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Stability Changes upon Mutation of Solvent-
accessible Residues in Proteins Evaluated
by Database-derived Potentials
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UCMB, Université Libre de The stability changes in peptides and proteins caused by the substitution
of a single amino acid, which can be measured experimentally by theBruxelles, CP160/16

a.v. F. Roosevelt change in folding free energy, are evaluated here using effective potentials
derived from known protein structures. The analysis is focused on1050 Brussels Belgium
mutations of residues that are accessible to the solvent. These represent in
total 106 mutations, introduced at different sites in barnase, bacteriophage
T4 lysozyme and chymotrypsin inhibitor 2, and in a synthetic helical
peptide. Assuming that the mutations do not modify the backbone
structure, the changes in folding free energies are computed using various
types of database-derived potentials and are compared with the measured
ones. Distance-dependent residue–residue potentials are found to be
inadequate for estimating the stability changes caused by these mutations,
as they are dominated by hydrophobic interactions, which do not play an
essential role at the protein surface. On the contrary, the potentials based
on backbone torsion angle propensities yield quite good results. Indeed, for
a subset of 96 out of the 106 mutations, the computed and measured
changes in folding free energy correlate with a linear correlation coefficient
of 0.87. Moreover, the ten mutations that are excluded from the correlation
either seem to cause modifications of the backbone structure or to involve
strong hydrophobic interactions, which are atypical for solvent-accessible
residues. We find furthermore that raising the ionic strength of the solvent
used for measuring the changes in folding free energies improves the
correlation, as it tends to mask the electrostatic interactions. When adding
to these 106 mutations 44 mutations performed in staphylococcal nuclease
and chemotactic protein, which were first discarded because some of them
were suspected to affect the backbone conformation or the denatured state,
the correlation between measured and computed folding free energy
changes remains quite good: the correlation coefficient is 0.86 for 135 out
of the 150 mutations. The success of the backbone torsion potentials in
predicting stability changes indicates that the approximations made for
deriving these potentials are adequate. It suggests moreover that the local
interactions along the chain dominate at the protein surface.
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Introduction

The principles that rule protein stability have
begun to be better understood since protein
engineering experiments such as site-directed
mutagenesis have provided experimental data on
the relative stability of a lot of mutants. The
common procedure consists of substituting one or
several residues and determining the corresponding
stability changes by measuring the changes in the

free energy of unfolding upon denaturation (O’Neil
& DeGrado, 1990; Serrano et al., 1990, 1992a,b;
Matoushek et al., 1989; Sali et al., 1991; Horovitz
et al., 1992; Dao-Pin et al., 1990; Hu et al., 1992;
Jackson & Fersht, 1994; Blaber et al., 1993; Zhang
et al., 1995; Itzhaki et al., 1995; Shortle et al., 1990;
Green et al., 1992; Muñoz et al., 1994; López-
Hernández & Serrano, 1995). These data are then
interpreted in terms of the modification of the
interactions that stabilize the tertiary structures (for

0022–2836/96/151112–15 $18.00/0 7 1996 Academic Press Limited



Stability Changes Evaluated by Effective Potentials 1113

a review, see Fersht & Serrano, 1993). This strategy
has confirmed the dominating influence of the
hydrophobic interactions in the protein core, but
has also revealed the non-negligible role of other
interactions, such as hydrogen bond and electro-
static interactions, which must all be satisfied to
achieve protein stability. However, the specific
amount of stabilization provided by the different
components is not known with precision, because it
is highly contextual and dependent on the spatial
environment in the protein.

In parallel with the increasing body of exper-
imental results, the problem of protein stability has
been tackled from a theoretical point of view, with
the ultimate aim of being capable of designing
protein sequences with a pre-defined structure.
More realistically, most theoretical approaches focus
on single-site mutations that are assumed to be
sufficiently neutral to keep the backbone confor-
mation almost unperturbed, and estimate the
corresponding stability change on the basis of
various energy criteria.

The first procedures aimed at predicting the
stability changes of mutant proteins were free
energy calculations with detailed atomic models
coupled to semi-empirical force fields (Basch et al.,
1987; Dang et al., 1989; Tidor & Karplus, 1991). But
these procedures are so computer-time-consuming
that they cannot at present be applied to a large
number of mutations. This has prompted the
development of faster methods based on rougher
descriptions of protein structures. One of these
methods uses a simplified force field combined with
a search in a limited conformational space (Lee &
Levitt, 1991; Lee, 1994). Methods based on even
more simplified models estimate folding free
energies using effective potentials derived from
known protein structures, in particular hydrophobic
potentials (Koehl & Delarue, 1994), secondary
structure potentials (Muñoz & Serrano, 1994),
residue contact potentials (Miyazawa & Jernigan,
1994) and distance-dependent residue–residue
interaction potentials (Sippl, 1995). Still others relate
the stability changes to the shape, flexibility
and volume of the substituted amino acids
(van Gunsteren & Mark, 1992), to the number of
methylene and methyl groups in the environment of
the mutated residues (Serrano et al., 1992b), to the
number of surrounding a-carbon atoms (Shortle
et al., 1990), or to the cavity formation in the protein
interior resulting from mutating a large into a
smaller amino acid (Eriksson et al., 1992; Kocher,
J. P., Prévost, M., Lee, B. K. & Wodak, S. J.,
unpublished data). Most of these methods (Dang
et al., 1989; Tidor & Karplus, 1991; Lee & Levitt,
1991; Lee, 1994; Koehl & Delarue, 1994; Miyazawa
& Jernigan, 1994; van Gunsteren & Mark, 1992;
Eriksson et al., 1992; Kocher et al., unpublished data)
have been applied to mutations of residues that are
buried in the protein core, where the hydrophobic
effect is predominant. This choice is quite natural
for procedures using hydrophobicity potentials or
residue pair potentials, in which the hydrophobicity

component is known to dominate (Casari & Sippl,
1992; Bryant & Lawrence, 1993; Kocher et al., 1994),
or when focusing on cavity formation or on the
volume and shape of substituted amino acids.

The computed stability changes are usually
compared with the experimentally measured
changes in folding free energies (Serrano et al.,
1992b; Dang et al., 1989; Tidor & Karplus, 1991; Lee,
1994; Koehl & Delarue, 1994; Muñoz & Serrano,
1994; Miyazawa & Jernigan, 1994; Sippl, 1995;
Shortle et al., 1990; Eriksson et al., 1992; Kocher
et al., unpublished data), but sometimes they are
related to the measured activity changes (Lee &
Levitt, 1991; van Gunsteren & Mark, 1992), though
stability and activity do not always go together
(Shoichet et al., 1995). The reported correlations
between computed and measured quantities are all
reasonably good. However, they are always
restricted to selected mutations in a single protein,
and usually even at a single site. As soon as
mutations in different sites and different proteins
are mixed, the correlations seem to break down.
These effects are usually attributed to shortcomings
of the energy criteria used or to the various
approximations made in deriving them. It has
tentatively been attributed to the fact that the
unfolded state could be different in the different
sites and different proteins (Miyazawa & Jernigan,
1994).

