
Recursive Krylov-based multigrid cycles

Yvan Notay 1,∗ and Panayot S. Vassilevski 2 †

1 Service de Métrologie Nucléaire, Université Libre de Bruxelles (C.P. 165/84),
50, Av. F.D. Roosevelt, B-1050 Brussels, Belgium.

2 Center for Applied Scientific Computing,
UC Lawrence Livermore National Laboratory, PO. Box 808, L-560,

Livermore, CA 94551, USA.

Preprint version of the paper appeared in

Numerical Linear Algebra with Applications (vol. 15, pp. 473–487, 2008)
http://dx.doi.org/10.1002/nla.542

Abstract

We consider multigrid cycles based on the recursive use of a two–grid method,
in which the coarse–grid system is solved by µ ≥ 1 steps of a Krylov subspace it-
erative method. The approach is further extended by allowing such inner iterations
only at levels of given multiplicity whereas V–cycle formulation is used at all other
levels. For symmetric positive definite systems and symmetric multigrid schemes, we
consider a flexible (or generalized) conjugate gradient method as Krylov subspace
solver for both inner and outer iterations. Then, based on some algebraic (block–
matrix) properties of the V–cycle multigrid viewed as preconditioner, we show that
the method can have optimal convergence properties if µ is chosen sufficiently large.
We also formulate conditions that guarantee both, optimal complexity and conver-
gence, bounded independently of the number of levels. Our analysis shows that the
method is at least as effective as the standard W–cycle, whereas numerical results
illustrate that it can be much faster than the latter, and actually more robust than
predicted by the theory.

Key words. recursive multilevel Krylov iterations, variable-step multilevel pre-
conditioning, flexible conjugate gradients, multigrid, Krylov sub-
space method, conjugate gradients, preconditioning

AMS subject classification. 65N55, 65F10, 65F50

∗Supported by the Belgian FNRS (“Mâıtre de recherches”).
†This work was performed under the auspices of the U. S. Department of Energy by the University of

California Lawrence Livermore National Laboratory under contract W-7405-Eng-48.

1

http://dx.doi.org/10.1002/nla.542

1 Introduction

We consider the iterative solution of large sparse linear systems

Au = b (1.1)

by multigrid (MG) methods [1, 2]. These methods are being used in increasingly complex
situations. They were initially designed as stand alone solvers, and they are quite successful
as such in many applications, for which one may reach the so-called “multigrid textbook
efficiency”[2]. However, MGmethods, especially their algebraic variants (AMG) originating
in [3], see also [4] (and more recently ([5, 6, 7, 8], etc.), are nowadays used in applications for
which such efficiency is yet to be achieved. One common way to somewhat improve their
robustness, is to use them as preconditioners in a Krylov subspace iterative method [9, 10],
for instance, in the conjugate gradient (CG) method if the system matrix is symmetric
positive definite (SPD).

Now, this still may not be sufficient to provide fast convergence if the two–grid con-
vergence factor is too large to allow convergence properties independent of the number of
levels with standard V– or W–cycles. Moreover, in real life problems, it is often impossible
to predict if such a situation will occur or not, and what type of cycle would be optimal.
This motivates us to consider Krylov based MG–cycles (or K–cycle, for short). With these
cycles, the MG method is still based on the recursive use of a two–grid method, but the
needed coarse–grid solve is defined by a few steps of a Krylov subspace iterative method
with the already defined (by recursion) MG method on the previous (coarser) level as pre-
conditioner. If µ inner iterations are performed at each level, we have more specifically a
Kµ–cycle preconditioner. Such an idea is not new; it has been used, also in a multilevel
setting, for the so called AMLI methods (cf., [11]). The latter can be viewed as stabilized
versions of the hierarchical basis (or HB) methods. The stabilization comes from the more
than one recursive calls of the preconditioner defined (by recursion) at a given level.

Observe that the MG preconditioner defined in this way becomes a nonlinear operator
and thus the analysis of such techniques is not as straightforward. For this reason, we
restrict ourselves to the simpler SPD case. That is, we assume that the matrix A in (1.1)
is SPD, and that both inner and outer iterations are carried out with a CG type method,
properly generalized to cope with nonlinear preconditioning (see [12] or §3 below). More-
over, we focus on MG schemes that preserve symmetry (see §2 for details). Nevertheless,
we stress that in practice the approach is applicable to nonsymmetric problems as well,
using as Krylov subspace iterative method for instance the variants of GMRES from [13]
or from [14].

2 The K–cycle MG

We first introduce some notation and give the general setting of this study.
We consider a MG method with ℓ + 1 levels; ℓ is the index of the finest level and 0

the index of the coarsest level; nk , k = 0, . . . , ℓ is the number of unknowns at level k

2

(with nℓ = n), and Pk , k = 1, . . . , ℓ is the nk × nk−1 matrix used to interpolate a vector
from ℜnk−1 onto ℜnk ; because we confine ourselves to symmetric schemes, the restriction
is assumed to be the transpose of the interpolation.

