced by a factor of 4.
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Table 2

Number of iterations and CPU time (in seconds) needed to reduce the relative residual error by
10−6 for the problem with coefficients jumps; α is the scaling parameter.

Two-grid K2(t0.25)-cycle V-cycle

grid 256 × 256 256 × 256 1024 × 1024 256 × 256 1024 × 1024
#it. #it. time #it. time #it. time #it. time

α

1.0 19 24 1.92 27 41.5 75 4.22 166 163.
1.1 19 23 1.85 27 41.7 67 3.82 157 156.
1.2 19 22 1.75 28 42.9 65 3.71 148 145.
1.3 19 22 1.75 28 43.0 64 3.64 142 139.
1.4 19 22 1.75 27 40.8 63 3.59 136 135.
1.5 19 22 1.77 27 41.3 62 3.49 133 130.
1.6 19 22 1.75 27 41.4 61 3.46 132 130.
1.7 19 23 1.81 27 41.3 61 3.49 131 130.
1.8 19 23 1.83 27 41.5 61 3.48 131 128.
1.9 19 23 1.83 27 41.2 61 3.45 130 128.
2.0 19 23 1.82 27 41.5 62 3.53 133 130.

exhibits near grid independent convergence. This convergence is too slow to make
the approach competitive with geometric multigrid. Nevertheless, combined with a
proper automatic aggregation algorithm, the approach is potentially attractive as an
AMG-like method.
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