Here, we consider single-site mutations of
residues that are solvent-accessible and compute the
change in folding free energy using different types
of database-derived potentials, assuming that the
backbone conformation remains unchanged upon
mutation. The computed folding free energy
changes are compared with the experimentally
measured ones. We start by presenting the ensemble
of mutations that we consider, and continue by
exposing the different formalisms that have been
developed for deriving potentials from protein
structure data. This issue is quite important. Indeed,
the different formalisms do not agree on the
interpretation of the computed quantities, and
hence on the applicability of the database-derived
potentials for computing folding free energies. The
choice of the correct formalism constitutes the basis
of our whole approach.

Ensemble of Mutations Considered

The present analysis is restricted to mutations of
residues situated at the protein surface, which
expose at least 50% of their accessible surface area
to the solvent as measured by the algorithm SurVol
(Alard, 1991). In addition, only mutants with a
single amino acid substitution are considered. The
ensemble of mutations is given in Table 1A and B.
It comprises 38 mutations in barnase at eight
different sites (Serrano et al., 1990, 1992a,b;
Matoushek et al., 1989; Sali et al., 1991; Horovitz
et al., 1992), 32 mutations in T4 phage lysozyme at
six sites (Dao-Pin et al., 1990; Hu et al., 1992; Blaber
et al., 1993; Zhang et al., 1995), 17 mutations in
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Table 1. Set of considered mutations
Protein/ Sequence Mutated Introduced (8, c, v) Secondary Accessibilityd

peptidea position residues mutations Domainb structurec (%)

A. Set of 106 mutations in barnase, T4 lysozyme, chymotrypsin inhibitor 2 and the ODG peptide
Barnase 8 Asp Ala, Gly, Ser A H 77.6

12 Asp Ala, Gly, Ser A H 52.9
16 Thr Ala, Arg, Gly, Ser A H 57.8
28 Ser Ala, Gly, Glu A H 60.7
31 Gln Ala, Gly, Ser A H 62.4
32 Ala Gly, Lys, Arg, Met, Leu, Ser, A H 76.3

Gln, Glu, Asn, Phe, Asp, His,
Thr, Ile, Tyr, Val, Trp, Cys, Pro

55 Ile Ala, Val P E 54.9
105 Thr Val B C 62.9

T4 lysozyme 44 Ser Ala, Cys, Asp, Glu, Phe, His, A H 54.1
Ile, Lys, Leu, Met, Asn, Pro,
Gln, Arg, Gly, Thr, Val, Trp, Tyr

82 Ala Pro A T 78.3
93 Ala Pro A H 67.2

113 Gly Ala A T 62.6
131 Val Ala, Thr, Leu, Met, Ile, Glu A H 66.3

Ser, Asp, Gly
144 Asn Asp A H 66.8

Chymotrypsin 33 Glu Gln, Asp, Asn A H 53.7
inhibitor 2 34 Glu Gln, Asp, Asn A H 51.5

37 Lys Ala, Gly A H 61.1
41 Gln Ala, Gly A H 76.0
44 Pro Ala C T 72.5
45 Glu Ala C T 50.3
52 Pro Ala P E 54.4
56 Ile Ala P C 94.2
58 Thr Ala, Asp P C 69.9
72 Lys Asn C T 93.9

ODG peptide 14 Gly Ala, Cys, Asp, Glu, Phe, His, A H Fully accessible
Ile, Lys, Leu, Met, Asn, Pro,
Gln, Arg, Ser, Thr, Val, Trp, Tyr

B. Set of 44 mutations in staphylococcal nuclease and chemotactic protein, some of which were suspected to modify the backbone conformation
or the denatured state
Staphyloccal 11 Pro Gly, Ala P E 74.1

nuclease 13 Thr Gly, Ala B E 60.7
29 Gly Ala, Val G T 85.4
30 Gln Gly, Ala B E 54.2
31 Pro Gly, Ala P E 53.5
47 Pro Gly, Ala A T 82.4
51 Val Gly, Ala B S 60.6
60 Ala Gly, Val A H 51.0
68 Asn Gly, Ala C T 67.0
80 Gln Gly, Ala P C 60.5
82 Thr Gly, Ala B B 50.1
85 Tyr Gly, Ala C T 70.4
86 Gly Ala, Val G S 50.2
96 Gly Ala, Val G T 61.9

113 Tyr Gly, Ala P C 74.1
115 Tyr Gly, Ala B B 67.6
123 Gln Gly, Ala A H 58.8
141 Ser Gly, Ala X C 83.2

Chemotactic 14 Phe Asn B C 62.1
protein 48 Ala Gly C T 80.6

74 Ala Gly C T 78.6
77 Ala Gly C T 81.8
80 Ala Gly C T 77.3
88 Ala Gly C S 61.7
90 Ala Gly P C 50.7

114 Ala Gly A H 62.1
a Proteins or peptides in which the mutations are introduced. The PDB code (Bernstein et al., 1977) of the barnase structure used

here is lRNB, that of T4 lysozyme is 1LYD, that of chymotrypsin inhibitor 2 is 2CI2, that of staphylococcal nuclease is 1STN and that
of the chemotactic protein is 2CHF. ODG peptide refers to the synthetic a-helical ODG peptide of O’Neil & DeGrado (1990).

b The (8, c, v) domains of the mutated residues in the wild-type structure, using the definitions of Rooman et al. (1991, 1992) and
Kocher et al. (1994). A corresponds to right-handed a-helical conformations, C to 310-helix, G to left-handed helix, B and P to extended
conformations, with B comprising more particularly b-strands and P poly(proline) type conformations, and X denotes residues for
which one of the torsion angles could not be determined.

c Secondary structure of the mutated residue calculated by DSSP (Kabsch & Sander, 1983). H means a-helix, C random coil,
E b-strand, B isolated b, S bend and T turn.

d Solvent accessibility (in %), defined as the solvent-accessible surface area of the residue in its parent protein, computed by SurVol
(Alard, 1991), divided by the solvent-accessible surface area of the residue in an extended tripeptide Gly-X-Gly conformation (Rose
et al., 1985). As the precise structure of the ODG peptide has not been determined (it is only known to be helical) the exact accessibility
of the residue Gly14 cannot be computed.
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chymotrypsin inhibitor 2 at ten sites (Jackson &
Fersht, 1994; Itzhaki et al., 1995), 19 mutations in a
synthetic a-helical peptide of 29 residues (O’Neil &
DeGrado, 1990), which will be referred to as ODG
peptide, 36 mutations in staphylococcal nuclease at
18 sites (Shortle et al., 1990; Green et al., 1992) and
eight mutations in chemotactic protein at eight sites
(Muñoz et al., 1994; López-Hernández & Serrano,
1995). When the folding free energy difference of
the same mutation is measured at different pH
values or salt concentrations, we take the value
measured at the highest pH or highest salt
concentration, except in the section where we
analyse the influence of the experimental con-
ditions.

