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Abstract

In this paper, a novel approach for vibration based damage detection is proposed.

The approach relies on the use of a large network of sensors (possibly hundreds

of them) to which a programmable linear combiner is attached. The linear com-

biner is programmed to work as a modal filter. The frequency content of the

output of the modal filter is proposed as feature for damage detection. It is shown

that if a local damage is present, spurious peaks appear in the FRF of the modal

filter whereas if temperature changes are considered, the FRF of the modal fil-

ter is shifted but its shape remains unchanged. The approachis interesting be-

cause of the ability to differentiate between local damage and global environmen-

tal changes to a structure.
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Introduction

Health monitoring problems have received increased interest from many different

fields of engineering for the last two decades. The problem is: to be able to de-

tect, locate and assess the extent of damage in a structure sothat its remaining

life can be known and possibly extended. If the location of the damage is known,

local techniques such as ultrasonic methods, radiography,eddy-current methods

or thermal field methods are of common use. The need for globaldamage de-

tection (when the vicinity of damage is not known) has led theresearchers into

developing vibration based methods. The literature on the subject is very large

[1]. The key point for a successful damage detection is to extract from the mea-

surements features which are sensitive to damage. The most common features

found in the literature are modal properties (eigenfrequencies [2] and eigenmodes

[3]). Recent developments in “modal based” damage detection techniques aim at

acquiring modal properties of large structures by using ambient sources of vibra-

tions (wind, traffic ...) which are in principle not known so that one has to use

so-called output-only modal identification methods [4, 5, 6, 7].

In the frequency domain, other methods exists based on either frequency re-

sponse functions [8] or transmittance (also called transmissibility) functions [9,

10, 11, 12]. For frequency response functions the input mustbe accurately known.
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This is a drawback for the design of a health monitoring system under operating

conditions since, as mentioned earlier, the input is generally not known, unless

the excitation is imposed by the monitoring system. In the case of transmittance

functions, frequencies much higher than those used for modal identification are

used because transmittance functions are sensitive to changes in vibration char-

acteristics of two neighboring points which occur only at high frequencies. Such

an approach will most probably fail for large and heavy structures for which such

high frequencies are not sufficiently excited by ambient sources.

More recently, researchers have turned towards features extracted from the

time domain data in order to detect damage. Working on time domain data allows

to be able to detect non-linearities [13] which arise for certain types of damage

such as crack propagation, or unusual events in the signals [14]. This information

is lost when the time domain data is projected in the frequency domain. These

methods rely on signal processing techniques such as the wavelet transform.

It is also worth noting that there is an increased interest for the monitoring

of composite materials. Traditional modal based methods can be used, but also

more advanced techniques are under development. Features of interest are : Lamb

Waves (high frequency traction/compression waves [15, 16,17]), random decre-

ment (RANDEC) signatures [18], identified NARMAX (nonlinear autoregressive

moving average with exogenous input) model coefficients [19], specific damping

capacity (SDC, [20]).
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Although many researchers have been working on the subject for quite a few

years, there are still problems that have not found satisfactory solutions. A major

one is the fact that environmental changes (temperature, humidity) are responsi-

ble for changes in features of interest of the same order of magnitude (or more) as

damage, making very difficult to determine whether the structure is damaged. A

few recent studies can be found in which by monitoring the features over a long

period of time, it is possible to eliminate the effect of environmental conditions of

the data [21, 22]. On the other hand, it is important to point out that experimental

equipment evolves very rapidly and allows one to envision the use of large net-

works of wireless sensors for health monitoring in a not too distant future. These

technological advances might be the key to successful vibration-based automated

damage detection techniques if intelligent methods are produced in order to take

advantage of the enormous amount of information provided bythese large net-

works.

The aim of this paper is to study the damage detection problemin the frame-

work of large networks of sensors and address the issue of differentiating the

environmental (global) changes from the damage (local) changes to a structure

dynamic response. For this purpose, a new feature based on the concept of spatial

filters is proposed. Spatial filters can be seen as a single sensor built from a large

network of sensors. The individual outputs are combined into a single output by

means of a linear combiner. This single output can be designed such that it mimics
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the behavior of a single degree of freedom system in which case the filter is called

a ”modal filter”. The filter can be tuned to any of the modes of the structure in the

frequency band of interest. There is in addition a possibility of multiplexing by

changing in real time the linear combiner coefficients.

One application of the use of modal filters for damage detection can be found

in [23], where it is proposed to use modal norms (extracted using modal filters) as

a damage indicator. The philosophy developed in this paper is quite different. It

is based on the fact that if a global change is applied to the structure (i.e. tempera-

ture), the shape of the output of the modal filter does not change whereas if a local

stiffness change is applied, spurious peaks appear in the filter at the resonant fre-

quencies of the structure. The appearance of peaks in the modal filter is therefore

an attractive feature in order to differentiate between environmental and damage

effects.

