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Abstract

The objective of this paper is to demonstrate the effect of active damping on

regenerative chatter instability for a turning operation. Two approaches are used

for this purpose. In the first approach, the traditional stability analysis technique in

[1] and other works is adopted and a correlation between the chip shape (which is

dependent on the spindle speed) and the system damping is presented. It is shown

that different spindle speeds cause changes in the system damping, resulting in differ-

ent levels of stability limits at different spindle speeds. A second approach involves

plotting of the root locus of the system poles with increasing axial width of cut.

This study presents a different perspective to the problem. It is shown that the low

and high stability regions of the stability lobe diagram are due to different relative

positions of the poles and zeros of the system. Active damping is proposed as a

strategy to enhance the stability limits of the system. The effect of active damping is
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studied by the two approaches, mentioned above, both showing that active damping

can successfully enhance the stability limits,particularly in the low stability regions.

Keywords: Regenerative Chatter, Stability lobe, Active Damping

1 Introduction

Machine tool chatter is a vibrational instability of the metal cutting process and

is a popular topic for academic and industrial research. Although there are many

mechanisms of chatter instability, as mentioned in Budak et al. [2], instability due

to regeneration of surface waviness, demonstrated by Tobias et al. [3] and Tlusty [4],

is by far the most common cause of chatter. Fig. (1) shows the regeneration process

in an orthogonal cutting operation, where the tool is cutting a flexible cylindrical

surface. While machining, due to vibrations, a wavy surface is left behind on the

workpiece and after one full rotation the tool faces the waves left during the previous

pass. This is the process of regeneration. Regenerative chatter was proposed as a

closed loop interaction between the structural dynamics and the cutting process by

Merrit [5]. Assuming the workpiece to be flexible only in the Y-direction, the uncut

chip thickness h(t) at any instant is given by,

h(t) = h0 + y(t − T ) − y (1)

where h0 is the constant feed of the tool, y and y(t − T ) are the displacements of

the workpiece during the current and previous pass of the tool on the workpiece and

T = 60/N is the time of one revolution of the workpiece, with N as the rotational

speed. Assuming that the cutting forces are proportional to the frontal area of the
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chip, the cutting force in the Y direction is equal to

Fc(t) = Kf .a.[h0 + y(t − T ) − y] (2)

a is the axial width of cut, measured in a direction perpendicular to the page and

Kf is the cutting force constant. However, the cutting force and the chip thickness

relationship is nonlinear and has been formulated through a power law in Taylor

[6]. The nonlinearity in the cutting force and chip thickness relationship explains the

subcritical Hopf Bifurcation phenomenon, as observed in Tobias et al. [7]. In a linear

analysis, beyond a certain value of axial width of cut, the oscillations of the machine

tool and workpiece system become unbounded. In reality, due to nonlinearity arising

from the cutting process or the structure or both (Nayfeh et al. [8] ) and due to

the tool loosing contact with the workpiece (Tlusty et al. [9] and Sato et al. [10]),

chatter manifests as high amplitude bounded oscillations called the limit cycle. The

phenomenon is ”subcritical” since the limit cycle continues to sustain itself at an

axial width of cut lower than that predicted by the linear analysis. The nature of

the phenomenon is therefore hysteric, as predicted in Nagy et al. [11], [12]. Further

developments on the nonlinear dynamic analysis of regenerative chatter can be found

in [13] and [14].

Damping from the cutting process and the machine tool structure are found to

stabilize the machining process. Cutting process damping arises from the rubbing be-

tween the flank edge of the tool and the workpiece surface, leading to a dissipation of

energy and stabilization of the cutting operation. This has been dealt with in Tobias

et al. [3], Peters et al. [15], Tlusty [16] and Minis et al. [17]. Since the present work

deals with the relationship between regenerative chatter instability and structural

damping, the stabilizing effect of cutting process damping is ignored in the formula-

tions. Enhancement of structural damping is possible by passive or active techniques

and present study proposes the latter as a chatter suppression strategy. The authors
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present a physical explanation of the role of structural damping in the phenomenon

and the linear simplified cutting force model of Eq. 2 is adopted. Nonlinearities in

the cutting process are beyond the scope of the current work. However, Pratt et al.

[18], [19] [20] have shown experimental evidence of enhancement of axial depths of

cut, due to application of active damping, even in the presence of nonlinearities in

the system.