The kth level nk×nk matrix Ak , k = 0, . . . , ℓ−1 is assumed to be SPD. Note that we do
not need any additional assumption. For example, our analysis is not restricted to Galerkin
coarse–grid matrices, i.e., we do not assume that Ak−1 = P T

k AkAk. For convenience, we
set Aℓ = A .

We assume that the kth level smoother Mk, k = 1, . . . , ℓ is an nk × nk nonsingular
matrix such that it provides a convergent method in Ak–norm. I.e., we assume that
‖I −M−1

k Ak‖Ak
< 1. This assumption, as is easily seen (cf., e.g., [15, 16]), is equivalent to

the statement,
Mk +MT

k − Ak is SPD. (2.1)

The number of pre– and post–smoothing steps is denoted by νk . The smoother may be
non symmetric, but we assume that pre– and post–smoothing are applied in a symmetric
way. That is, pre–smoothing is performed with Mk and post–smoothing with MT

k .
With these definitions, the action of a two– or multigrid preconditioner at level k on a

given vector rk is computed according to the following algorithm.

Algorithm 2.1 (MG as preconditioner at level k (k ≥ 1))

Input: rk ; Output: zk .

1. Relax νk times using smoother Mk : vk =
(
I − (I −M−1

k Ak)
νk
)
A−1

k rk

2. Compute new residual: r̃k = rk −Ak vk

3. Restrict residual: rk−1 = P T
k r̃k

4. Compute an (approximate) solution yk−1 to Ak−1 xk−1 = rk−1

5. Interpolate coarse–grid correction: yk = Pk yk−1

6. Compute new residual: rk = r̃k −Ak yk

7. Relax νk times using smoother MT
k : wk =

(
I − (I −M−T

k Ak)
νk
)
A−1

k rk

8. zk = vk + yk +wk

If an exact solution is computed at step 4, Algorithm 2.1 computes the action zk = B−1
k rk

of the two–grid preconditioner Bk satisfying the relation

I − B−1
k Ak = (I −M−T

k Ak)
νk (I − Pk A

−1
k−1 P

T
k Ak) (I −M−1

k Ak)
νk . (2.2)

Note that our general assumptions imply that Bk is SPD (see §4 for a proof).
Now, in practice, an exact solution is typically computed at step 4 only for k = 1

(that is, only the matrix A0 on the coarsest grid is inverted exactly). For k > 1 , the MG

3

preconditioner at level k computes yk−1 approximately using the MG preconditioner at
level k − 1 . The way this is done defines the so-called cycling strategy. Standard cycles
are V– and W–cycles; V–cycles use only one action of the preconditioner on the coarser
level, whereas W–cycles perform two stationary iterations, see, e.g., [2] for algorithms and
more details.

Here we define the Kµ–cycle MG preconditioner as the preconditioner implemented by
Algorithm 2.1 when the coarse–grid system at step 4 is solved by µ iterations of a Krylov
subspace iterative method using the Kµ–cycle preconditioner on the coarser level, until
level k = 1 where the two–grid preconditioner B1 is used. At level k, we denote this
preconditioner K

(k)
µ . In general this is a nonlinear operator, thus for the vector computed

by Algorithm 2.1 we write zk = K
(k)
µ [rk].

In some cases, it is better to allow inner iterations only at levels of given multiplicity
k0 > 1 , that is, at levels ℓ−k0, ℓ−2k0, At other levels, inner iterations are skipped and a
simple V–cycle formulation is used. The K

(k,k0,ℓ)
µ –cycle MG preconditioner K

(k,k0,ℓ)
µ [·] is then

defined as follows. For k = 1 , this is as above the two–grid preconditioner: K
(1,k0,ℓ)
µ [·] =

B−1
1 . For k = 2, 3, . . . , K

(k,k0,ℓ)
µ is recursively defined as the preconditioner implemented

by Algorithm 2.1 at level k with, at step 4,

• if mod (ℓ−(k−1) , k0) = 0, then yk−1 is computed by solving Ak−1xk−1 = rk−1 with

µ iterations of a Krylov subspace iterative method using preconditioner K
(k−1,k0,ℓ)
µ .

• otherwise, we let yk−1 = K
(k−1,k0,ℓ)
µ [rk−1].

Note that with k0 = 1 one recovers the previous definition: K
(k,1,ℓ)
µ = K

(k)
µ . Note also that

these definitions allow any Krylov subspace iterative method for the sake of generality.
Because we focus on symmetric MG schemes for SPD matrices, in the following sections
we restrict ourselves to the flexible (or generalized) CG method from [12] whose algorithm
and convergence properties are summarized in the next section.

Finally, observe that, for k = ℓ − k0 , ℓ − 2k0 , . . . and k > k0 , the K
(k,k0,ℓ)
µ –cycle MG

preconditioner approximates the V–cycle preconditioner at level k with exact coarse grid
solve at level k−k0 . For future reference, we then define Bk 7→j , the V–cycle preconditioner
at level k with exact coarse grid solve at level j (k > j): Bj+17→j = Bj+1 (the two–
grid preconditioner defined by (2.2)) and, for k = j + 2, j + 3, . . . , Bk 7→j is recursively
defined as the preconditioner implemented by Algorithm 2.1 at level k with, at step 4,
yk−1 = B−1

k−17→jrk−1 . Note that if mod (ℓ−k , k0) = 0 and k ≤ k0 , then K
(k,k0,ℓ)
µ = Bk 7→0 .