In total, we consider 150 mutations of residues
that are solvent-accessible, introduced in six
different proteins or peptides, at different sites, and
in different secondary structure with, however, a
majority of helices (see Table 1A and B). This
corresponds to an attempt at collecting all single-site
mutations, performed on surface residues, whose
folding free energies have been measured exper-
imentally. The only mutations of solvent-accessible
residues that we discard (to our knowledge) are
those in Protein G (Minor & Kim, 1994), because the
folding free energy changes are measured with
respect to a pseudo wild-type with three substi-
tuted residues, whose tertiary structure has not
been determined.

The main part of our analysis will be performed
on the 106 mutations in barnase, T4 phage
lysozyme, chymotrypsin inhibitor 2 and ODG
peptide (Table 1A). The 44 mutations in staphylococ-
cal nuclease and chemotactic protein (Table 1B) will
be discussed separately, because, according to
Shortle et al. (1990), Green et al. (1992) and Muñoz
et al. (1994), at least a subset of these mutations
seems to affect the backbone structure or even the
denatured state, which contradicts the basic
assumptions of our approach (see Methods).

Formalisms for Deriving Effective
Potentials from Known Structures

The most widely used approach for deriving
effective potentials from an ensemble of experimen-
tally determined protein structures consists of
computing frequencies of sequence and structure
features, and converting these frequencies into free
energies (Sippl, 1990, 1993, 1995; Wodak & Rooman,
1993; Rooman & Wodak, 1995). In concrete terms,
the sequences S are divided into sequence elements
s (e.g. residues or residue pairs), and the
conformations C into structural states c (e.g. ranges
of torsion angles, inter-residue distances or solvent-
accessible surface areas). The frequencies of c and s
in the protein dataset are computed, yielding an
estimation of the probability of c, P(c), and of the
conditional probability of c knowing s, P(c =s).
Essentially two formalisms have been developed to
convert these probabilities into free energies. In
terms of frequencies, the same quantity is computed

in both formalisms, but it is interpreted differently
in terms of free energy.

In the first formalism (Sippl, 1990, 1993; Wodak &
Rooman, 1993), the probabilities P(c =s) and P(c) are
converted into the free energy GS(C) by assuming
that the structural states c follow a Boltzmann-type
distribution. This yields:

GS(C) − G(C) + kT log ZS

Z
= − kT s

i,j

log
P(ci =sj )
P(ci )

(1)

where k is the Boltzmann’s constant and T a
conformational temperature (Pohl, 1971), taken to
be room temperature. The indices i and j indicate
the position(s) along the sequence of the structural
states and sequence elements, respectively. ZS is the
partition function of the system. Z and G(C) are the
partition function and the free energy of a
non-specific sequence. Thus, the computed quan-
tity, which appears on the right-hand side of
equation (1), does not correspond to the free energy
GS(C), but to the difference GS(C) − G(C) plus a term
containing partition functions. Because of the
dependence of the latter term on the sequence, this
equation can in principle only be applied to
compare different structures of the same sequence.
It is, in particular, not suited to compute the energy
difference of two mutant proteins, unless the
additional approximation is made that the mutation
does not modify the partition function.

In the second derivation (Rooman & Wodak,
1995), it is argued that the quantity GS(C) does not
approximate the true free energy of the ensemble of
conformations C of the system S, because it is
computed without correcting for the many-body
effect that arises from the presence of other residues
and screens out the correlations between s and c.
The need for correcting for this effect is most clearly
seen when the structural states c are inter-residue
distance ranges. Indeed, the most populated states
c, and hence the conformations C with lowest value
of GS(C), are those in which residues are not in
contact, whereas the conformations with lowest free
energy usually have many inter-residue contacts.
Note that the quantity GS(C) − G(C) includes a
correction for the many-body effects, but it has no
clear physical meaning. When these effects are
properly taken into account, it was shown by
Rooman & Wodak (1995) that the partition function
term drops out of the equations. The probability
ratios that appear in the right-hand side of equation
(1) turn out to approximate the difference between
the true free energy GS(C) and the free energy GS

of a denatured-like state of S in which the
conformational states c and the sequence elements
s are uncorrelated:

DGS(C) = GS(C) − GS = −kT s
i,j

log
P(ci =sj )
P(ci )

(2)

This free energy difference, DGS(C), is referred to as
the folding free energy. It can be used for comparing
different structures of the same sequence, as well as
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different sequences with the same structure.
However, the remaining question is whether the
considered denatured-like state is a good approxi-
mation of the true one, or if other approximations
must be used. Preliminary results were positive in
that respect, but not conclusive (Rooman & Wodak,
1995).

There is in fact another, earlier, derivation of
database-derived potentials (Miyazawa & Jernigan,
1985, 1994), which is specifically designed to
compute residue–residue contact potentials. It takes
explicitly solvent molecules into account, and uses
Boltzmann law, via Bethe approximation, to convert
frequencies into energies. It uses a correction for
the many-body effects that is more similar to the
correction performed in the first (eqn (1)) than in the
second derivation (eqn (2)). The computed quantity
corresponds to an energy difference, between the
formation of residue–residue versus residue-solvent
contacts, and hence does not include a partition
function term. This derivation is confronted with
the problem of estimating the number of contacts
between solvent molecules, and, when applied to
compute folding free energies of mutant proteins, of
modelling the denatured state (Miyazawa &
Jernigan, 1994).

In this paper, the validity of the second formalism
is stated and, as a consequence, the applicability of
database-derived potentials for computing stability
changes upon mutation. The folding free energies
DG are thus computed using equation (2). Two main
types of potentials are considered, the backbone
torsion potentials, which are derived from frequen-
cies of backbone torsion angle domains, and the
residue–residue potentials, which are based on the
propensities of residue pairs to be separated by a
given spatial distance. The details of these
potentials, of the computation of the changes in
folding free energy DDG upon mutation and their
comparison with the measured DDG values are
given in Methods.