The paper is organized as follows : in the first part, the concept of spatial

and modal filtering is presented. In the second part, the impact of damage on

modal filters is studied with a numerical example. In the lastpart, the ability of

modal filters to differentiate between global and local changes is demonstrated on

a simply supported beam example. Comparisons are made with the usual modal

features for damage detection (MAC and frequency deviation).
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Spatial filtering and modal filters

[Figure 1 about here.]

Let us consider a structure equipped with an array ofn sensors (Fig.1). Spatial

filtering consists in combining linearly the outputs of the network of sensors into

one single output according toy =
∑

αkyk. Upon proper selection ofαi, various

meaningful outputs may be constructed, as, for example, modal filters. The idea

behind modal filtering is to configure the linear combiner in such a way that it is

orthogonal to all the modes of a structure in a frequency bandof interest, except

model. The modal filter is then said to be tuned to model and all the contributions

from the other modes will be removed from the signal. This is illustrated in Fig. 2

where the FRF of such a modal filter is represented. Because ofspatial aliasing,

there are some restrictions on the frequency band where modal filters can be built,

for a given size of the sensor array.

[Figure 2 about here.]

The coefficients of the linear combiner can be either computed from a known

model of the structure, or directly computed from experimental measurements

(FRFs). For more details on the determination of the modal filter coefficients, the

reader should refer to [24, 25, 26]. Note that the coefficients of the modal filter

are independent of the excitation type and location.

6



Modal filtering with an array of sensors

Let us assume that the structure equipped with the linear combiner is discretized

using the finite element method. Let us note[K], [M] and[C] its stiffness, mass

and damping matrix. The structure is subject to an external excitation{f}. The

finite element method leads to a system of equations of the type

[K]{u} + [M]{ü} + [C]{u̇} = {f} (1)

where{u} is a vector containing the nodal values of the displacement of the struc-

ture. If we assume that the excitation is harmonic, the response will also be har-

monic and we can write :

{u(t)} = Real
(

{U}ejωt
)

(2)

{f(t)} = Real
(

{F}ejωt
)

(3)

{U} and{F} are complex valued vectors containing the information about the

amplitude and phase of the signals.{U}∗ denotes the complex conjugate of{U}.

Equation (1) becomes :

(

[K] − ω2[M] + jω[C]
)

{U} = {F} (4)

For a system discretized withN degrees of freedom, there existsN couples of

eigenmodes and eigenfrequencies({Φi}, ωi). The eigenmodes (column vectors)
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can be put in a matrix[Φ] and the eigenvalues on the diagonal of a matrix[Λ] :

[Φ] = [Φ1Φ2...Φn] (5)

[Λ] =
[

diag(ω2

i )
]

(6)

If the eigenmodes are mass normalized, the following orthogonality properties

hold :

[Φ]T [K] [Φ] = [Λ] (7)

[Φ]T [M] [Φ] = [I] (8)

In modal coordinates, vector{U} can be written

{U} = [Φ] {Z} (9)

where{Z} is the vector of modal amplitudes. Replacing and premultiplying

Equation (4) by[Φ]T , we get :

(

[Λ] − ω2[I] + jω [Φ]T [C] [Φ]
)

{Z} = {b} (10)

with :

{b} = [Φ]T {F} (11)
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bi is called the modal input gain. Assuming that[Φ]T [C] [Φ] is diagonal, this leads

to a system ofN decoupled equations of the type

(

ω2

i − ω2 + 2jξiωiω
)

zi = bi (12)

The modal amplitudeszi are therefore given by :

zi =
bi

(ω2

i − ω2 + 2jξiωiω)
(13)

and the response of the structure is :

{U} =
N

∑

i=1

bi

(ω2

i − ω2 + 2jξiωiω)
{Φi} (14)

We assume that the structure is equipped with an array ofn sensors whose mea-

sured values are put in a vector{Y }. The output of the sensors is a linear combi-

nation of the response of the structure :

{Y } = [c]{U} (15)

which leads to

{Y } =
N

∑

i=1

bi

(ω2

i − ω2 + 2jξiωiω)
([c]{Φi}) (16)
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The output on sensork of the network as a function ofω therefore reads :

Yk(ω) =
N

∑

i=1

ckibi

(ω2

i − ω2 + 2jξiωiω)
(17)

wherecki is the result of the product of linek of [c] with {Φi} and is usually called

the modal output gain.