3 Flexible (or Generalized) CG

Here we consider the version of the CG method suitable for nonlinear preconditioning that
first appeared in [12]. Its analysis has then been improved in several papers [17, 18, 19].
We give below the algorithm to solve a linear system Ax = b with preconditioner action
denoted w = B(r) . In the context of a K–cycle MG preconditioner, this algorithm will

be invoked at step 4 of Algorithm 2.1 with A = Ak−1 , b = rk−1 , B = K
(k−1,k0,ℓ)
µ , and

4

the computed solution xi+1 at step 3 of the final iteration will give the needed yk−1 . This
algorithm will then also be helpful as outer solver for the main system (1.1), since the top

level preconditioner K
(ℓ,k0,ℓ)
µ is also nonlinear. For the sake of simplicity we assume that

the initial approximation is always the zero vector.

Algorithm 3.1 (Flexible (or Generalized) CG)
Initialization: Let x0 = 0 , r0 = b.
For i = 0, 1, . . . perform the following steps:

(1) wi = B(ri)

(2) di = wi −
∑i−1

k=i−max(mi,i)
w

T
i Adk

dT
k
Adk

dk

(3) xi+1 = xi +
d
T
i ri

dT
i Adi

di

(4) ri+1 = ri −
d
T
i ri

dT
i Adi

Adi

(5) Exit if maximum number of iteration is reached or stopping test satisfied.

In this algorithm, the mis are given parameters. Setting mi = 0 for all i gives the steepest
descent method. Ifmi = 1 for all i and if the preconditioner B corresponds to a SPD matrix,
then Algorithm 3.1 reduces to the CG method, in an implementation that is slightly more
costly than the standard one (one more inner product to compute per iteration; there is
also one more vector to store).

In case of variable or nonlinear preconditioning, the following optimality property is
still satisfied:

‖A−1b− xi+1‖A = min
d∈span{di−mi

, ... ,di}
‖A−1b− xi−mi

− d‖A . (3.1)

Hence using larger mi helps to maintain global optimality, at the price of increasing cost
and storage. In practice however, when B is close to a SPD matrix B−1 such that B−1A
has no small or large isolated eigenvalues, the convergence is often not improved setting
mi larger than 1 [19]; mi = 1 is then the most cost effective. In our numerical experiments,
we always set mi = 1 except when we want to assess the steepest descent variant (mi = 0).
Note however that in the context of inner iterations for the K–cycle MG preconditioner,
at most few iterations are allowed (typically 2 or 3), so that mi = i would not affect
significantly the cost of the algorithm.

Taking the best from the estimates in [17, 19], the proved convergence properties of
Algorithm 3.1 can be stated as follows. If, for a given SPD matrix B, one has

‖B(ri)−B−1 ri‖B
‖B−1 ri‖B

≤ ε (3.2)

5

for some ε < 1 , then

‖x− xi+1‖A
‖x− xi‖A

≤ min

(√
1− 4κ (1−ε)2

(κ+ε2(κ−1)+(1−ε)2)2
,

√
1− 1−ε2

κ

)
, (3.3)

where

κ =
λmax(B

−1A)

λmin(B−1A)
(3.4)

is the ratio of the extremal eigenvalues of B−1A .
This is a “local” convergence rate valid for any mi , including mi = 0 . It is therefore

likely to be pessimistic for larger mi . The analysis in [18] takes into account the global
behavior of the algorithm, but the resulting bound is smaller than 1 only for very small ε ,
and is therefore not helpful in the context of the present study.

Note that for ε approaching zero, the first term in the right hand side of (3.3) (the
bound from [19]) gives the standard bound for the convergence of the steepest descent
method. The second term (the bound from [17]) overestimates the error for small ε but is
on the other hand fairly insensitive to ε .

The fact that we are not able to develop a specific analysis for mi ≥ 1 may be seen as
a shortcoming inherent to nonlinearities, since, in the linear case (corresponding to ε = 0),
it is known that the CG method is significantly faster than the steepest descent method.

4 MG as block–factorization

In order to be able to analyze the K–cycle MG preconditioner we recall some linear algebra
properties of the two–grid method seen as a preconditioner. More details can be found in
the monograph [20].

In the present section, for simplicity, we omit the subscripts. That is, we write A as
Al and B as Bl. Then, Ac refers to Al−1 and similarly Bc refers to Bl−1. We also omit
subscripts for vectors, smoother, interpolation, etc.

The first useful fact is that the two–grid preconditioner can be represented as certain
block–factorization of the original matrix. To this end, we introduce the block–factored
matrix

B =

[
M 0
P TA I

] [
(M +MT −A)−1 0

0 Bc

] [
MT AP
0 I

]
,

where Bc may be any SPD approximation to Ac . Note that B is a (n + nc) × (n + nc)
matrix, whereas A is n × n and Ac is nc × nc . It is clear that B is SPD if M +MT − A
is SPD, which in fact follows from the assumption ‖I −M−1A‖A < 1 (stated in (2.1), and
proved, e.g., in [15, 16]). Next, consider the following n× n matrix,

B−1 = [I, P]B
−1

[I, P]T . (4.1)

Then the following identity holds (which can be verified by straightforward computation,
see for example, [21])

I −B−1A = (I −M−TA)(I − PB−1
c P TA)(I −M−1A).