Correlation Between Measured and
Computed DDG Values Using
Backbone Torsion Potentials

The changes in folding free energy DDG between
wild-type and mutant proteins are computed using
backbone torsion potentials for the 106 mutations of
solvent-accessible residues listed in Table 1A, and
are compared with the experimentally measured
DDG values. Four variants of backbone torsion
potentials are used, the short and middle range
torsion : residue and residue : torsion potentials
(see Methods). The DDG values are depicted in
Figure 1(a) and (b) for the two torsion : residue
potentials; the two residue : torsion potentials give
similar, but slightly less good, results and are hence
not shown.

For the ensemble of 106 mutants, the computed
and measured DDG values are only weakly
correlated, with linear correlation coefficients

between 0.60 and 0.67 for the different torsion
potentials. However, when visualizing the DDG
values (Figure 1), it appears that the weak
correlation is in fact due to a few mutations, which
are clearly apart from the main group. To identify
these outsiders objectively, we use an automatic
sorting procedure that rejects one mutation at a time
from the original ensemble, until the correlation
coefficient exceeds a certain value. The rejected
mutation is the mutation that, when discarded from
the ensemble, gives rise to the highest correlation
coefficient for the remaining mutations.

With this sorting procedure, we find that
dropping ten out of the 106 mutations increases the
correlation coefficient to 0.87 for both the short and
middle range torsion : residue potentials, and to
0.82 and 0.86 for the short and middle range
residue : torsion potentials, respectively. The two
torsion : residue potentials thus yield the highest
scores, in agreement with previous findings (Kocher
et al., 1994).

Strikingly, nine out of the ten mutations that are
rejected first by the sorting procedure are the same
for all the torsion potentials. These mutations are:
Thr16 : Ser, Thr16 : Gly, Thr105 : Val and
Ala32 : Pro in barnase; Ser44 : Pro, Ala82 : Pro
and Ala93 : Pro in T4 lysozyme; Pro52 : Ala in
chymotrypsin inhibitor 2; and Gly14 : Pro in the
ODG peptide. The tenth rejected mutation is
Asp8 : Ala in barnase for the two short range
potentials, and Pro44 : Ala in chymotrypsin
inhibitor 2 for the two middle range potentials.

The fact that the folding free energy of the
mutation Asp8 : Ala in barnase, which involves
the loss of electrostatic interactions, is better
estimated by middle range potentials, and that the
mutation Pro44 : Ala in chymotrypsin inhibitor 2,
which is situated in an ab turn, is better described
by the short range potentials, can be taken to mean
that short and middle range potentials represent
somewhat different interactions, which are each
better suited to different applications. This in-
terpretation is supported by the fact that the short
range potentials were found to be superior on the
basis of the ability to recognize native sequence–
structure matches from a set of alternatives (Kocher
et al., 1994), whereas the opposite trend appears in
the present analysis. This interpretation can seem
surprising a priori, as the middle range potentials,
which combine all the residue influences in the
[i − 8, i + 8] sequence window, include the short
range ones, which are restricted to the [i − 1, i + 1]
window. However, the specific interactions in the
[i − 1, i + 1] window have less weight in the middle
than in the short range potentials, because they are
averaged with many more interactions.

Among the 106 mutations considered, 94 are
performed in helices, three in b-strands, five in
turns and four in coil regions (Table 1A). In spite of
a large majority of helices, the mutations introduced
in different secondary structures are found to be
roughly at the same distance from the regression
line, on average. This result is true for the four types
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Figure 1. DDG values computed
from backbone torsion potentials as
a function of the measured DDG
values, for the 106 mutants listed in
Table 1A. The mutations in barnase,
T4 lysozyme, chymotrypsin inhibi-
tor 2 and the ODG peptide are
indicated by +, r, r and q,
respectively. The measured DDG
values are in kcal/mol and are taken
from O’Neil & DeGrado (1990),
Serrano et al. (1990, 1992a,b),
Matoushek et al. (1989), Sali et al.
(1991), Horovitz et al. (1992), Dao-
Pin et al. (1990), Hu et al. (1992),
Blaber et al. (1993), Jackson & Fersht
(1994), Itzhaki et al. (1995) and
Zhang et al. (1995). The computed
DDG values are formally also in
kcal/mol. The plotted lines corre-
spond to the regression lines ob-
tained with ten out of the 106
mutations excluded by our sorting
procedure. The excluded mutations
are indicated by the name of the
mutant amino acid followed by
its position in the sequence.
(a) Computed DDG values obtained
with the middle range tor-
sion : residue potential. The linear
correlation coefficient between
measured and computed DDG val-
ues is equal to 0.67 for all 106
mutations, and to 0.87 when the ten
mutations are rejected. The prob-
ability P that the latter correlation is
obtained by chance is P = 0.000000.
The equation of the regression line
is: y = 2.10x − 0.62. (b) Computed
DDG values obtained with the short
range torsion : residue potential.
The linear correlation coefficient
between measured and computed
DDG values is equal to 0.67 for
all 106 mutations, and to 0.87 when
the ten mutations are rejected
(P = 0.000000). The equation of the
regression line is: y = 0.88x − 0.24.

of backbone torsion potentials. This indicates that
these potentials can be used to evaluate folding free
energy changes, irrespective of the secondary
structures in which the mutations are performed.

Thus, the stability changes caused by 96 out of
the 106 mutations are reliably quantified by the
backbone torsion potentials. The ten remaining
mutations are therefore expected to have unusual

characteristics, which we analyse in the next
section.

Why do certain mutations depart from the
regression line?

Given that among the ten mutations that
are responsible for the low overall correlation
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coefficients, only nine coincide for the short and
middle range potentials, a total of 11 mutations
must be analysed. Among these 11 mutations,
seven involve proline: Ala32 : Pro in barnase,
Ser44 : Pro, Ala82 : Pro and Ala93 : Pro in T4
lysozyme; Pro44 : Ala and Pro52 : Ala in chy-
motrypsin inhibitor 2; and Gly14 : Pro in the ODG
peptide. Moreover, these are the only considered
mutations that involve proline.

The reason why the computed DDG values for
these Pro mutations are different from the
measured ones is easily understood, considering
that our approach rests on the assumption that the
backbone conformation remains unchanged upon
mutation. Indeed, the mutations Ala32 : Pro in
barnase, Ser44 : Pro in T4 lysozyme and
Gly14 : Pro in the ODG peptide introduce a Pro in
the middle of a helix or near its C terminus. This can
be expected to induce a kink in the helix (Piela et al.,
1987), thereby modifying the backbone confor-
mation. Our DDG computation indicates that these
mutations are destabilizing, but in fact they are even
more destabilizing than what is computed, probably
because the kink in the helix destroys other
interactions in the vicinity.

