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Abstract— This paper examines the effects of chip frac-
tional (CF) and chip non fractional (CNF) sampling on the
performance of a CDMA uplink receiver. The impact of the
receiver front end filter, which is sampling rate dependent,
is investigated. Models for burst and continuous transmis-
sions are introduced. The discrete time equivalent channels
between the various users and the receiver are assumed to be
known. Firstly, the mutual information between the emitted
sequences of symbols and the received sequence is investi-
gated. It is analytically shown that the receiver loses sys-
tematically information in case of CNF sampling. Secondly,
we have demonstrated that the CF receiver always achieves
better performance in term of minimum mean square error
(MMSE) for both linear and decision feedback (DF) struc-
tures. A closed form expression of the gain in performance
is provided for the two metrics under consideration. The im-
portance of the gain due to CF sampling is also illustrated
by means of computations for multi-path channels. For a
typical system setup, a gain of 0.1 bits per emitted symbol
is observed for the mutual information. Considering the ge-
ometrical mean of symbol SINRs in case of linear and DF
joint detection (JD) for a roll-off factor equal to 0.3, a gain
of 0.4 dB arises for the CF linear detector and a gain of 0.2
dB arises for the CF DF detector.

I. INTRODUCTION

Direct sequence code division multiple access (DS-
CDMA) is a multi-user transmission technique that became
very popular these recent years. Several features make this
multiple access technique attractive for communications in
wireless cellular networks. Firstly DS-CDMA is a wide-
band transmission technique. When the bandwidth is large
enough, it is possible to benefit from multi-path propaga-
tion mechanisms. Secondly the physical resource is the
code and no longer the time or the frequency. Together
with the capability of DS-CDMA to use the information
carried by several replicas of the same signal this feature is
also the key for soft hand-over [18]. Next, in the uplink, no
synchronism between users is required. As a matter of fact,
if the codes allocated to different active users are properly
designed, the cross-correlations will be small and the in-
terference due to the other users can be seen as additional
background noise.

With respect to these ideal expectations, there are how-
ever a number of limitations. First of all, rake receivers
which are able to combine the information carried by dif-
ferent paths, are only optimum with respect to background
noise. They do not solve inter-symbol interferences (ISI)
or multiple-access interferences (MAI). A related problem
is that if other users are handled as additional background
noise and if only single user receivers are used, the num-

ber of users that can be accommodated by the system is
strongly limited.

This has lead quite soon to the investigation and the de-
sign of more efficient receiver structures. Verdu has pub-
lished in [6] the structure of the optimum multi-user re-
ceiver for asynchronous Gaussian channels. It is made up
of a bank of matched filters followed by a Viterbi detec-
tor. As this algorithm has a complexity exponential in
the number of users, a lot of effort has been devoted to
the design of sub-optimum yet of acceptable complexity
receivers. A very good overview can be found in [19]. Simi-
larly to the equalizers used to counteract ISI channels, there
are linear and decision-feedback (DF) multi-user detectors.
Furthermore they can be designed for a zero-forcing (ZF)
or a minimum mean square error (MMSE) criterion. The
decorrelating detector reported in [7] is basically a linear
ZF detector. Linear and DF MMSE receivers have been
reported by Duel-Hallen in [8,9]. As for burst transmis-
sion, linear and DF solutions designed for both a ZF or an
MMSE criterion are reported in [13,14].

On another hand much attention is presently paid to
fully digital receivers [21]. Meyr has investigated in [2] the
conditions on the sampling rate and on the analog prefilter
such that the samples of a band-limited signal represent
sufficient statistics. The performance of fractionally spaced
equalizer (FSE) is studied in [4] for single user transmis-
sion. It is shown that if the sampling rate of the received
signal (more precisely the useful part of the received sig-
nal, not the noise) is in accordance with Shannon sampling
theorem, an infinite FSE has the potential of the optimum
linear receiver. A good overview of FSE receivers can be
found in [3].

In the early implementations, DS spreading was usually
applied as a multiplication after the modulation and the
spectrum of the transmitted signal was indeed very large.
In recent DS-CDMA systems, the spreading operation is
implemented as an interpolation of the information sym-
bols and the signal resulting from this operation still en-
ters a shaping filter. If the chip period is denoted by 7.
and if a half-root Nyquist filter is used for the shaping,
the transmitted signal has a spectrum upper limited to
0.5 x (1 + n)/T, where 5 is the roll-off factor. Hence a
sampling rate of 2/7. is sufficient. However in a number
of contributions, sampling of the received signal at 1/T is
assumed : for instance, [13,14].