6

That is, the SPD matrix B defined from (4.1) takes part in the definition of the error
propagation matrix I − B−1A, which is the product of three processes; namely, (pre–
)smoothing based on M , coarse–grid correction based on Bc, and post–smoothing based

on MT . In the case of more smoothing steps, we first define a composite smoother M̂ from
the equation I − M̂−1A = (I −M−1A)ν and modify the above definition of B by replacing

M with the composite one M̂ .
This holds with various choices of Bc . For example, with Bc = Ac we obtain definitions

for exact two–grid preconditioner, or if Bc is defined recursively (from coarse–to–fine levels)
by approximate solution of Acxc = rc (as in step 4 of Algorithm 2.1) we end up with the
multilevel versions. Of our interest is the case when in step 4 we apply a flexible CG
preconditioned with a recursively defined nonlinear multilevel preconditioner Bc (which
approximates A−1

c). Such nonlinear Bc is considered in Lemma 4.1 below. Before stating
it we rewrite formula (4.1) in the following more explicit form

B−1 = M
−1

+ (I −M−TA)PB−1
c P T (I − AM−1). (4.2)

Here, M = M(M +MT − A)−1MT is the so–called symmetrized smoother. Note that M
is SPD.

Lemma 4.1 Let Bc be a given SPD nc × nc matrix and let Bc[·] be a mapping that for
some tolerance δ ∈ [0, 1) approximates B−1

c in the following sense

‖B−1
c vc − Bc[vc]‖Bc ≤ δ ‖vc‖B−1

c
∀vc ∈ ℜnc .

Let B[·] be the mapping defined in the same way as B−1 where the actions B−1
c vc are

replaced by Bc[vc]. Then, for all v ∈ ℜn , the following inequalities hold, letting vc =
P T (I − AM−1)v ,

‖B−1v − B[v]‖B ≤ ‖B−1
c vc − Bc[vc]‖Bc ≤ δ ‖vc‖B−1

c
≤ δ ‖v‖B−1 .

Proof. We have, from the representation of B−1v in (4.2) and the fact that M
−1

is SPD,
that (letting vc = P T (I −AM−1)v),

vTB−1v = vTM
−1
v +

(
P T (I − AM−1)v

)T
B−1

c

(
P T (I −AM−1)v

)
≥ vT

c B
−1
c vc . (4.3)

Similarly to (4.2), the following expression holds for B[v], i.e.,

B[v] = M
−1
v + (I −M−TA)PBc

[
P T (I − AM−1)v

]
.

Then, using Cauchy–Schwarz inequality, (4.3), the assumption on Bc[·] and once more

7

(4.3), we arrive at the desired result,

‖B−1v − B[v]‖B = sup
w

wTB(I−M−TA)P (B−1
c vc−Bc[vc])

‖w‖B

≤ sup
w

‖B
−

1
2

c PT (I−AM−1)Bw‖
‖w‖B

‖B−1
c vc − Bc[vc]‖Bc

= sup
w

‖B
−

1
2

c PT (I−AM−1)w‖
‖w‖B−1

‖B−1
c vc − Bc[vc]‖Bc

≤ ‖B−1
c vc − Bc[vc]‖Bc

≤ δ ‖vc‖B−1
c

≤ δ ‖v‖B−1 .

The following corollary holds then.

Corollary 4.1 Consider the V–cycle preconditioner Bk 7→j as defined in §2, for some k, j
such that k > j . Let Bj [·] be an approximate inverse to Aj , and let Bk 7→j be the V–cycle
preconditioner from level k to j in which the exact solve at level j is replace by the action of
Bj . That is, for i = j+1, . . . , k , Bi 7→j is the preconditioner implemented by Algorithm 2.1
at level i with, at step 4, yi−1 = Bj [ri−1] if i = j + 1 and yi−1 = Bi−17→j [ri−1] if i > j + 1 .
Then, the following deviation estimate holds

‖B−1
k 7→jv− Bk 7→j[v]‖Bk 7→j

≤ δ ‖v‖B−1

k 7→j
∀v ∈ ℜnk ,

provided that at the initial coarse level j , ‖A−1
j vj − Bj[vj]‖Aj

≤ δ ‖vj‖A−1

j
for a given

tolerance δ .

Proof. For k = j + 1 , this is just Lemma 4.1 with Bc = Ac = Aj , properly extended when

ν > 1 (using M̂ from I − M̂−1A = (I −M−1A)ν instead of M). On the other hand, if the
corollary holds for some k > j , Lemma 4.1, with B = Bk+17→j , Bc = Bk 7→j , B = Bk+17→j

and Bc = Bk 7→j , further shows

‖B−1
k+17→jv − Bk+17→j[v]‖Bk+17→j

≤ ‖B−1
k 7→jvc − Bk 7→j[vc]‖Bk 7→j

≤ δ ‖vc‖B−1

k 7→j
≤ δ ‖v‖B−1

k+17→j
,

that it is, the result also holds for k + 1 .