This paper is organized as follows. Section 2 discusses about the relationship

between stability limits, spindle speed and structural damping using the traditional

stability analysis technique. Section 3 uses the Root Locus technique to provide a

pole-zero perspective to the ideas developed in Section 2. Section 4 discusses about

the role of active damping in stabilization of regenerative chatter instability and its

efficiency at various spindle speeds.

2 Discussions from traditional stability analy-

sis perspective

Following the SDOF orthogonal model of cutting, the dynamic equation of motion

can be written as,

mÿ + cẏ + ky = Kf .a.[h0 + y(t − T ) − y] (3)

where m, c and k are the mass, damping coeffcient and stiffness of the workpiece in

the y direction. Eq. (3) is a time invariant Delay Differential equation. In Laplace

domain y(t − T ) = y(s).e−sT . Defining the machine-tool transfer function between

the applied force Fc and displacement y as G(s) and substituting for y(t − T ), we

have in Laplace domain,

h(s)

h0(s)
=

1

1 + Kf .a.G(s)(1 − e−sT )
(4)
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where

G(s) =
y(s)

Fc(s)
=

1

ms2 + cs + k
(5)

Therefore the characteristic equation of the closed loop system is

1 + Kcut.G(s)(1 − e−sT ) = 0 (6)

where Kcut = Kf .a. From Eq. (6), Kcut can be derived as

Kcut =
−1

G(s)(1 − e−sT )
(7)

Eq. (6) is not restricted to a single degree of freedom (SDOF) oscillator but can

also be extended to single input single output (SISO) systems with multiple degrees

of freedom, provided the appropriate expression for G(s) is used. Following the

traditional stability analysis technique as described in Altintas [1] and assuming that

the system is at the stability limit and oscillating harmonically with chatter frequency

ωc, s = jωc is substituted in Eq. (6). Equating the real and imaginary parts to zero

and with some mathematical manipulation, the following relationships are obtained.

Klim =
−1

2Re(G(jωc))
(8)

ωcT = 2pπ − 2 tan−1

(

Re(G(jωc))

Im(G(jωc))

)

= 2pπ − ε (9)

where p = 0, 1, .. and ε = 2 tan−1
(

Re(G(jωc))
Im(G(jωc))

)

. Klim is inversely proportional to

Re(G(s)). Since stability limit is a physical quantity and is positive, Eq. (8) for

a SDOF system is valid for values of ωc, higher than the natural frequency of the

machine tool structure, where Re(G(s)) is less than zero. This proves that chatter

frequencies should be higher than the natural frequency in a SDOF turning operation.

The plot of the stability limit and the chatter frequency, obtained by solving Eqs.
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(8) and (9) for various spindle speeds is the traditional stability lobe diagram. An

example of SDOF cutting operation with a rigid tool and flexible workpiece, modeled

as a simply supported rectangular steel beam is solved with the traditional stability

analysis technique. The corresponding tool point transfer function G(s) in modal

coordinates is given by Eq. (10)

G(s) =
n

∑

i=1

φ2
i (xa)

µi(s2 + 2ξiωi + ω2
i )

(10)

where n is the number of modes considered, µi, ξi and ωi are the modal mass, damping

and frequency of the i−th mode and φi(xa) is the mode shape calculated at the

location of the tool, xa on the beam. For demonstration purposes n = 1 is assumed

in the calculations. The data for the calculation are : Young’s modulus = 210 Mpa,

length of beam l = 1 m, width w = 0.01 m, height h = 0.02 m, xa = l
8 and density

ρ = 7800 kg/m3. The modal damping ratio ξ is assumed to be 1%. The beam is

assumed to bend along the stiffer direction. Therefore, the natural frequency is about

47 Hz.

In figures 2 a), b) and c), the stability limits are presented and the various lobes

are numbered according to the value of p, used in the calculation (p = 0, 1, 2 are used

in the calculations). One can observe a repetition of the lobes, which arises from

the trigonometric nature of Eq. (9). There is an overlap between successive lobes

at certain spindle speeds. From the viewpoint of stability limit, the lower limit and

the corresponding chatter frequency should be considered. Around the intersection

points A and B, there is a jump in the chatter frequency and an abrupt change in

the value of ωcT .