In [5] the authors analyze the performance of fraction-
ally chip sampled linear multi-user detectors. An ideal low-
pass (LP) filter is applied on the received signal in order to
avoid aliasing. They consider an asynchronous DS-CDMA
system with frequency selective channels. They show that
fractionally spaced receivers of sufficient length satisfy a
necessary condition for the existence of ZF solutions under
conditions where no finite impulse response (FIR) solution
exists for non fractionally spaced receivers. Furthermore
simulation results are provided which indicate that for suf-
ficient lengths, fractionally spaced receivers may achieve
better MMSE performance than non fractional ones in the
presence of additive white Gaussian noise (AWGN).

The purpose of the present paper is to investigate the
performance of 2/T, and 1/T. receivers. These configu-
rations will be named chip fractional (CF) and chip non
fractional (CNF). The investigations will be carried out for
linear and DF receivers and for both burst and continuous
transmission schemes. Two performance measures will be
used: the mutual information between the emitted symbol
sequences and the received one, and the variance of estima-
tion errors. Assuming that the first element of the receiver
(after conversion to baseband) is a perfect LP presampling
filter which limits the spectrum in accordance with the sub-
sequent sampling rate (0.5/T, for CNF and 1/T, for CF
receivers), we will demonstrate that CF receivers outper-
form CNF ones and quantify the gain in performance. In
short, we investigate the benefit related to the processing
of the spectral information above 0.5/T. Figures for the
performance difference will also be provided by means of
computations. In order to be complete, the case where the
receiver front end is a chip matched filter (MF) followed by
chip rate sampling is also considered in the computational
results.

The paper is organized as follows. In the first part, burst
transmission is assumed. A CF model is proposed in which
the CNF situation can easily be isolated and used as a
reference. As a result, one derives for the CF situation
mutual information and symbol estimation error variance
(for the linear and DF MMSE joint detectors) expressions
in which the CNF counterpart is easily identified. In the
second part, the same steps are followed for the case of
continuous transmission.

In the following sections, the symbols (.)*, (.)T, ()7 will
be used to denote the complex conjugate, the transpose
and the complex conjugate transpose respectively of a ma-
trix, or a vector, or a scalar. Notation |.| stands for the
determinant of a matrix.

II. SYSTEM MODEL

We assume an asynchronous multi-user DS-CDMA up-
link where each user transmits information over a frequency
selective channel. A model of the transmission system
is given in Figure 1. Each active user k transmits a se-
quence of symbols di(n) at baud-rate 1/T (k = 1,---, K).
The symbol sequence is spread by the code sequence sg(n)
and shaped with the chip shaping filter u(¢) (half-root

Nyquist). T, is the chip duration and N, is the spread-
ing factor. Each user signal is transmitted over a user
specific frequency selective channel with low-pass impulse
response ¢ (t). Function p(t) represents the receiver sam-
pling prefilter, supposed to be an ideal presampling LP
filter. For a T./M spaced detector, the cutoff frequency
is 0.5 M/T.. We define the composite impulse responses

hi (1) o u(t) @ er(t) @ p(t). The operator @ represents
the convolution. w(t) is the additive noise (an AWGN is
often a sufficient model). As the received signal is sampled
at a rate 1/Ts = M/T. = MN,./T, we get the following
discrete time model

K [eS)
rim) = > > di(n) gi(m —nMN,) + v(m) (1)

k=1n=—oc0

where r(m) is the received sequence and v(m) is the noise
sequence obtained after receiver filtering and sampling.
The discrete time equivalent total impulse responses which
include the user codes, the chip shaping filters, the user
channels and the receiver prefilter, are denoted by gx(n).

III. BURST TRANSMISSION

A. System decomposition

To be able to compare the CF (M = 2) and CNF (M =
1) detectors, the information processed by the CF receiver
is organized in such a way that a subset corresponds to the
information available to the CNF receiver. This is done
first by separating the frequency content below and above
0.5/T., and then by using polyphase components.

Firstly, the receiver prefilter is separated in two parts in
the frequency domain (see Figure 2)

P(f) = P(f) + P°(f)

where P%(f) corresponds to the prefilter applied before
a CNF sampling and P5(f) is the added part in case of
CF sampling. P(f), P®(f) and P?(f) are the Fourier
transforms of p(t), p*(t) and p?(t). We note g¢(n) and
gf (n), the separated discrete time equivalent total impulse
responses including each of the prefilter parts and obtained
after a CF sampling for each user k. G¢(e/?) and Gf(ejg)
denote their Fourier transforms.