5 Analysis of Kµ cycle MG

The convergence properties of the Kµ MG now easily follow from Corollary 4.1 based on
the convergence rate estimates (as in (3.3)) for the flexible (generalized) preconditioned
CG method given by Algorithm 3.1 (with µ ≥ 1 iterations).

For the sake of simplicity, we formulate a convergence result for Kµ–cycle MG, that is,
for Algorithm 2.1 with flexible CG iterations at every level but the coarsest one. The more
general case of a K

(k,k0,ℓ)
µ –cycle MG (with k0 > 1) is analyzed similarly, see the comments

below.

8

Theorem 5.1 Consider a Kµ–cycle MG preconditioner as defined in §2, with coarse–grid
systems at step 4 of Algorithm 2.1 solved by Algorithm 3.1 (with µ ≥ 1 iterations). Let κk ,
k = 1, . . . ℓ be the condition number of Ak preconditioned by the two–grid method:

κk =
λmax(B

−1
k Ak)

λmin(B
−1
k Ak)

,

where Bk is defined from (2.2). Let εk be defined by

εk = min

(√
1−

4κk (1−ε
µ
k−1

)2

(κk+ε
2µ
k−1

(κk−1)+(1−ε
µ
k−1

)2)
2 ,

√
1−

1−ε
2µ
k−1

κk

)
, k = 1, . . . ℓ , (5.1)

where ε0 = 0 .
Then, each iteration of Algorithm 3.1 to solve the system (1.1) with this Kµ–cycle MG

preconditioner is such that
‖x− xi+1‖A
‖x− xi‖A

≤ εℓ . (5.2)

If, in addition,
κ = max

1≤k≤ℓ
κk < µ (5.3)

then there exists ε , 0 ≤ ε < 1 , satisfying

min

(√
1− 4κ (1−εµ)2

(κ+ε2µ(κ−1)+(1−εµ)2)2
,

√
1− 1−ε2µ

κ

)
≤ ε , (5.4)

and for any such ε ,
εℓ ≤ ε (5.5)

independently of ℓ . Moreover, the smallest such ε is not larger than the only positive root
of

µ−1∑

j=1

ε2j + 1− κ = 0 . (5.6)

Proof. Inequality (5.2) with εℓ from (5.1) follows straightforwardly from the recursive
application of (3.3) and Corollary 4.1. Because the right hand side of (5.1) is an increasing
function of both κk and εk−1 , one further sees that (5.5) holds for any ε satisfying (5.4).

In particular, the latter inequality is satisfied when ε =
√
1− 1−ε2µ

κ
, that is when

κ =
1− ε2µ

1− ε2
=

µ−1∑

j=0

ε2j ,

which amounts to (5.6). Finally, the polynomial in the left hand side of (5.6) is monoton-
ically increasing for ε > 0 and takes value 1 − κ ≤ 0 for ε = 0 , showing that there is a

9

unique positive root; moreover, because the polynomial takes value µ − κ > 0 for ε = 1 ,
this root has to be smaller than 1.

A similar result holds for K
(k,k0,ℓ)
µ –cycle MG. Then, the statement of the convergence

result is the same as in Theorem 5.1 with κ = κk0 now referring to a uniform bound (by
assumption) of the relative condition number of the V–cycle preconditioner Bk 7→max(k−k0,0)

with respect to Ak , for k = ℓ, ℓ− k0 ,

An application to second order elliptic problems

In practice, we are interested in the complexity of the multilevel methods. More specifically
we want to have one action of the multilevel preconditioner be of optimal complexity, i.e.,
proportional to the total number of degrees of freedom (at the finest level). In a typical
geometrical MG situation, the degrees of freedom at level l grow like nl ≃ n02

dl, where
d = 2 or d = 3 is the dimension of the geometrical domain and 2 stands for the refinement
factor of the respective mesh size. It is straightforward to estimate that the cost of flexible
CG iteration with K

(k,k0,ℓ)
µ –cycle MG preconditioner:

wk = O(nk) + µ wk−k0 .

The above relations imply that

wℓ = O(nℓ)
∑

j

(µ

2dk0

)j
.

That is, in order to have an optimal complexity method we need that

µ < 2dk0.

The latter is a very mild restriction on µ if we choose k0 ≥ 1 sufficiently large. The
condition on µ to have an optimal convergence reads (see (5.3)),

κk0 < µ.

Thus, the conditions to have an optimal order method (i.e., both optimal complexity and
optimal level–independent bound of the convergence factor) read,

κk0 < µ < 2dk0 . (5.7)

Recall, that κk0 stands for a uniform bound of the level V–cycle preconditioner Bk 7→k−k0

with respect to Ak for k = ℓ, ℓ − k0 For the case of matrices {Al} coming from
model second order selfadjoint elliptic PDEs discretized on uniformly refined meshes with
coefficients that may have large jumps across element boundaries on the coarsest level
(l = 0) only, the following estimate is known

κk0 =

{
O(1 + k2

0), d = 2,
O(2k0), d = 3.