Physically ωcT is the total angular displacement of the oscillating tool, vibrating

with frequency ωc during one period of revolution T . p is the number of complete

waves traversed by the tool. Therefore, ωcT is directly related to the phase difference

between successive undulations on the workpiece surface, as shown in Fig. (3). The
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implications of this phase difference on the stability of the system are now analyzed

by considering four representative spindle speeds in Figs. (2) a), b) and c). The

stability limits for 2700, 2840 and 8000 RPM are high and almost identical, but the

chatter behavior, for these three cases is different. For 2700 and 8000 RPM, the

phase ωcT is close to an odd multiple of π. For 2840 RPM, where ωcT = 2π and the

chatter frequency ωc and also the spindle speed frequency 1/T are nearly equal to

the natural frequency of 47 Hz. For 3790 RPM, ωcT = 3π/2 = 270 degrees and the

stability limit is the lowest. The correlation between the stability limit and phase

difference between successive modulations of the chip thickness is being addressed

now.

Writing Eq. (3) in frequency domain, we have

(−mω2
c + jωcc + k)Y (jωc) = Kcut[h0 − (1 − e−jωcT )Y (jωc)] (11)

Since the effect of the feed can be neglected in a linear analysis, the dynamic equation

of motion can be written as,

[−mω2
c + jωc(c + Kcut

sinωcT

ωc

) + (k + Kcut − Kcut cos ωcT )]Y (jωc) = 0 (12)

It is observed in Eq. (12), that the damping and the stiffness of the system in the

closed loop are frequency dependent, due to the term ωcT . Equating the real and

the imaginary parts to zero, the values of Kcut and ωc at the stability limit can be

obtained. A direct relationship between the phase term ωcT , the damping coefficient

and the stability limit is demonstrated by the following equation.

Klim = −c
ωc

sin ωcT
(13)

Eq. (13) shows a proportional relationship between Klim and the damping coefficient,

which implies that higher axial widths of cut may be achieved without chatter by
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enhancing structural damping. Considering the expression of stiffness in Eq. (12),

it can be seen that there is a general stiffening of the structure due to regeneration

process. For ωcT approaching an odd multiple of π, Klim tends to infinity. High

stability limits are observable for 2700 and 8000 RPM in Fig. (2) a), for which the

phase differences are nearly 180 and 540 degrees respectively. For the phase difference

equal to 360 degrees or its even multiple, the stability limit is also infinity, from Eq.

(13). This occurs for 2840 RPM (Refer to figures 2 a), b) and c)), where the spindle

speed frequency, 1/T , is close to the natural frequency. sin ωcT has a minimum value

of −1, for ωcT = 3π
2 . Therefore a low value of Kcut is obtained from Eq. (13). This

explains the low stability for 3790 RPM, for which the phase difference is equal to

3π
2 . A plot of ωc/ sin ωcT is shown in Fig. (4) a). The discussion demonstrates the

relationship between stability limits, structural damping and ωcT , i.e., the shape of

the chip.

The vibrational behaviors for 2700, 2840 and 8000 RPM are qualitatively different

even though the stability limits may be nearly equal to one another. In Region 1 in

Fig. (4) b) (2840 RPM left end of lobe 1), the chip thickness is constant, due to the

successive modulations of the chip thickness being in phase. Thus the structure will

not be excited dynamically and ideally there is no possibility of chatter. For Regions

3 and 4 (2700 and 8000 RPM, right ends of lobes 2 and 1), the shape of the chip is

highly deformed due to the successive undulations, being out of phase. This implies

a strongly dynamic excitation force. However, the closed loop stiffness, depicted by

the third term in Eq. (12), has a maximum value of k + 2Kcut. The qualitative

differences in the behaviors in the two cases are observable in the time history plots

of the force and displacement in Fig. (5). The absence of the regenerative effect for

2840 RPM causes the force to stabilize to a constant value. In the case of 2700 RPM,

even though the force amplitude is high, the displacement level is almost identical

to that of 2840 RPM. The existence of a higher closed loop stiffness explains this

behavior. The section shows the qualitative difference between the instabilities in
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the high stability regions of the stability lobe diagram and this knowledge is not very

obvious.

3 Analysis by Root Locus Plots

The previous section shows a correlation between spindle speeds, the closed loop

damping, the shape of the chip and the different levels of stability limits. The Root

Locus method is used to investigate the correlation from a pole-zero perspective. Eq.