If the n sensors in the array are connected to a linear combiner with gain αk

for sensork (Fig.1), the output of the linear combiner isy =
n
∑

k=1

αkyk and the

global frequency response is :

G(ω) =
n

∑

k=1

αkYk(ω) =
N

∑

i=1

{
n
∑

k=1

αkcki}bi

(ω2

i − ω2 + 2jξiωiω)
(18)

A modal filter which isolates model can be constructed by selecting the

weighing coefficientsαk of the linear combiner in such a way that

n
∑

k=1

αkcki(ω) = δli (19)

For more details on the subject, we refer to [26].

Impact of damage on modal filters

If we now assume that the structure is damaged, equation (4) becomes :
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(

[K + ∆K] − ω2[M] + jω[C]
)

{Ũ} = {F} (20)

where[∆K] represents a change in stiffness du to damage on the structure. The

quantities related to the damaged structure will be noted bya˜ . The output of the

linear combiner is now :

G(ω) =
n

∑

k=1

αkỸk(ω) =
N

∑

i=1

{
n
∑

k=1

αkc̃ki}b̃i

(ω̃i
2 − ω2 + 2jξ̃iω̃iω)

(21)

The impact of damage can be decomposed into three effects :

• b̃i : the change in the modeshapes of the structure will affect the modal input

gain which changes the amplitude of the modal filter ;

• (ω̃i, ξ̃i) : the change in the eigenfrequencies and modal damping will affect

respectively the position and peak amplitude of the modal filters ;

•
n
∑

k=1

αkc̃ki : because of the change in the modeshapes, equation(19) may not

be satisfied. In this case, the output of the modal filter does not isolate mode

l perfectly and the other modes may appear in the response.

The third effect is interesting because it is a clear indicator that the shape of the

eigenmodes has changed. Indeed, changes in the peak position and amplitude of

the modal filter can be caused by shape changes as well as damping or frequency

changes. One particular case worth nothing is when the stiffness change is global

([∆K] = β[K]). In this case, the modeshapes are not altered and Equation (19)
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still holds. In all other cases, it is expected that when damage occurs, peaks will

appear at all the resonant frequencies of the damaged system. This is the feature

which is proposed for damage detection.

Numerical example

In order to illustrate the impact of a structural modification on the output of modal

filters, we have built a numerical demonstrator with the following features :

• Generation of random inputs with prescribed power spectraldensities ;

• Computation of structural response in the time domain basedon modal de-

composition ;

• Generation of noise on the outputs based on RMS value of the signals ;

• Estimation of FRF and PSD of outputs based on Welch’s averageperi-

odogram method [27] ;

• Computation of linear combiner coefficients for modal filtering.

Simply supported beam

The demonstrator has been applied to an example of a simply supported beam rep-

resented in Fig. 3. It is made of aluminum (Young’s modulus = 68.8GPa, Pois-

son’s ratio = 0.3, density = 2718kg/m3), the length of the beam isL = 326mm

and the cross section is rectangular (b = 50mm, h = 4mm). The modal damping
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is 1% for all the modes. The beam is equipped with an array of49 equally spaced

velocity sensors and a linear combiner as described on the figure. In this study,

we assume perfect measurements (noiseless and perfectly synchronized).

[Figure 3 about here.]

A numerical model of the structure is built using 100 Euler-Bernoulli beam

finite elements. The beam is excited through pseudo-random band-limited noise

(repeated sequences) in the frequency band [0,10000] Hz (containing the first 10

modes of the beam) at the location indicated on the figure. Thetime response of

the structure is computed and the linear combiner coefficients αk are determined

based on the eigenmodes of the structure (for more details, see [26]). The individ-

ual time domain data of each sensor are combined to form the modal filter output

in the time domain. The Welch’s average periodogram method is then used in

order to estimate the FRF of the modal filter.

Output of modal filters

The estimated FRFs of the output of the linear combiner tunedto modes 1 to 6

for the initial (undamaged) structure are shown on Fig. 4. Wethen investigate the

effect of damage on the output of these modal filters. In particular, we will see if

the effect of a local damage can be distinguished from a global stiffness change

(due essentially to temperature changes). We therefore consider two scenarios :
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• Scenario 1, local damage : a stiffness reduction of 10% in thesection

between0.1L and0.2L is applied to the initial structure.

• Scenario 2, environmental effects : a stiffness reduction of 2% on the whole

beam is considered. This is a simplified model of a stiffness change due to

temperature dependant properties of the materials of the structure.

These structural changes affect the output of the modal filters. We represent the

FRF of the output of the modal filters for the first scenario on Fig. 5 and for the

second scenario on Fig. 6.