10

The constant in the O–factor is independent of the coefficient jumps. This is the result
based on the hierarchical basis (or HB) method.

Based on the last asymptotic behavior of κk0 , it is clear that for k0 sufficiently large
(but fixed) we can choose µ ≥ 1 (in both cases d = 2 and d = 3) such that the conditions
(5.7) for an optimal order multilevel method are met. This result can be viewed as an
extension of the HB–based AMLI method with flexible (generalized) CG inner iterations
originated in [11], see also [22], now in the case of K–cycle MG.

6 Numerical illustration

We first illustrate the behavior of the estimates in Theorem 5.1. Here we want to include a
comparison with the case where, instead of a Krylov subspace method, one uses stationary
iterations to solve the coarse grid systems, giving thus the standard W–cycle for µ = 2 (as
defined in, e.g., [2]), and generalized W–cycle for µ > 2 , which we call Wµ–cycle for short.
For such cycles, if one assumes in addition that λmax(B

−1
k Ak) = 1 (as occurs when using

Galerkin coarse–grid matrices, that is when Ak−1 = P T
k Ak Pk), the convergence factor σk

of the multigrid method at level k can be recursively estimated from [23, eq. (3.2)]

σk ≤ 1− κ−1
k

(
1− σµ

k−1

)
(6.1)

for k = 1, 2, . . . , with σ0 = 0 . With outer steepest descent or CG iterations, one has then

‖x− xi+1‖A
‖x− xi‖A

≤ εℓ =
σℓ

2− σℓ

(6.2)

(here we take into account that, for A preconditioned by Wµ–cycle MG, the largest eigen-
values is equal to 1, hence κ = (1 − σℓ)

−1 , whereas the convergence rate for the steepest
descent method is (κ− 1)/(κ+ 1)).

On Figure 1 we illustrate these estimates for typical values of µ . One sees that, from
the theoretical side, neither K–cycle nor W–cycle has a decisive advantage. However, we
generally observed that the above analysis of W–cycle MG is relatively sharp, whereas K–
cycle MG often behaves better than predicted by the theory, especially when κk is larger
than µ , so that εℓ quickly grows to 1 as the number of levels increases. This may be related
to the fact that K–cycles lead to nonlinear operators, whose analysis is harder. As example
of shortcoming, Theorem 5.1 is based on estimates (3.3) for flexible CG that do not take
into account the further optimality property (3.1) for mi ≥ 1 .

To illustrate this, we consider the following model experiment, in fact a one dimen-
sional problem, where one selects either AG2 (simple aggregation with two nodes in each

11

µ = 2 µ = 3

1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K−cylce (l = ∞)
K−cycle (l = 7)
W−cycle (l = ∞)
W−cycle (l = 7)

1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K−cylce (l = ∞)
K−cycle (l = 7)
W−cycle (l = ∞)
W−cycle (l = 7)

Figure 1: εℓ from (5.1) (K–cycle) or (6.1), (6.2) (W–cycle) as a function of κ (with κk = κ
in (5.1),(6.1)); for the K–cycle, ε∞ is also the smallest ε satisfying (5.4).

aggregate) or AG4 (the same with 4 nodes in each aggregate):

n = 220

A = tridiag(−1, 2,−1)

AG2 : nℓ−k = 2−k n

(Pk)ij =

{
1 if 2j − 1 ≤ i ≤ 2j

0 otherwise

AG4 : nℓ−k = 4−k n

(Pk)ij =

{
1 if 4j − 3 ≤ i ≤ 4j

0 otherwise

Ak−1 = P T
k Ak Pk

Mk = ω diag(Ak)
−1 (damped Jacobi smoothing)

νk = 1

This problem is artificial, but, because all matrices are tridiagonal, we are able to compute
κk at each level and check that it remains approximately constant from k = 1 to k = ℓ
with ℓ sufficiently large. Moreover, it is also possible to compute the energy norm of the
error at each step.

We then proceed as follows. We select two right hand sides: the vector of all ones,
and a vector with random entries uniformly distributed in [0, 1] . For each of these, we
performed 100 steepest descent (outer) iterations (Algorithm 3.1 with mi = 0) and pick

12

Cycle εm εℓ It1 It2 εm εℓ It1 It2

AG2, ω = 0.5 (1.99 < κk < 2.00)
ℓ = 7 ℓ = 14

V 0.98 189 187 1.00 > 999 > 999

W2 0.69 0.70 37 37 0.78 0.81 50 50
W3 0.42 0.44 22 22 0.43 0.44 22 22
K2 0.30 0.84 20 20 0.30 0.93 20 20
K3 0.31 0.39 18 18 0.31 0.44 18 18

AG4, ω = 0.5 (4.86 < κk < 4.92)
ℓ = 4 ℓ = 7

V 0.99 256 256 1.00 > 999 > 999

W2 0.95 0.98 108 108 0.99 1.00 316 314
W3 0.87 0.94 70 70 0.96 0.99 120 120
K2 0.65 0.99 42 42 0.59 1.00 44 44
K3 0.61 0.96 33 33 0.61 0.99 33 33