(6) can be viewed as the characteristic equation of a classical closed loop system with

unit feedback, as shown in Fig. (6). G(s)(1−e−sT ) is the open loop transfer function

and Kcut is the feedback gain. The closed loop poles follow the corresponding root

locus for increasing Kcut and the stability limit is reached when at least a couple

of conjugate roots cross the imaginary axis. The transcendental part of the open

loop transfer function, i.e., the delay term, gives rise to a system of time invariant

Delay Differential Equation with infinite number of roots. It is approximated by

Padé Approximation [21]. An explanation on the order of Padé Approximation to

be assumed is presented in Ganguli et al. [22].

Eq. (6) generates two limit cases, depending on the value of Kcut.

• For Kcut → 0, the roots are the poles of G(s)(1 − e−sT ) which are the poles

of G(s) and an infinite number of poles of (1 − e−sT ) at s = −∞± j(2nπ/T ),

where j =
√

− 1 and n is any integer.

• For cases where Kcut → ∞, the roots are the zeros of G(s)(1 − e−sT ), which

are the zeros of G(s) and the infinite number of zeros of (1 − e−sT ) at s =

±j(2nπ/T ).

This is discussed by Olgac et al [23]. Fig. (7) shows the evolution of the poles for

a SDOF system. For low values of Kcut the pole (denoted by a cross), closest to

the imaginary axis, is a structural pole. The rest of the poles, due to the delay
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term, ideally should be at infinite distance from the imaginary axis. But due to

the approximation of the delay term and a non-zero initial value of Kcut, they are

seen at finite but large distances from the imaginary axis. With increasing value of

Kcut, all the roots approach the imaginary axis, implying a reduction in the damping

of the closed loop system. Instability occurs when they cross the imaginary axis

and with further increase in Kcut, the poles ultimately converge to the zeros at

s = ±j(2nπ/T ), i.e. s/2π = ±j(n/T ) in Hz units, where n as any integer. So the

zeros of the system, due to the delay, are at harmonics of the spindle speed frequency.

Traditional techniques of chatter analysis generally recognize that instability arises

from the structural mode of the system. However, there is always a possibility, that

the roots due to the delay may cross over to the right side of the imaginary axis

before a structural pole does at certain spindle speeds. Thus different regions of

the stability lobe diagram can be characterized, depending on whether the source

of instability is a structural pole or a delay pole. Fig. (8) shows the stability lobe

diagram and the chatter frequency diagrams for the SISO system example of the

previous section. Different regions of the stability lobe and chatter frequency diagram

are distinguished on the basis of the source of instability. The regions have been

distinguished by following the locus of the closed loop poles for increasing values of

Kcut and identifying which root is contributing to the instability. It is observed that

certain portions of the high stability regions are due to instability of the delay pole.

This is not very apparent from traditional stability analysis techniques. The Root

Locus plots for the SISO example are examined for the representative spindle speeds

of the previous section. The loci of the eigenvalues are plotted beyond the stability

limit to show the direction of migration of the roots. The stable loci of the system

is marked with a thin line and the unstable with a thicker line. It is seen in Fig.

(9), that a reduction of the spindle speed, causes the poles and the zeros, due to the

delay, to migrate towards the real axis. The proximity of the zero to the structural

pole, determines the length of the locus to instability. A relatively distant location
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of the zero, for 8000 RPM, in comparison to 3790 RPM, causes a longer locus of the

structural pole to instability, resulting in higher stability in the former case. This is

demonstrated in figures 9 a) and b). In Fig. (9) c), for 2840 RPM, the location of the

zero in close proximity to the structural pole is causing a near pole-zero cancellation.

The advancement of the pole towards instability is nullified and a very high value of

Kcut is required to make the system unstable. The crossing of the pole to instability

is very close to the natural frequency of the structure, indicating chatter frequency

close to the natural frequency. For 2700 RPM, the zero migrates to a position below

the structural pole. The close proximity of the zero to the pole also has a pole-zero

cancellation effect and the structural pole does not contribute to instability. The

instability arises from the delay pole and a very high value of Kcut is necessary for

its migration from infinity to the imaginary axis. This explains a jump in the chatter

frequency in Fig. (8) between 2700 and 2840 RPM. Thus very high chatter frequencies

at certain spindle speeds can be attributed to the instability of the delay pole. The

cases of 2700 and 8000 RPM are not qualitatively similar. For the former, the delay

pole is contributing to instability and for the latter, the structural pole is the reason

behind instability. The summary of this section is the following. The change in the

spindle speed causes the poles and the zeros of the delay to move and this changes

the behavior of the root locus and the instability characteristics. The high stability

limits for certain spindle speeds (2700 and 2840 RPM, i.e., regions 1 and 4 in Fig.