Secondly, a separation of even and odd samples of the
received signal is introduced. In the following notations,
index ”0” corresponds to the even samples or polyphase
component 0, and index ”1” corresponds to odd samples
or polyphase component 1. Let us define

def

ritn) = r(2n+i) (2)
vitn) 2 w@n+i) (3)
g m) E gr@en+i) (4)

fory = a,f and ¢ = 0, 1. Gfﬂ(em) denotes the Fourier

transform of the sequence g;”(n). It can be related to



GZ(ejQ) by the use of the properties of the polyphase com-
ponents [22]. We have

jiQ
e 2
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[GleF) + (~1) Gl 7))

G =

N =

(5)

In case of burst transmission, each user sends a packet
of N symbols. There is a guard time between successive
bursts that should be long enough to prevent inter-burst
interferences. If we consider that the received signal is
sampled at CF rate, we get the following observation model

cF def 70
r = 1"1

GO,a + GO,B ’UO
N [ G+ G d+ |
W GOrd +v°F (6)
with
d, di,(0)
d def and dy = .
r(0)
P d;f :
r"(NN.+ L —1)
v'(0)
v def .

vI(NN.+L—-1)

L denotes the length of the impulse responses hy(t), eval-
uated in chip periods. Furthermore, the matrices G*7 are
defined in Figure 3. They are respectively made of delayed
versions of the following vectors

9.7 (0)
2,y

i,y def 9k (1)
g = .

9" (Ne +L 1)

In case of CNF sampling (M = 1), the model reduces to

,’,CNF — GCNFd + ,vCNF (7)

where matrix GENF is equal to G*®.

B. Matrices expansion

If an AWGN is assumed, each performance mea-
sure (mutual information or error variance) is a func-
tion of (G")" G in case of CF sampling and of
(GENTYE GONE in case of CNF sampling. Furthermore
GNF = G%¥ (see equality (7)). For CF sampling, it is

possible to rewrite the last expressions using the definition
of G (see equality (6)). This leads to

(GCF)H GCF — (GO,Q)H GO,a _|_ (GI,Q)H Gl,a
+ (G&B)H GO,B + (GI,B)H GI’B
+ (GO,a)H GO,B + (Gl,a)H GI,B
+ (GO G™ + (GG .18)

Each term of this last expression can be expanded. For
example, consider matrix (G>*)” G** (first term of equa-
tion (8)). According to the different user parts Gy®
that constitute matrix G*® (see Figure 3), the product
(GPYHG™™ can be written as

(GIHTGET e (G GRS
(GO,oz)H GO,a — : )

(G G (G G
Each submatrix (Gy*)? G)* (k0 = 1,---,K) is a

Toeplitz matrix of size N generated ! by the sequence

xgza;o,a(m)
— 0, 0, *
= Y o (R m—mN) (9)
_ 1L 0,00 jO 0,0/ i\ _—jmN.Q
- = /_7r o (@) (G (@) e )

(10)
1 g -0 -0\ * .
= R af,]s ()Y —jmN, Q
= & Gi(e’?) (Gk (e )) e dQ

Q—27
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where equality (10) comes from the Parseval relation.
Equality (11) can be obtained by using property (5) of
the polyphase components and by noting that there is
no spectral overlap between G®(ei%) and G9(ef“7™)

nor between G9(e/“Z") and G2(e’%) which makes
9—227r) and

the corresponding products G?(ej%) (Gz‘(ej

Q—27m

G (er™

) (Gg(ej%))* equal to 0.

The second term of equality (8) is matrix (G"*)" G,
It is made of a set of submatrices (Gy*)? G, (k,l =
1,---, K) corresponding to the different users. Each sub-
matrix is a Toeplitz matrix generated by the sequence

1,051,
xkla “(m)

1 ™ .Q Lo\ * .
= J— af,]y Q)Y —jmN.Q
= =/ Gj'(e'2) (Gk (e )) e dQ
1 g cQ-—2m co—2x \ ¥ .
J— [ Y ) )5 —jmN.Q
+ ST Gl (e ) (Gk (6 )) e dQ

—T

(12)

1[GkHGl]mn = xg;(m —n) for myn = 0,---,N —1



where the same developments were applied as in equality
(11).

A comparison between equalities (11) and (12) shows
that

(GO,a)H GO,a — (Gl,a)H Gl,a (13)

(the respective products of the submatrices are Toeplitz
matrices generated by identical sequences).

The following results can be obtained by using similar
steps:

(GO,B)H GO,B — (Gl,B)H Gl,B (14)
(GG + (GG =0y (15)
(GO,B)H GO,a + (GI,B)H Gl,a — 0KN~ (16)

Finally, from equalities (8), (13), (14), (15) and (16), we
have

(GC’F)H GF = 9 [(Go,a)H G + (GO,B)H GO8

(17)
The first term corresponds to the CNF detector and the
second term is the additional information available in case
of CF sampling. Remember that the noise variance in case
of CF joint detector (c¢'F)? is twice the noise variance in
case of CNF joint detector (¢cSNF)2. This is due to the
different bandwidths of the ideal presampling filters. In
practice the channel impulse responses (CIRs) are either
time or frequency limited. The demonstration approxi-
mates this fact assuming that the CIRs are of sufficient
length to be also highly frequency band-limited.