Similarly, the mutation Ala93 : Pro in T4
lysozyme introduces a proline at the first position in
the helix. Since Pro is quite unfavorable at that
position, but quite favorable as N-cap (Richardson
& Richardson, 1988)†, this mutation probably
shortens the helix by one residue, and thus also
modifies the backbone conformation. The same
situation occurs with the Ala82 : Pro mutation in
T4 lysozyme. Indeed, though DSSP (Kabsch &
Sander, 1983) assigns this residue as being in a turn
between two helices on the basis of the hydrogen
bonding pattern, it can be considered as the first
position of the helix on the basis of the
(f, c)-angles, with the N-terminal helix turn being
somewhat looser. According to our computation,
these mutations are destabilizing, though they are
stabilizing in reality. However, if the folding free
energy of the mutants were computed in their true
structure, in which the considered helix starts one
residue further on, they would probably be found
to be stabilizing‡. It must be noted that the
departure of the two mutations Ala82 : Pro and
Ala93 : Pro in T4 lysozyme from the regression
line could also be attributed, at least in part, to the
large experimental error in the measured DDG
values. These errors are indeed equal to 20.4 kcal/
mol, whereas they are 20.1 kcal/mol at the most
for the other considered mutations.

The last two mutations that involve proline, also

seem to modify the backbone structure. The
Pro52 : Ala mutation in chymotrypsin inhibitor 2
is introduced at the last position of a b-strand. This
residue has its backbone torsion angles in the P
domain, corresponding to an extended confor-
mation often adopted by proline, but seldom by
alanine. This explains why this mutation is
computed to be highly destabilizing. In reality, it is
only slightly destabilizing, probably because the
Ala52 in the mutant structure falls in another
torsion angle domain. Finally, the mutation
Pro44 : Ala in chymotrypsin inhibitor 2 occurs
at the second (L2) position of an aBAAb turn
(Wintjens et al., 1996). This mutation is very
destabilizing and is not computed as destabilizing
enough, especially by the middle range potentials.
This turn is a recurrent motif of which five examples
have been found in a representative protein dataset
(unpublished results). Strikingly, four out of these
five examples have Pro at position L2. This residue
thus seems necessary for stabilizing this motif, and
mutating it to Ala is expected to modify the type of
turn.

These examples show one of the limitations of our
method: as soon as the mutation causes a backbone
rearrangement that modifies the backbone torsion
angle domain of at least one residue, our approach
breaks down. It can be envisaged to model these
backbone rearrangements, but this is another issue.

The reason why the mutations Thr16 : Ser and
Thr16 : Gly in barnase depart from the over-all
correlation is different. Though Thr16 is partly
exposed to the solvent, with an accessibility of 58%,
it packs its methyl group against the aromatic
side-chain of Tyr17 to make a hydrophobic
interaction. This interaction is lost by mutating Thr
into Ser or Gly, which do not contain a methyl group
(Serrano et al., 1992b). These mutations are quite
destabilizing, as measured by DDG values of 1.68
and 1.66 kcal/mol, respectively. The hydrophobic
effect is thus very important in this case.
Considering that the backbone torsion potentials do
not account for this interaction, it is not surprising
that the computed DDG values are rather different
from the measured ones and predict the mutations
to be roughly neutral. Hence, notwithstanding the
rather large accessibility of Thr16, the mutations
Thr16 : Ser and Thr16 : Gly would fit better in
the group of buried mutations, which we have not
analysed here.

As for the mutation Asp8 : Ala in barnase,
whose destabilizing effect is underestimated es-
pecially by the short range potentials, it involves the
loss of electrostatic interactions, which are not
explicitly taken into account in the torsion
potentials. Note that other mutations, such as
Asp12 : Ala in barnase, have the same property
but are closer to the regression line and are not
rejected by our procedure. The reason for this
difference is that these mutations, and in particular
Asp12 : Ala, are measured at higher salt concen-
trations, which tend to mask the electrostatic
interactions, as will be discussed in the next section.

† Note that the helix assignment used in the present
work is that of DSSP (Kabsch & Sander, 1983), which
differs from the assignment of Richardson & Richardson
(1988), the latter containing one residue more at both helix
termini. The helix N-cap considered here thus corresponds
to the first position in the helix described by Richardson
& Richardson (1988).

‡ See Note added in proof.
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Finally, the departure of Thr105 : Val in barnase
from the over-all correlation is a priori less clear.
This mutation is highly destabilizing, as measured
by a DDG of 2.24 kcal/mol. According to Serrano
et al. (1992b), this destabilization is explained by
the breaking of a hydrogen bond between the
side-chain OH group of Thr105 and the Od1 of
Asp101. In the X-ray structure of barnase that we
use (1RNB), this hydrogen bond is not present, but
is replaced by a hydrogen bond with a water
molecule. Though the breaking of a hydrogen bond
is certainly destabilizing, it is surprising that it is so
highly destabilizing. Indeed, for hydrogen bonds
that have access to water, the usually observed
values are in the range 0.0 to 0.5 kcal/mol (Fersht
& Serrano, 1993). Another explanation of the large
destabilization of this mutation would be that it
affects the backbone structure. Thr105 is positioned
at the end of a turn between two b-strands.
Introducing a Val at that position might cause some
structural rearrangements of the type that have
been described above for the mutation Pro44 : Ala
in chymotrypsin inhibitor and have been observed
in turn regions of staphylococcal nuclease (Hynes
et al., 1994).

Influence of the experimental conditions on
the correlation

The DDG values of the 106 mutants studied here
are not all measured under the same experimental
conditions. In particular, the pH and the ionic
strength of the solvent vary, as well as the way in
which the proteins are denatured. As these
conditions only modify the measured but not the
computed DDG values, they can be suspected to
affect the correlation between these values.

Urea is used as denaturant for all the mutants of
barnase and the ODG peptide, guanidium chloride
is used for the chymotrypsin inhibitor 2 mutants
and the T4 lysozyme mutants are thermally
denatured. Inspection of Figure 1 shows that the
lysozyme mutants and the chymotrypsin inhibitor
mutants are not further away from the regression
line than the other mutants. On the basis of these
observations, it can be suggested that the type of
denaturation has no effect on the correlation, in
agreement with Kellis et al. (1989).