(4)) are explained by pole zero cancelation situations and instability due to the delay

pole. The chatter frequency for turning is always higher than the natural frequency,

since there is no crossing of the imaginary axis at frequencies lower than the natural

frequency. High chatter frequencies, at certain spindle speeds, are associated with

the delay pole instability. This fact is not very obvious from the traditional stability

analysis technique. Low stability regions are due to instability of the structural pole

that is located closer to the imaginary axis. Thus enhancement of structural damping

(actively or passively) would shift the poles more to the left, which would necessitate
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higher Kcut levels to destabilize the system. This observation confirms a similar idea

from Eq. (13) from a pole-zero perspective and substantiates the original motivation

of using active damping as a potential chatter reduction strategy. This is discussed

in more detail in the next section.

4 Effect of active damping on chatter instabil-

ity

The previous sections show that chatter can be stabilized by two methods: a) by

choosing a spindle speed, where the phase between successive undulations is favorable

b) by enhancing the structural damping. Eqs. (12) and (13) show that the two

methods inherently affect the closed loop system damping and thus stabilize the

system. Case a) is the easiest way to avoid chatter since a highly stable region

exists between regions 1 and 4 in Fig. (4). The highly stable spindle speeds are

regions where the closed loop damping is least ”degraded” by the phase effect, as

shown by Eq. (12). Online modification of spindle speed to this stable part of the

stability lobe diagram was first proposed by Weck et al. [24]. The idea has been

developed into an automated chatter recognition and spindle speed control system

by sensing the acoustic signal from the cutting operation in Tlusty et al. [25], [26].

Soliman et al. [27] present a control system that ramps up the spindle speed until

a stable machining situation is reached. Another technique of chatter stabilization

is by spindle speed modulation, as proposed in [28], [29], [30] etc, where the spindle

speed is varied periodically with a very low frequency.

Vibration control is another strategy to suppress chatter instability. Dohner et al

[31] propose a pole placement strategy using a LQG controller and strain gage sensors

and electrostrictive actuators for milling. Smart fluids such as electrorheological or

magnetorheological fluids have been used for chatter suppression in Wang et al [32]
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and Segalman et al [33]. Feedforward and adaptive control strategies are proposed in

Nachtigal [34], [35] and Browning et al. [36] for chatter suppression in boring bars.

Passive damping of chatter has been attempted through the ”Lanchester” damper

[37], impact dampers in [38] and tuned mass dampers in [39]. But the amount of

damping achievable is limited and the performance of tuned mass dampers depends

on the accurate tuning between the damper frequency and the structural modal

frequency. In the present work the active damping strategy with collocated sensor and

actuator configuration is proposed for regenerative chatter stabilization. A detailed

study on active damping is presented in Preumont [40]. A collocated sensor and

actuator configuration ensures an alternate pole-zero configuration of the structure

in the complex plane and this ensures unconditional stability in the closed loop Miu

[41], Preumont [40], provided the sensor and actuator dynamics are neglected. Even

in the presence of sensor or actuator dynamics it can be shown that collocated active

damping strategy fulfils the objective of enhancing modal damping of the structure

(Zimmerman et al. [42]). Active damping by velocity feedback does not require a very

accurate model of the structure and can be considered to be a broad band vibration

control strategy. In the current work, a velocity feedback strategy is implemented

similar to the works of Cowley et al [43] and Tewani et al [44]. Referring to Eqs. (12)

and (13) for the SISO system, if the velocity at the tool contact point is fed back,

then the enhanced stability limit is given by,

Klim = −(c + g)
ωc

sin ωcT
(14)

where g is the feedback gain. The recent experimental studies on active damping of

the machine tool for chatter reduction can be found in Pratt et al. [19] and Harms

et al. [45]. Sims et al. [46], [47] apply active damping on the workpiece and Ganguli

et al. [22] demonstrate the effect of active damping with a mechatronic chatter

demonstrator. The stability lobes are plotted for two arbitrary values of feedback
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gain in Fig. (10) a), for the SISO example. The damping of the structure in the two

cases are 8.7% and 16%. A general rise in the stability limits is observed. It is also

observed in 10) b) that active damping changes the frequency of chatter.

The factor of enhancement at various spindle speeds is now investigated. In Fig.