Cross-correlation between two vectors in a burst trans-
mission scheme is defined as R,, = E [z y"] where E[]
denotes the expectation operator. We define the following
matrices

-1

def — . Net

P = Rddl+W(Go ) a” (18)
d

Q@ Y @ (19)
d

T ¢ (oSN InN 4L (20)

in order to simplify the expressions in sections III-C, III-D
and ITI-E. Matrix Inn,4+1—1 is the identity matrix of size
NN.+L-1.

C. Mutual information

If an AWGN of variance (c¢'F)? and Gaussian indepen-
dent symbols of variance o2 are assumed, the mutual in-
formation between the vector of emitted symbols and the

received vector is given, in case of CF sampling, by
I(d;r")

2
04 CF\H ~CF
oz (@76

log |[Ixn +

0—3 GO,a H GO,a
oy (@)

= log|Ixn +

1
+ log|Ixn + WPQQH‘ (22)
1
= I(d;r“NF) + log |[Ixn + 7(U§NF)2PQQH‘
(23)

Equality (21) is the classical result giving the mutual in-
formation between a vector of emitted symbols and the re-
ceived vector (see theorem 1 in [15]). Equality (22) comes
from the expansion (17) and from the fact that the noise
variance in case of CF sampling is twice the noise variance
in case of CNF sampling. Definitions (18) and (19) are also
used. The mutual information in case of CNF sampling ap-
pears in equality (23) (remember that GENF = G%2).

In order to show that the mutual information after CF
sampling is larger than the mutual information after CNF
one, it is sufficient to prove that matrix P Q Q¥ is positive
definite. The following statements can be deduced from
[25]:

1. If a matrix M is positive definite, then the matrix
M ;’ M M is a positive definite matrix for any full col-
umn rank matrix M.

2. The sum of two positive definite matrices is a positive
definite matrix.

3. The inverse of a positive definite matrix is a positive
definite matrix.

With statement 1, matrix (G®*)? G* is positive definite.
With statements 2 and 3, matrix P is positive definite. Due
to statement 1, matrix P Q Q¥ is also positive definite.
Hence its eigen-values are positive so that the eigen-values
of I'xn + (%C%)QPQQH are larger than ”1”. The de-
terminant of a matrix is equal to the product of its eigen-
values. It follows that the mutual information is always
larger in case of CF sampling than in case of CNF sam-
pling. A similar result will be obtained for the continuous
transmission case and for this case, additional comments
are provided in Appendix B.

D. Linear MMSE joint detector

It will be demonstrated that the symbol estimation error
variances after a linear MMSE joint detector are smaller in
case of CF sampling than in case of CNF sampling. We
develop the error correlation matrix in the two cases and
compare the diagonal elements. After CF linear MMSE
joint detection (JD), the error e auto-correlation matrix is

(an AWGN of variance (0§%)? is assumed)

-1
- [R;dl + orR (GEMHH GCF] (24)
1 -1
— |:Rdd1 4 (UCNF)Z (GO,C!)H G0,0{|
- PQ(T+QHPQ)71QHP (25)

= RN _ pQ (T + QHPQY1 QY P. (26)



The first equality (24) is the classical expression of the error
auto-correlation matrix after MMSE linear JD [14]. Equal-
ity (25) comes from expansion (17) and from the fact that
the noise variance in case of CF sampling is twice the noise
variance in case of CNF sampling. Equality (25) is obtained
by the use of the inversion lemma 2. Definitions (18), (19)
and (20) are also used. The CNF error auto-correlation
matrix appears (remember that matrix GENVF = G%?).

In order to show that the error variances of the CF lin-
ear MMSE detector are lower than those of the CNF linear
MMSE detector, it is sufficient to prove that the second
term in equality (26) is a positive definite matrix. It was
demonstrated in section III-C that matrix P is positive
definite. By the use of the same steps, it can be also easily

-1
demonstrated that matrix P Q (T + QY PQ) Qi p

is positive definite and hence, has positive diagonal ele-
ments. The symbol error variances given by the diagonal
elements of the error auto-correlation matrix are thus al-
ways smaller in case of CF sampling.

E. Decision feedback MMSE joint detector

In case of DF JD, the error variances of symbol estimates
are given by the diagonal elements after a Choleski decom-
position of the error auto-correlation matrix obtained after
pure linear JD [14]. This result accounts for the fact that
previous decisions are assumed to be correct when the cur-
rent symbol is estimated. The error auto-correlation ma-
trix after CF linear detection is given by equality (24). It
can be expanded as the difference of two terms: the first
term is the error auto-correlation matrix after CNF linear
detection, and the second term is a positive definite matrix
given in equality (25).

An interesting property related to the Choleski decom-
position is introduced.