AG4, ω = 0.3 (6.87 < κk < 6.92)
ℓ = 4 ℓ = 7

V 0.99 272 272 1.00 > 999 > 999

W2 0.97 0.99 122 122 1.00 1.00 340 340
W3 0.93 0.98 83 80 0.98 1.00 143 180
K2 0.85 1.00 72 72 0.83 1.00 84 84
K3 0.78 0.99 41 40 0.78 1.00 41 42

Table 1: Numerical results for A = tridiag(−1, 2,−1); It1 refers to the right hand side of
all ones and It2 to the random right hand side.

up εm as the worst ratio
‖x− xi+1‖A
‖x− xi‖A

from all these iterations. This quantity is then compared in Table 1 with the bound εℓ
obtained from either Theorem 5.1 (Kµ–cycle) or from (6.1), (6.2) (Wµ–cycle). In addition,
we also report for both right hand sides the actual number of iterations needed to reduce
the relative residual error below 10−12 when using the flexible CG method (Algorithm 3.1
with mi = 1 for all i). Note that for inner iterations in Kµ–cycle MG, we always use
Algorithm 3.1 with mi = 1 . For the sake of completeness, we also report the results
obtained with V–cycle MG.

One sees that for W–cycles, the bound εℓ gives a relatively sharp prediction of the
actual convergence, whereas it is by far too pessimistic for K–cycle MG. As a consequence,
the Kµ–cycle preconditioner appears to be more effective than the Wµ–cycle preconditioner

13

k0 1 2
Cycle K2 W K2 W

n = 1282 ℓ = 3 10 12 15 17
n = 2562 ℓ = 4 10 14 16 22
n = 5122 ℓ = 5 11 16 17 27
n = 10242 ℓ = 6 11 18 18 34
n = 20482 ℓ = 7 11 19 19 41

Table 2: Number of iterations needed to solve the discrete Poisson problem; “–” means no
convergence within the limit of 1000 iterations.

for the same value of µ , that is for about the same computational complexity. In some
cases, εm is slightly smaller for K2 than for K3 , which we explain by the fact that the
reported εm is only an approximation (from below) to εm = sup

x−xi

‖x−xi+1‖A
‖x−xi‖A

.
On the other hand, Kµ–cycle MG appears fairly robust on this example. Even the

relatively cheap variant K2 is able to deliver practically grid independent convergence for
κk up to 5, whereas the performances appear to depend only mildly on the number of levels
for κk up to 7.

We next consider a model but more realistic problem, namely the five point finite
difference approximation of

−∆ u = 1

on the unit square with homogeneous Dirichlet boundary conditions everywhere and a
uniform mesh size h = 1/(m + 1) in both directions, so that the order of the matrix is
n = m2 . We consider a pure boxwise aggregation scheme with four node in each aggregate
which is the natural extension to two dimensions of the AG2 scheme used above, see [24] for
details. In the latter reference, it is proven that the two–grid condition number is between
2 and 4, hence too large for optimal convergence of the W–cycle.

Here we use symmetric Gauss-Seidel smoothing with νk = 1 for all k , and the number
of levels is in all cases such that the coarsest grid has exactly 256 nodes. We report in
Table 2 the number of FCG iterations needed to reduce the relative residual error below
10−6 . Besides the standard K2 and W cycles with inner iterations at each level, we also
illustrate the possibility of doing inner iterations only at level of given multiplicity, setting
k0 = 2 . The results confirm our previous conclusions: the K2–cycle with k0 = 1 appears
optimal and for k0 = 2 it tends to stabilize the condition number, whereas the W–cycle
fails to do so.

7 Conclusions

We have introduced K–cycle MG and developed its analysis. According to this analysis, K–
cycle and W–cycle MG should have similar convergence properties (see Figure 1). However,

14

numerical experiments reveal that for difficult problems, for which V–cycle is slow, K–cycle
MG can be much more effective than W–cycle MG. This phenomenon can be explained
as follows. The W–cycle theory is based on a linear analysis which is relatively sharp.
Numerical evidence shows that it is unlikely for the W–cycle theory to be too pessimistic
in practical examples. On the other hand, there are shortcomings in the analysis of the
K–cycle that are inherent to the nonlinearity of the method (see the end of Section 3).
This gives rise to pessimistic bounds and numerical experiments where K–cycle MG is
much more effective than W–cycle MG correspond actually to cases where K–cycle MG is
also much more effective than predicted by the theory.

Therefore, K–cycle MG appears more robust than W–cycle MG. It can exhibit con-
vergence properties independent of the number of levels even when the condition number
for the underlying two–grid method is relatively large. Using K–cycles may thus enhance
the robustness of a MG method, in particular that of AMG schemes for real-life problems.
This enhanced robustness is obtained nearly for free since the K–cycle has roughly the
same computational complexity as the W–cycle.

Finally, sometimes the number of unknowns does not decrease sufficiently fast from one
level to the next to allow inner iterations at each level as foreseen with standard K– or
W–cycles. To cope with such cases, we introduced a variant of K–cycle MG that allows
inner iterations only at levels of given multiplicity k0 > 1, whereas a V–cycle formulation is
used at other levels. We showed that the analysis of the standard K–cycle carries over this
case. The K-cycling strategy can be implemented in virtually any MG method selecting
the length k0 of the underlying V–cycle in such a way that nk−k0/nk is sufficiently small
thus keeping the complexity of one such recursive cycle under control.