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

As expected from the theoretical developments, it can be seen that an interest-

ing feature of the output of the modal filters is that when the damage is local, new

peaks appear in the modal filter (this effect is more pronounced for modal filters

tuned to modes 4 to 6), whereas when the damage is global, the modal filter is

shifted in frequency but the general shape is not altered. Itis also interesting to

look at the frequency deviation defined by :

∆fi =
fi − f̃i

f̃i

∗ 100(%) (22)

14



wherefi is the ith eigenfrequency of the damaged structure andf̃i is the ith eigen-

frequency of the initial reference structure, and theMAC defined by :

MAC(φi, φ̃j) =

√

√

√

√

√

(φT
i φ̃j)2

(φT
i φi)(φ̃j

T
φ̃j)

(23)

whereφi is a column vector containing the ith eigenmode of the initial structure

andφ̃j is a column vector containing the jth eigenmode of the damaged structure.

These two classical indicators are shown in Fig. 7 and 8 whereone can see that

the average frequency deviation is equivalent for both damage scenarios and that

the MAC is not affected by any of the scenarios considered.

In real conditions, the temperature field may not be perfectly uniform. There-

fore, we now consider the following scenario where the temperature field is dif-

ferent at the two ends of the beam :

• A stiffness reduction of 1.5 % between elements0 and.1L and between.9L

andL, as well as a stiffness reduction of 2 % between.1L and.9L

The FRFs output of the linear combiner tuned to modes 1 to 6 arerepresented on

Fig 9. One can see that small peaks appear on modal filter 6 only. The amplitudes

of the peaks are much smaller than for the local damage scenario, which shows

that it is still possible to differentiate between global and local damage. The fre-

quency deviation for this damage case is represented in Fig 10. It is equivalent to

the two damage scenarios considered before.
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[Figure 9 about here.]

[Figure 10 about here.]

Conclusion

In this paper, we have studied the vibration based damage detection problem using

a large network of sensors. Our aim was to find a feature that could differentiate

between local and global (environmental) stiffness changes. The novel idea pre-

sented consists in using the frequency domain output of so-called modal filters.

A combined theoretical and numerical study showed that an interesting feature of

the output of modal filters is the appearance of spurious peaks for local stiffness

changes which does not occur for global changes. The appearance of peaks in the

output of the modal filters was therefore identified as a good indicator in order to

differentiate between damage and environmental effects.

A comparison with the classical MAC and∆f features has shown that these

estimators were not able to detect damage in the example considered. Indeed, on

one hand, the frequency deviation due to environmental effects was of the same

order of magnitude as the one due to damage, and on the other hand, we have

shown that the MAC values were not altered by the local damagescenario. On

the contrary, the modal filters showed the clear appearance of peaks for the local

damage scenario and their shape was not altered by temperature changes. In the

case were the stiffness change is not perfectly uniform, small peaks may appear

but their amplitudes are much smaller than in the case of a local stiffness change.
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It is therefore still possible to differentiate the global effect of environment and

the local effect of damage even when the stiffness change is not perfectly uniform.

There remains however a large amount of work in order to see ifsuch a fea-

ture can be used in practice. One further step consists in studying the behavior

of modal filters for output-only measurements which are muchmore practical for

real structures where the input consisting of environmental and traffic excitations

is generally not known. A first study on the subject can be found in [28]. Further

research should also focus on issues related to the robustness of the damage de-

tection method such as (i) sensor placement, (ii) influence of noise and delays on

the measurements, (iii) influence of sensor failure.
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Figure 4: FRF of output of linear combiner tuned to modes 1 to 6, initial undam-
aged structure
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Figure 5: FRF of output of linear combiner tuned to modes 1 to 6, local damage :
10% stiffness reduction between0.1L and0.2L
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Figure 6: FRF of output of linear combiner tuned to modes 1 to 6, environmental
effects : 2% stiffness reduction on the whole beam
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Figure 7: Frequency deviation for the two scenarios, local damage (left : 10%
stiffness reduction between0.1L and0.2L) and environmental effects (right : 2%
stiffness reduction on the whole beam)
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Figure 8: Diagonal of MAC values with reference to initial state for the two sce-
narios, local damage (left : 10% stiffness reduction between 0.1L and0.2L) and
environmental effects (right : 2% stiffness reduction on the whole beam)
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Figure 9: FRF of output of linear combiner tuned to modes 1 to 6, nearly uniform
stiffness change on the whole beam : stiffness reduction of 1.5% between0 and
.1L, .9L andL, stiffness reduction of 2% between.1L and.9L
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Figure 10: Frequency deviation for a nearly uniform change of the stiffness dis-
tribution : stiffness reduction of 1.5% between0 and .1L, .9L andL, stiffness
reduction of 2% between.1L and.9L
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