Proposition 1: If M,, M, and M. are square positive
definite matrices such that M, = M, — M,, they can
be expanded according to Choleski as M, = L, Lf,
M, = L, L}’ and M, = L. LY where L,, L, and L. are
lower triangular matrices with positive reals on the main
diagonal. It can be proven that the diagonal elements of
matrix L. are always smaller than the diagonal elements
of matrix L,. Proof: see Appendix A.

Assume that matrix M, denotes the error auto-
correlation matrix after a CF linear joint detector and M,
denotes the error auto-correlation matrix after a CNF lin-
ear joint detector. Then the CF DF joint detector system-
atically outperforms the CNF DF joint detector since the
error variances in case of CF sampling are given by the
square of the diagonal elements of L. and the error vari-
ances in case of CNF sampling are given by the square of
the diagonal elements of L.

2f X = P! 4+ QT~' QY where X, P, T are square positive-
definite, then X' = P — PQ (T + Q” PQ)™' Q" P.

IV. CONTINUOUS TRANSMISSION
A. System decomposition

To be able to compare the CF and CNF detectors, the
part of information which is available to the CNF detec-
tor is again isolated from the entirety of information. The
same steps as in the burst transmission case are followed.
Firstly, the receiver prefilter is separated in two parts. Sec-
ondly, a separation of even and odd samples is introduced.
Definitions (2), (3) and (4) and the corresponding relation
(5) are still valid.

We consider that the received signal is sampled at a CF
rate and that each user transmits an infinite sequence of
symbols. Furthermore we use a polyphase notation so that
all sequences be defined at the same rate 1/T. Please note
that the sampling period common to the polyphase com-
ponents was T, in the case of burst transmission studied
above. Based on the definitions (2), (3) and (4), let us
define N, polyphase components of each term as

ram) E 1o+, (27)
vhm) v+ nNy) (28)
gnm =g+ (20)

forp = 0,---,
(1) becomes

where dy,(2), ri(2),

N, — 1. In the z-domain, the initial model

+Zdh

P '”3(2) gnd gllcﬁ) ,
sequences dy,(n), 7;,(n), v,(n) and g7 (n). The polyphase
decomposition properties in [22] provide a counterpart of

gkp gk)p +'U()

(z) are the z-transformed

equality (29) in the frequency domain (z = /). If we
define the vectors
1
i2n (2p+i)
i gy def 1 iCpie € ¢ 20
vhe) e . (30)
i2m(2p4i)(2Nc—1)
e 2Ne
and
)
Y2 z
‘o def gp(e 23 )
g7 (e) 5 , (31)
gz(61(9+225\?i‘7c—1))
we obtain
; Q i i T iQ
g @) = (¥ () gl (') (32)

by the use of property (5).

We define a vector of size 2N, made of the N, polyphase
components corresponding to even and odd samples:

def { r9(z2) }

c
F(Z) ri(z)

T



_ G**(z) + G*P(2) v°(2)
G+ @iy | 4+ [0 ]
©GOF () d(z) + vOT () (33)
with
[ dl(Z)
diz) < :
L d]((z)
[ ori(z) ]
riz) Y :
T, —1(2) J
- () ]
’Ul(Z) éf .
L vf\,cfl(z) ]
and
GYY(2) Go(2)
Gi(z) Y : : (34)
’i’j\,ﬁl(z) G@Ncﬂ(z)

If the following matrices are defined based on definitions
(30) and (31)

\Ili(ejQ)
G ()

[ #o(e’®) Vi1 () ] (35)
[ g7’ 9k () 1, (36)
definition (34) used together with (32) provides finally

T .
“) ).
In case of CNF sampling (M =

TCNF(Z) — GCNF(Z) d(Z) + ’UCNF(Z)

G*°(z).

G () = (T'(e G’ (e (37)

1), the model becomes
(38)
where GOV (2) =

B. Matrices expansion

If an AWGN is assumed, each performance measure (mu-
tual information or error variance) for a continuous trans-
mission is a function of (G (e72))7 G°F (¢7?) in the CF
case and of (GENF (e1?))H GOV (£12) in the CNF case,
with GOV (e72) = G (ei9).

About the CF case, we can write (see equation (33)):

(GCF(ejQ))H GCF(ejQ)

= (G™ ()" G (e?) + (GM ()" @1 (1)
+ (G )H G () + (GM( eJQ))H G (%)
+ (GO (@) GV () + (G ()T GV ()
+ (G ) GV (e9?) (Glﬁ(eﬂﬂ))H Gh(e9?)

2rwin
(39) SRemember that + 37V LB {

Each term of expression (39) can be expanded using the
relation (37), if we remark that 3

(\Ilo(ejQ)>H\Ilo(€jQ) — 4]1Vc [ igz igz } (40)
(@' ()" () = 4J1vc [ —I}V& _vaN ](41)

where Iy, is an identity matrix of size N.. The different
terms can be combined. We only provide the result for the
sake of conciseness. Finally, we find

(GC’F(ejQ)) H GCF(ejQ) _

9 [(Go,a(em))H Go,a(em) + (Gl,a(ejﬂ))H GLa(ejQ)

(42)

The first term corresponds to the CNF detector and the
second term is the additional term corresponding to CF
sampling. Remember that the noise variance in case of CF
joint detector (¢$'F)? is twice the noise variance in case of
CNF joint detector (cSNFY2 This is due to the different
bandwidths of the receiver presampling filters.