(11) a), the ratio between the limiting cutting stiffness for two values of feedback

gains and the corresponding value without any active damping is plotted. It is found

that the enhancement of stability limit is the highest for the low stability regions, such

as 3790 RPM. For spindle speeds of 2700, 2840 and 8000 RPM, with originally high

stability limits, the factor of enhancement is not impressive. This can be explained

again by referring to Fig. 11 b), which is a plot of ωc/ sin ωcT for the different values

of the active damping feedback gain. It is observed that for the high stability regions,

there is a reduction in the absolute value of the quantity due to changes in the chatter

frequency. This counteracts the effect of increased damping due to the feedback gain

g in Eq. (14) and therefore affects the factor of increase in stability. In the case of

spindle speeds, where the original stability limit is low (e.g. 3790 RPM), the change

in the value of ωc/ sin ωcT is negligible. The stability limit directly depends on the

damping, coefficient. Therefore, the factor of increase in the low spindle speed cases

is much higher in comparison to that in the high stability regions of the stability

lobe diagram. This explains the non-uniform relative enhancements due to active

damping for different spindle speeds.

The effect of active damping can also be demonstrated by Root Locus plots. The

general effect of active damping is to shift the structural pole towards the left, due to

enhanced damping. This implies that a higher cutting stiffness is necessary to make

the system unstable, causing a rise in the stability limit. There is an increase in

chatter frequency, due to the application of active damping, as are the cases for 8000

and 3790 RPM in Figs. (12) a) and b). The structural pole crosses the imaginary

axis at higher frequencies than the chatter frequency without active damping and

this explains the change in the chatter frequencies in Fig. (10) b). The relative
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increase in the length of the closed loop locus of the structural pole, due to active

damping, is higher in Fig. (12) b) than in a). In Fig. (12) c), the situation is close

to a pole zero cancellation, as described in the previous section. It is interesting to

see that due to active damping, the structural pole no longer becomes unstable. The

delay pole triggers the instability. Thus active damping may change the nature of

the instability. For 2700 RPM in Fig. (12) d), the delay pole becomes unstable with

or without active damping, since the structural pole remains on the left side of the

complex plane.

Certain observations can be made from the Root Locus plots. The structural poles

are affected more by the application of active damping than the delay poles. For the

low stability regions like 3790 RPM, active damping is relatively more effective in

enhancing the stability limit than in the high stability regions. The delay poles, due

to distant location from the imaginary axis do not undergo any appreciable change

in damping. Therefore, the relative enhancement of stability is much higher in the

low stability regions than the highly stable regions.

5 Conclusion

This paper presents a relationship between regenerative chatter instability and struc-

tural damping. The traditional stability analysis technique is reviewed and it is shown

that the stability depends on two physical parameters: the structural damping in the

system and the spindle speed that controls phase difference between successive modu-

lations of the chip thickness, or in other words, the shape of the chip. The correlation

between different shapes of the chip and the stability lobes is explained. Both of these

parameters affect the closed loop system damping; enhancement of structural damp-

ing is shown to have a proportional effect on the stability limits, change of spindle

speeds may cause a favorable or unfavorable phase difference between successive mod-

ulations which affect the closed loop damping and the stability limit. Normally for
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a machine tool-workpiece system with a dominant natural frequency, regions where

the spindle speed frequency is equal to the natural frequency are the highly stable

machining areas. Root Locus plots are used to present a pole-zero perspective of the

same idea. Highly stable regions of the stability lobe diagrams are found to be due

to pole-zero cancelation between the structural pole and the delay zero or due to

instability of the far located delay pole. Low stability regions are characterized by

instability of a structural pole that is located close to the imaginary axis. This im-

plies that enhancement of structural damping would result in higher stability limits

in the low stability region areas.

Active damping with velocity feedback is adopted as the chatter control strategy

in the present study. Active damping is found to affect both the structural damping

and the phase difference between successive modulations of the chip thickness. The

damping enhancement is predominant in the low stability regions of the stability

lobe diagram, which results in a high rise in the stability limit. For high stability

regions, the effect of active damping is counterbalanced by the change in the phase

difference, resulting in a lesser improvement of the stability limit. The observation is

substantiated by Root Locus plots which show that structural poles are affected more

by active damping than delay poles. This implies that low stability limit regions

would be enhanced more than the originally high stability regions due to active

damping. The idea of utilizing active damping for regenerative chatter control has

been recently implemented in the SMARTOOL project (www.smartool.org) funded

by the European Commission.
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