To investigate the influence of the ionic strength
of the solvent, we dispose of four mutations whose
DDG values are measured at different concen-
trations of NaCl and Na-Mes ([N-mor-
pholino]ethanesulphonic sodium): Asp12 : Ala,
Thr16 : Arg, Ala32 : Lys and Ser28 : Glu in
barnase. The DDG values of these four mutations
are situated on both sides of the regression line for
the lowest concentration of NaCl. When increasing
this concentration, the mutation Thr16 : Arg
remains approximately on the regression line, and
the three other mutations come closer to it (Fig-
ure 2(a)). These four mutations share a common
feature: they involve the substitution of a charged
by a non-charged residue, or the reverse. This

feature explains why better correlations are
achieved with higher salt concentrations. The latter
tend indeed to mask electrostatic interactions
(Serrano et al., 1990), which are not explicitly taken
into account in the torsion potentials. On the
contrary, increasing the Na-Mes concentration does
not draw all the mutations closer to the regression
line. This suggests that Na-Mes, which is used as
part of the buffer in the denaturation experiment,
has a different effect from that of NaCl.

We dispose of six mutations whose DDG values
are measured at different pH values. These
mutations are performed in T4 lysozyme, with pH
values between 2 and 5.4. The mutants of barnase
and chymotrypsin inhibitor 2 are all measured at
pH 6.3 and the mutants of the ODG peptide at
pH 7.5. As shown in Figure 2(b), raising the
pH decreases the measured DDG for the six lyso-
zyme mutants. For the mutations Gly113 : Ala
and Val131 : Ala, this amounts to moving the
measured DDG exactly onto the regression line,
whereas for the mutations Ala82 : Pro,
Ala93 : Pro, Val131 : Thr and Asn144 : Asp the
DDG values move further away. This suggests that
increasing the pH decreases the measured DDG
values, but does not have a systematic effect on the
correlation coefficient.

In fact, the two mutations Ala82 : Pro and
Ala93 : Pro in T4 lysozyme are rejected by our
sorting procedure, and therefore are not included in
the set of well-correlating mutations. However, as
seen in Figure 2(b), the measured DDG values of
these mutations are particularly sensitive to the pH.
For these mutations, considering the DDG values
measured at low pH would draw them close to the
regression line, and would prevent them being
rejected by the sorting procedure.

DDG correlation for the mutations in
staphylococcal nuclease and
chemotactic protein

A total of 44 surface-exposed mutations were
considered in these two proteins (Table 1B). They
were considered separately from the main group,
because some of them were suspected to affect the
backbone structure or the denatured state (Shortle
et al., 1990; Green et al., 1992; Muñoz et al., 1994),
which is in contradiction to the basic assumptions
of our approach.

To see where these mutations are positioned
relative to the 106 mutations analysed above and, in
particular, relative to the subset of 96 mutations
whose measured and computed DDG values
correlate well, all these mutations are put together
in the same graph (Figure 3). Quite surprisingly, we
see that most of the 44 additional mutations are
rather close to the regression line and that some of
them are even on it. In fact, with the short range
torsion : residue potential, a correlation coefficient
of 0.86 is reached for as many as 135 out of the 150
considered mutations. Thus, only five out of the 44
mutations are rejected, the mutations Gly86 : Ala,
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Figure 2. DDG values computed
with the middle range tor-
sion : residue potential as a func-
tion of the DDG values measured
under different experimental con-
ditions, for the 96 mutants that
remain after the sorting procedure.
See the legend to Figure 1 for
details. (a) DDG values measured at
different concentrations of NaCl, be-
tween 0 mM and 900 mM, taken
from Serrano et al. (1990) and Sali
et al. (1991). The four mutations for
which such data are available are
given by the name of the mutant
amino acid followed by its position
in the sequence. The different values
of DDG measured for these four
mutations are indicated by arrows,
starting at the lowest NaCl concen-
tration and ending at the highest.
(b) DDG values measured at differ-
ent pH values between 2 and 5.4,
which are available for the six
mutations for which the mutant
amino acid and the sequence pos-
ition are indicated (Dao-Pin et al.,
1990; Hu et al., 1992; Zhang et al.,
1995). Two proline residues ex-
cluded by the sorting procedure are
also shown. The different values of
DDG are indicated by arrows, start-
ing at the lowest pH and ending at
the highest.

Ala60 : Val, Thr82 : Gly and Gln80 : Gly in
staphylococcal nuclease and the mutation
Phe14 : Asn in chemotactic protein. Hence, the
fraction of rejected mutations here is of the same
order as in the main group.

A possible explanation for the departure of some
of these mutations from the regression line can be
found in the experimental errors in their measured

DDG values. These errors are indeed in the range
20.1 to 0.5 kcal/mol, whereas for most mutations
of the main group they are lower than 20.1 kcal/
mol. Taking the error bars into account for the
mutations that depart most from the regression line,
as depicted in Figure 3, shows that the majority of
the DDG values could come sufficiently close to the
regression line to be considered as well predicted.
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Figure 3. DDG values computed
from short range torsion : residue
potential as a function of the
measured DDG values, for the 150
mutations listed in Table 1. Out of
the 44 mutations in Table 1B, 36 are
introduced in staphylococcal nucle-
ase (Shortle et al., 1990, Green et al.,
1992) and are symbolized by × , and
eight are introduced in chemotactic
protein (Muñoz et al., 1994; Löpez-
Hernández & Serrano, 1995) and are
symbolized by t. The experimental
error bars of the measured DDG
values are depicted for the mu-
tations that depart most from the
regression line. The 106 mutations of
Table 1A are symbolized as in Fig-
ure 1. Only 96 out of these 106 mu-
tations are depicted in this Figure.
These are the 96 mutations that
remain after the sorting procedure
(see the text). The regression line is
calculated on these 96 mutations
and coincides with the regression
line of Figure 1(b).

These results suggest that of the set of 44
mutations in staphylococcal nuclease and chemotac-
tic protein, only some imply significant modifi-
cations of the backbone structure or of the
denatured state. The mutation that is furthest away
from the regression line, and that can by no means
be explained by the experimental errors, is the
mutation Phe14 : Asn in chemotactic protein. This
mutation is the only one that has been analysed in
detail experimentally, and for which it has been
shown that the major stabilization effect comes from
the relative destabilization of the unfolded state and
of the kinetic intermediate with respect to the
transition state (Muñoz et al., 1994). Clearly, the DDG
that we compute does not account for this relative
destabilization.

Correlation Between Measured and
Computed DDG Values Using
Residue–Residue Potentials

The Cm–Cm and Cb–Cb potentials, which describe
distance-dependent residue-residue interactions,
lead to lower correlation coefficients between
computed and measured DDG values than the
backbone torsion potentials, as seen in Figure 4.
Indeed, the correlations coefficients are of 0.2 and
0.3 for the ensemble of 106 mutants listed in
Table 1A, for the Cm–Cm and Cb–Cb potentials,
respectively. Using the automatic sorting procedure
described above, we find that the correlation
coefficients reach a value of 0.85 for a subset of 59
mutations for the Cm–Cm potential and of 62
mutations for the Cb–Cb potential. However, the
excluded mutations do not seem to have common
characteristics, and are moreover not the same for

the Cm–Cm and Cb–Cb potentials, suggesting that
these high correlations may not be physically
relevant.