In the following sections, notation S,,(z) stands for
the cross-spectrum between x(z) and y(z). It is defined
as the z-transformed cross-correlation matrix Rg,(n) =
E [x(m + n)y™ (m)]. Note that #(z) and y(z) are the z-
transformed vectors x(n) and y(n). We introduce the fol-
lowing definitions

-1

def — 1 a * a
P(z) = Su(2) + (00N )2 (G™*(1/z)" G"*(2)
(43)
def *
Q) = (G )T (44)
d
1) < (NI, (45)
in order to simplify the notations in sections IV-C, IV-D
and IV-E.
C. Mutual information
If an AWGN of variance (0¢'7)? and Gaussian indepen-
dent symbols of variance o3 are assumed, the mutual in-
formation between the infinite sequence of emitted symbols
and the received sequence is given, in the CF case, by
I(dyr©")
L[ 04 CF( jQ\\H ~CF (_jQ
—ﬁ/_ﬂlog Ti + o (G (@) GO ()
(46)
= I(d;r“NF)
L[ i i i\ H
t3m [ 108 i+ o PR @)

(47)

1if n is multiple of N
0else



Equality (46) gives the mutual information between an in-
finite sequence of emitted symbols and the received se-
quence. The capacity region of Gaussian linear multiple
access channels with finite IST has been computed in [16]. It
gives the counterpart of the water-filling formula for multi-
user channels. However the results of Verdu do not take
into account the excess bandwidth inherent to a system us-
ing a DS-CDMA scheme (for example see equality (9) of
[16] which is the same result as equality (46) for a system
without excess bandwidth). In paper [17] the results of [16]
are extended to systems with excess bandwidth. Starting
from the classical result (21) and assuming that an infinite
number of symbols is transmitted in the burst, equality
(46) is found by the use of the asymptotic properties of
Toeplitz matrices. Equality (47) comes from the decompo-
sition (42) and from the fact that the noise variance in case
of CF sampling is twice the noise variance in case of CNF
sampling. The definitions (43) and (44) are also used. As
GV (e12) = G™*(i?), the mutual information in the
CNF case appears in equality (47).

The determinant of a matrix can be computed by the
product of its eigen-values.
Matrix P(e’?) Q(e7) (Q(e’))H is positive definite for
any value of . Its eigen-values are positive so that the
eigen-values of I'xn + %P(em)Q(em) (Q(e72)H
are larger than ”1”. It follows that the mutual information
is always larger in the CF case. In Appendix B, equality
(47) is particularized for a single-user system in order to
be able to provide additional insight into the mutual infor-
mation loss due to CNF sampling.

D. Linear MMSE joint detector

It will be demonstrated that the error variances of sym-
bol estimates after CF linear MMSE JD are always smaller
than those corresponding to the CNF one. The error cross-
spectrum at the output of the CF detector is (an AWGN
of variance (¢$F)? is assumed),

Sel (")
= (83 + G (T @N)T G
(48)
= SINF(IY) — 85 (&9 (49)
where
SZ () Y P Qe’?)
(T(e) + Q)" P(e) Q™)) !
QY (/) P(e17).

Equality (48) is the classical expression of the error cross-
spectrum matrix after linear MMSE JD [8,11]. Equality
(49) is obtained by using (42) and the fact that the noise
variance in the CF case is twice the noise variance in the
CNF case. The definitions (43), (44) and (45) are also used.
Remember that GOV (¢1?) = G*(e7?) so that the CNF
error cross-spectrum matrix appears.

It can be easily proven that the matrix constituting the
second term of (49) is positive definite for each frequency Q
so that its diagonal elements are positive reals. The error
variances of symbol estimates are given by the diagonal
terms of the zero order matrix coming from the integration
of the error cross-spectrum on the unit circle (z = e/%).
They are thus always smaller in the CF case.

E. Decision feedback MMSE joint detector

In case of DF JD, the geometrical mean of estimation
error variances can be computed by using the fact that
[8,12] (see especially equality (18) in [12])

IOgH [R--(0)];; = i

2r
/ log

where G/(e/?) stands for GV (e7?) in the CNF case and
for GF'(€7?) in the CF case.