References

[1] W. Hackbusch, Multi-grid Methods and Applications, Springer, Berlin, 1985.

[2] U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid, Academic Press, London,
2001.

[3] A. Brandt, S. F. McCormick, and J. W. Ruge, ‘Algebraic multigrid (amg) for sparse
matrix equations’, in Sparsity and its Application, ed., D. J. Evans, 257–284, Cam-
bridge University Press, Cambridge, (1984).

[4] J. W. Ruge and K. Stüben, ‘Efficient solution of finite difference and finite element
equations by algebraic multigrid (AMG)’, in Multigrid Methods for Integral and Dif-
ferential Equations, eds., D. J. Paddon and H. Holstein, The Institute of Mathematics
and its Applications Conference Series, 169–212, Clarendon Press, Oxford, (1985).

[5] K. Stüben, An Introduction to Algebraic Multigrid, 413–532. In Trottenberg et al. [2],
2001. Appendix A.

15

[6] M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel,
S. F. McCormick, and J. W. Ruge, ‘Algebraic multigrid based on element interpolation
(AMGe)’, SIAM Journal on Scientific Computing, 22, 1570–1592, (2000).

[7] T. Chartier, R. D. Falgout, V. E. Henson, J. Jones, T. Manteuffel, S. McCormick,
J. Ruge, and P. S. Vassilevski, ‘Spectral AMGe (ρAMGe)’, SIAM Journal on Scientific
Computing, 25, 1–26, (2004).

[8] Andrew J. Cleary, Robert D. Falgout, Van Emden Henson, Jim E. Jones, Thomas A.
Manteuffel, Stephen F. McCormick, Gerald N. Miranda, and John W. Ruge, ‘Robust-
ness and scalability of algebraic multigrid’, SIAM Journal on Scientific Computing,
21, 1886–1908, (2000).

[9] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, PA, 2003.
Second ed.

[10] H. A. van der Vorst, Iterative Krylov Methods for Large Linear systems, Cambridge
University Press, Cambridge, 2003.

[11] O. Axelsson and P. S. Vassilevski, ‘Variable-step multilevel preconditioning methods.
I. selfadjoint and positive definite elliptic problems’, Numerical Linear Algebra with
Applications, 1, 75–101, (1994).

[12] O. Axelsson and P. S. Vassilevski, ‘A black-box generalized conjugate gradient solver
with inner iterations and variable-step preconditioning’, SIAM Journal on Matrix
Analysis and Applications, 12, 625–644, (1991).

[13] Y. Saad, ‘A flexible inner-outer preconditioned GMRES algorithm’, SIAM Journal on
Scientific Computing, 14, 461–469, (1993).

[14] H. A. van der Vorst and C. Vuik, ‘GMRESR: a family of nested GMRES methods’,
Numerical Linear Algebra with Applications, 1(4), 369–386, (1994).

[15] Robert D. Falgout and Panayot S. Vassilevski, ‘On generalizing the algebraic multigrid
framework’, SIAM Journal on Numerical Analysis, 42, 1669–1693, (2005).

[16] Y. Notay, ‘Algebraic multigrid and algebraic multilevel methods: a theoretical com-
parison’, Numerical Linear Algebra with Applications, 12, 419–451, (2005).

[17] Radim Blaheta, ‘GPCG-generalized preconditioned CG method and its use with non-
linear and non-symmetric displacement decomposition preconditioners’, Numerical
Linear Algebra with Applications, 9, 527–550, (2002).

[18] G. H. Golub and Q. Ye, ‘Inexact preconditioned conjugate gradient method with inner-
outer iterations’, SIAM Journal on Scientific Computing, 21, 1305–1320, (1999).

16

[19] Y. Notay, ‘Flexible conjugate gradients’, SIAM Journal on Scientific Computing, 22,
1444–1460, (2000).

[20] P. S. Vassilevski, Multilevel Block Factorization Preconditioners, Springer, New York,
2007. (to appear).

[21] Robert D. Falgout, Panayot S. Vassilevski, and Ludmil T. Zikatanov, ‘On two-grid
convergence estimates’, Numerical Linear Algebra with Applications, 12, 471–494,
(2005).

[22] J. K. Kraus, ‘An algebraic preconditioning method for M–matrices: linear versus
nonlinear multilevel iteration’, Numerical Linear Algebra with Applications, 9, 599–
618, (2002).

[23] Y. Notay, ‘Convergence analysis of perturbed two-grid and multigrid methods’, SIAM
Journal on Numerical Analysis, 45, 1035–1044, (2007).

[24] A. C. Muresan and Y. Notay, ‘Analysis of aggregation–based multigrid’, Technical
Report GANMN 06–06, Université Libre de Bruxelles, Brussels, Belgium, (2006).
http://homepages.ulb.ac.be/~ynotay.

17

	Introduction
	The K–cycle MG
	Flexible (or Generalized) CG
	MG as block–factorization
	Analysis of K cycle MG
	Numerical illustration
	Conclusions