The residue–residue potentials appear thus to be
less well suited than the backbone torsion potentials
for estimating the stability change upon mutation of
solvent-accessible residues. The reason for this can
be understood by considering the type of inter-
actions that both potentials describe. Indeed, though
the residue–residue potentials have a component
that represents local interactions along the chain
(see Methods), they are completely dominated by
hydrophobic interactions (Casari & Sippl, 1992;
Bryant & Lawrence, 1993; Kocher et al., 1994), which
are clearly not the dominant interactions at the
protein surface. At the surface, the local interactions
along the chain described by the backbone torsion
potentials appear to have a more important role. To
confirm these conclusions further, we compare the
DDG values with the transfer energies.

Relation Between DDG Values and
Transfer Energies

It has been pointed out that the transfer energies
of residues from water to organic solvent (Nozaki &
Tanford, 1971) correlate well with experimentally
measured DDG values obtained upon substitution
of an amino acid residue buried in the protein core
for all other amino acids (Yutani et al., 1987). This
result stresses the importance of the hydrophobic
effect in the protein core. At the protein surface,
however, the measured DDG values do not correlate
with transfer energies, and hydrophobicity has thus
only a marginal effect on protein stability. We find
indeed that, for the mutation of Ala32 in barnase,
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Figure 4. DDG values computed
with the Cm–Cm potential as a
function of the measured DDG
values, for the 106 mutants listed in
Table 1A. The measured DDG values
are taken from O’Neil & DeGrado
(1990), Serrano et al. (1990, 1992a,b),
Matoushek et al. (1989), Sali et al.
(1991), Horovitz et al. (1992), Dao-
Pin et al. (1990), Hu et al. (1992),
Blaber et al. (1993), Jackson & Fersht
(1994), Itzhaki et al. (1995) and
Zhang et al. (1995). The correlation
coefficient on the 106 mutants is
equal to 0.21 (P = 0.028241). When
applying our sorting procedure, the
following 47 mutations are rejected:
Thr16 : Ser, Thr16 : Gly, Asp8 :
Gly, Asp8 : Ala, Asp12 : Gly,
Asp8 : Ser, Thr105 : Val, Thr16 :
Ala, Ala32 : Pro, Gln31 : Gly,
Asp12 : Ser, Ala32 : Gly, Asp12
: Ala, Ile55 : Ala, Ser28 : Gly
and Ala32 : Arg in barnase; Ser44
: Ile, Ser44 : Pro, Ser44 : Gly,
Ser44 : Tyr, Ser44 : Trp, Ser44 :
Leu, Ser44 : Val, Ser44 : Phe,

Ser44 : His, Ala93 : Pro, Val131 : Gly, Val131 : Ile and Gly113 : Ala in T4 lysozyme; Gly14 : Pro, Gly14 : Trp,
Gly14 : Leu, Gly14 : Arg, Gly14 : Met, Gly14 : Ile, Gly14 : His, Gly14 : Tyr, Gly14 : Lys, Gly14 : Cys,
Gly14 : Val and Gly14 : Phe in the ODG peptide; Glu33 : Asp, Glu33 : Asn, Glu34 : Gln, Glu34 : Asp,
Lys37 : Gly, Pro44 : Ala in chymotrypsin inhibitor 2. The 59 remaining mutations are indicated with symbols in bold.
The correlation coefficient on these 59 mutations is equal to 0.85 (P = 0.000000). The corresponding regression line is
depicted. See the legend to Figure 1 for further details.

Ser44 in T4 lysozyme and Gly14 in the ODG peptide
to the ten amino acids for which transfer energies
are available (Nozaki & Tanford, 1971), the
correlation coefficients between measured DDG
values and transfer energies are 0.23, −0.28 and
−0.12, respectively.

On the other hand, the DDG values computed
with Cm–Cm potentials correlate rather well with the
transfer energies (Figure 5), with correlation
coefficients of 0.81, 0.67 and 0.75 for the mutation of
Ala32 in barnase, Ser44 in T4 lysozyme and Gly14
in the ODG peptide, respectively. This is in
agreement with the fact that these potentials are
dominated by hydrophobic interactions (Casari &
Sippl, 1992; Bryant & Lawrence, 1993; Kocher et al.,
1994). The Cb–Cb potentials yield lower coefficients
of 0.67, 0.49 and 0.26. On the contrary, the DDG
values computed with the four types of backbone
torsion potentials do not correlate at all with transfer
energies. They even display an anti-correlation, with
negative correlation coefficients between −0.1 and
−0.5, according to the torsion potential. Thus, these
potentials do not describe hydrophobic interactions
at all, but rather local interactions along the
sequence.

Conclusion

The main result of this study is that backbone
torsion potentials can be used to predict reliably the

stability change upon mutation of residues that are
solvent-accessible, as monitored by a correlation
coefficient of 0.86 for a total of 135 mutations. It
must be stressed that these mutations are intro-
duced at 45 different sites on six different proteins
and peptides. The computed DDG values can thus
be compared among mutations at different sites
and in different proteins. The only limitation of
our approach is that it is restricted to single-site
mutations that do not affect the backbone structure
of the wild-type; more precisely, for which the
wild-type and mutant structures have their residues
in the same torsion angle domains. This success is
especially striking as the potentials used are derived
from known protein structures and involve a lot of
approximations (Rooman & Wodak, 1995). This
results from the use of potentials derived from
backbone torsion angle propensities, which appear
to describe quite reliably the dominant interactions
at the protein surface. These potentials have also
been found to be adequate for identifying peptides
with preferred conformation in solution as well as
protein segments with well-defined conformations
in absence of tertiary interactions, which could
correspond to early folding intermediates (Rooman
et al., 1992; Rooman & Wodak, 1992). Note that the
folding free energies derived from these potentials
cannot be directly compared with the energies
obtained from semi-empirical force fields. They
correspond to a particular combination of entropic
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Figure 5. DDG values computed with the Cm–Cm

potential for the mutations at position 32 in barnase as a
function of the transfer free energy from water to organic
solvent (Nozaki & Tanford, 1971). The transfer energies
are available for 11 of the amino acids. As one of them
corresponds to the mutated residue (Ala), the correlation
is only for ten amino acids. The names of these ten amino
acids are indicated. The linear correlation coefficient is
equal to 0.81 (P = 0.004441).

the propensities of residues to be associated with certain
values of the backbone torsion angles (8, c, v). For that
purpose, the (8, c, v) map (Ramachandran & Sasisekha-
ran, 1968) is divided into seven torsion angle domains, six
for the trans conformation, denoted A, C, B, P, E and G,
and one for the cis conformation, denoted O (Rooman
et al., 1991, 1992). A corresponds to right-handed a-helical
structures, C to 310-helices, B and P to extended
structures, with B being characteristic of b-strands, G to
left-handed helices and E to left-handed extended
conformations.