[s31() + &%) 87 (@) ()]

The error cross-spectrum after linear JD is integrated
on the unit circle. In the linear CF case, the error cross-
spectrum (expression (48)) can be decomposed in two
terms, each constituted of positive definite matrices for any
value of Q (see equality (49)). Furthermore, the first term
corresponds to the error cross-spectrum in the CNF case.
A Choleski decomposition can be applied to each part for
a given (). The determinant is equal to the products of the
diagonal elements coming from the Choleski decomposition
matrices since those matrices are triangular. By means of
Proposition 1 about the Choleski decomposition, it is eas-
ily proven that the geometrical mean of errors is always
smaller in the CF case.

V. RESULTS

The purpose of this section is to compare numerically
three different receiver configurations. In the previous sec-
tions, we have assumed that an ideal LP filter is applied on
the received signal in order to avoid aliasing. In this case,
the signal is sampled at either a CF or a CNF rate. We
have demonstrated that CF sampling outperforms always
the CNF one. This will be confirmed by computational
results. We consider also a system where a chip MF is ap-
plied on the received signal before CNF sampling. This last
configuration will be compared to the two previous ones.

For mobile communications, the channels can be mod-
eled as multi-path channels. In this paper, we have as-
sumed four-path channels. The amplitudes and the phases
are chosen arbitrarily. The delays are given in fractions
of the chip duration. For the computations, the channel
delay spread (which is defined as the maximal path delay)
is equal to 0.9 us. A system composed of 16 users, each of
them sending a burst of 10 symbols, is considered. The chip
duration 7T, is equal to 0.25 us. Gold codes of length 31
are used to spread the symbols of the different users. The
spreading factor N, is equal to 31. A half-root Nyquist fil-
ter, characterized by a roll-off factor equal to 0.3, is used to



shape the emitted signals. The ratio E; /Ny, where E; de-
notes the received symbol energy and Ny denotes the noise
one-sided power spectral density equal to —100 dBm/Hz,
is fixed to 20 dB. A perfect power control for each user is
assumed. The sampling phase is chosen to be aligned with
the first path, which we expect to be a favorable situation
for the CNF detector.

Table I gives the mutual information between the emit-
ted sequences of symbols and the received sequence, and
the geometrical mean of the user signal to interference and
noise ratios (SINRs, see paper [10] for a close definition)
for the set of parameters considered above. In case of CNF
sampling, a little part of the information contained in the
received signal is removed by the ideal LP filter. Further-
more, the computational results show that the mutual in-
formation is smaller if a chip MF is applied instead of an
ideal LP filter. The same conclusions hold for the different
user SINRs after a linear or DF MMSE joint detector. Fig-
ure 4 illustrates the user SINRs after a linear or DFF MMSE
joint detector. Each separate user SINR is the geometrical
mean of the SINRs corresponding to the different symbols
of that user in the emitted burst. In case of linear JD, all
user symbols are detected simultaneously. In case of DF
JD, we consider that the symbols are detected following
either the symbol index order or the inverted symbol in-
dex order. The SINRs corresponding to the lastly detected
users are close to the matched filter bound equal to 20 dB
since the interference due to the previously detected users is
removed from the received signal. Each separate user per-
formance gain between the three possible configurations
varies according to the user detection order. However it
can be easily demonstrated that the geometrical mean of
all user symbol SINRs is constant. Comparing CF and
CNF sampling, gains up to 1.26 dB and up to 1.11 dB are
observed for user 5 for the CF linear and DF MMSE joint
detectors respectively.

Figure 5 shows the mutual information between the emit-
ted symbols and the received sequence as a function of the
roll-off factor. Of course, the mutual information is the
same for all receivers if the roll-off factor is equal to 0.
For higher values, the curves move away from each other.
When the roll-off factor becomes higher, the ideal LP filter
applied before the CNF sampling removes an increasing
amount of the signal received energy. A gain up to 0.2
bits per emitted symbol is observed between the CF and
CNF sampling rates. Figures 6 and 7 show the geometrical
mean of the user SNIRs after linear and DF MMSE JD as
a function of the roll-off factor. Regarding CF and CNF
receivers, gains up to 1 dB and 0.7 dB are observed for the
CF linear and DF MMSE joint detectors.

The ultimate performance criterion is the bit error prob-
ability. Regarding the different users and receivers, it
should be interesting to link the performance metrics con-
sidered in the analytical derivations (the mutual informa-
tion and the mean square errors) with the corresponding
bit error probabilities. The performance of users 5 and 14
is investigated by performing simulations for Es/Ny ratios

ranging from 0 to 14 dB and for a quadrature phase shift
keying (QPSK) modulation. At least 1000 errors on the
bit decisions have been detected for each user. Figures 8
and 9 illustrate the bit error rates (BERs) at the output of
the linear and DF MMSE joint detectors. It is well known
that the DF MMSE joint detector suffers from symbol de-
tection error propagation mechanisms. In Figure 10, the
performance of the actual DF MMSE joint detector is com-
pared to the performance obtained when perfect decisions
on the previous symbols are assumed. Only the case of CF
sampling after an ideal LP filter has been considered for
the last comparison. The performance is improved when
the symbols are correctly detected. However the curves
are shown to converge to each other for low bit error rates.
Traditionally, the bit error probabilities are theoretically
computed based on the different user SINRs by supposing
that the interference at the output of the joint detector is
Gaussian. The related curves are also illustrated in Fig-
ures 8 and 10 for the linear and DF MMSE joint detectors
respectively. In the linear case, the values match perfectly
the simulations. In the DF case, the values are close to the
values obtained with a perfect feedback. Hence there is a
good match between the different metrics. CF sampling at
the output of an ideal LP filter is shown to outperform sig-
nificantly CNF sampling. A system using CNF sampling
after a chip MF still offers a lower performance.

VI. CONCLUSION

This paper compares the performance of CF and CNF
sampling at the receiver for a CDMA uplink transmission.
It is analytically shown that CF sampling always outper-
forms CNF sampling and an expression of the gain in per-
formance is provided. Firstly, the mutual information be-
tween the emitted sequences of symbols and the received
sequence is investigated. A difference of 0.1 bits per emit-
ted symbol arises for the setup used here, that is multi-path
channels and a 0.3 roll-off factor. Secondly, the error vari-
ances of the symbol estimates after linear and DF MMSE
JD are discussed. Considering the geometrical mean of the
different user SINRs separately in case of linear and DF
JD, a gain up to 1.26 dB and 1.11 dB respectively arises
for the same classical value of the roll-off factor. The choice
between CF and CNF sampling has obviously an impact on
the system complexity. In the CF case, the computation
cost for the detection would be twice that for CNF. This
has to be taken into account for a global assessment.

In practice, the channels have to be estimated, and the
joint detectors are deduced from estimated channels. Fur-
ther work will include the study of the degradation due to
the estimation of the different impulse responses.

APPENDIX A

Proof of Proposition 1: By the use of the definition, we

have L, L = L, LY + L.LY”. Matrix L, is invertible,
—1

and thus, L, (Lb | F Lf) (ij) = I where T

is the identity matrix. If we define the two modified lower

triangular matrices L, = L;l Ly and L. = L;l L., the



~ ~H . -H
last expression becomes Ly L, + L.L., = I. The devel-
opment of the diagonal element p of each part gives

p p

Z [ib];q [i’b]pq + Z [ic];q [-i/c]pq =1

g=1 g=1

The diagonal elements of L. are thus always smaller than
1. The matrices L, and L. are lower triangular matrices.
Hence, it can be easily demonstrated that [L; '],y [Lelpp <
1 using the definition of L.. Furthermore, we have that
[L,"1p [Lalpp = 150 that the diagonal elements of L. are
always smaller than or equal to the diagonal elements of
L,. QED

APPENDIX B

If CF sampling is considered, the sequence of samples
contains all the received signal information. However, in
case of CNF sampling, the LP receiver prefilter removes a
part of the information in order to avoid aliasing. Equality
(47) gives the expression of the mutual information loss in
case of continuous transmission. If only one user is consid-
ered in the system, it is possible to give more insight into
this last result. By introducing definitions (43) and (44)
in equality (47), and by using property (5), the mutual
information loss is

1 —7/2
T /7r/2

(50)
in the single user case. The term G%(e/})* G¥(e/%) corre-
sponds to the signal received energy located in the Nyquist
zone (frequencies between —0.5/T, and 0.5/T;). The term
GB (eI ™) GB(el(?=m) corresponds to the signal re-

ceived energy located in the excess bandwidth and shifted
to the Nyquist zone.

o2 GB (eI 2=m))*x GB (e (2=7))

If the system works without excess bandwidth, CNF
sampling is sufficient to keep the whole information con-
tained in the received signal. When the roll-off factor in-
creases, the loss of information due to CNF sampling be-
comes higher. It is noteworthy that the information loss
depends not only on the information located in the excess
bandwidth but also on the initial information located in the
Nyquist zone. The signal located in the excess bandwidth
brings redundancy as compared to the signal located in the
Nyquist zone. In other words it is the same source which is
"hidden” behind the information carried by the two bands.
Therefore the information do not just add together. Hence
if the information contained in the Nyquist zone is high,
the information brought by the excess bandwidth is less
important.
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CF, ideal LP | CNF, ideal LP | CNF, chip MF
Mutual information [bits/symbol] | 6.35 6.28 6.16
MMSE linear [dB] 17.85 17.48 17.05
MMSE DF [dB] 19.04 18.83 18.48

TABLE I
MUTUAL INFORMATION BETWEEN THE EMITTED SEQUENCES OF SYMBOLS AND THE RECEIVED SEQUENCE. GEOMETRICAL MEAN OF THE USER
SINRS IN CASE OF LINEAR AND DF JOINT DETECTORS.
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