Two types of backbone torsion potentials are con-
sidered. The residue : torsion potential (Rooman et al.,
1991, 1992; Kocher et al., 1994) takes into account the
probability that a residue ai at position i along the
sequence, and pairs of residues (ai , aj ) at positions i and
j along the sequence, are associated with a torsion angle
domain tk at position k. Equation (2) becomes in this case:

DGS(C) = −kT s
N

i,j,k = 1

1
zk

log
P(tk =ai , aj )

P(tk )
(3)

where N is the number of residues in the sequence S. We
consider a short range backbone potential, which
comprises contributions from residues in the interval
k − 1EiEjEk + 1 along the sequence, and a middle range
potential, with k − 8EiEjEk + 8. The normalization
factor zk ensures that the contribution of each residue in
the window [k − 1, k + 1] or [k − 8, k + 8] is counted once.
It is equal to the window width, except near chain ends.

The torsion : residue potential (Kocher et al., 1994) is
in some sense the converse of the above potential, and
takes into account correlations between torsion angle
domains rather than between amino acids. It considers
the probability that the torsion angle domain ti at position
i along the sequence, and pairs of domains (ti , tj ) at
positions i and j along the sequence, are associated with
an amino acid ak at position k. Equation (2) becomes in
this case:

DGS(C) = −kT s
N

i,j,k = 1

1
zk

log
P(ti , tj =ak )

P(ti , tj )
(4)

where N is the number of residues in the sequence S. The
short range and middle range potentials are defined as
above.

Residue–residue potentials

Residue–residue interaction potentials describe both
local interactions along the chain and interactions
between residues that are far apart along the sequence
but close in space. They are computed from propensities
of two residues ai and aj , at positions i and j along the
sequence, to be separated by a spatial distance dij (Kocher
et al., 1994). Consecutive residues along the chain are not
considered. Probabilities of residues separated by one to
seven positions along the sequence are computed
separately, whereas probabilities of residues separated by
eight positions and more are all merged. This distinction
yields a potential that represents both local and non-local
interactions along the chain. The folding energy defined
by these potentials is, according to equation (2):

DGS(C) = −kT s
N

i,j = 1

log
P=i−j=(dij =ai , aj )

P=i−j=(dij )
(5)

with i + 1 < j and with the probabilities P=i−j= being
independent of =i − j = for =i − j = > 8. The inter-residue

contributions and several energy terms, including
van der Waals and electrostatic terms, which can be
seen as being at the basis of the formation of local
(secondary) structure.

Furthermore, the results of the present analysis
justify a posteriori the formalism that is used for
deriving potentials from structure data, given in
equation (2). Indeed, our whole analysis rests on the
assumptions that these potentials yield folding free
energies and that the considered denatured-like
state is a good approximation of the true. Only
when the denatured states of the wild-type and the
mutant are significantly different, as it is the case for
one of the chemotactic protein mutations, does our
approximation seem to break down. However,
though the present results clearly support the
correctness of the formalism used, they do not
rigorously prove it, as we have no idea of the
sensitivity of the results on the chosen formalism.
To examine this issue further, additional tests must
be performed. For that purpose, other definitions of
denatured-like states, in particular those proposed
by Rooman & Wodak (1995), will be tested for
evaluating changes in folding free energies and the
resulting effect on the correlation with measured
stability changes will be examined. The analysis
will also be extended to the mutations of residues
that are buried in the protein core.

Methods

Backbone torsion potentials

Backbone torsion potentials consider only interactions
between neighboring residues along the chain (Rooman
et al., 1991, 1992; Kocher et al., 1994). They are based on
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distances dij are computed either between the Cb-atoms or
between the average centroı̈ds Cm. These centroı̈ds are
specific for each amino acid type and are defined as
the average of the atomic co-ordinate centers of all
conformations of side-chains of the same type observed
in the protein dataset (Kocher et al., 1994). These two
types of residue–residue potentials are referred to as
Cb–Cb and Cm–Cm potentials, respectively.

Correction for sparse data

When sequence elements are not represented often
enough in the protein dataset, the computed frequencies
may not be accurate. To correct for this, the conditional
probabilities P(ci =sj ) in Equations (2) to (5) are replaced by
linear combinations of P(ci =sj ) and of the sequence
non-specific probabilities P(ci ) (Sippl, 1990; Rooman et al.,
1991, 1992; Kocher et al., 1994):

P(ci =sj ) :
1

s + ms
j

[sP(ci ) + ms
j P(ci =sj )] (6)

where ms
i is the number of occurrences of the sequence

element si and s is a parameter. This expression ensures
that the sequence non-specific probability dominates for
unusual sequence patterns, and tends towards zero for
frequent ones. Two values of s were tested: s = 6 and
s = 50. Though the DG values differ significantly
according to which of the values is chosen, the
correlations between the computed and measured
differences in DG upon mutation are exactly the same. All
the results presented in this paper are obtained with
s = 50.

Protein structure data

The mean force potentials are derived from a set of 141
well resolved (E2.5 Å) and refined proteins, with less
than 20% sequence identity or no structural homology
(Lemer, C., Rooman, M. J. & Wodak, S. J., unpublished
results). Information on the proteins is extracted from the
protein database SESAM (Huysmans et al., 1991), which
contains sequence and structure information on proteins
from the Brookhaven databank (Bernstein et al., 1977).

Computing folding free energies for wild-type and
mutant proteins

To estimate the stability of wild-type versus
mutant proteins, their respective folding free energies,
DGwild-type(C) and DGmutant(C), are computed using
equations (2) to (5), where C corresponds to the native
structure of the wild-type. It is thus assumed that the
wild-type and mutant proteins have the same backbone
structure. The difference in folding free energy, DDG,
between mutant and wild-type, is estimated using the
following sign convention:

DDG = DGmutant(C) − DGwild-type(C) (7)

The folding free energy difference is thus negative when
the mutant protein is more stable than the wild-type
protein.

To avoid biasing the potentials towards the native
structure, the jack-knife procedure is applied. It consists
of excluding from the dataset used to compile the
statistics the proteins that display sequence homology
with the protein under study. The homology criterion
used for this purpose is the same as the one used for
defining the protein dataset (see above). It turned out that
the DDG values computed with the potentials considered

in this paper are insensitive to the jack-knife procedure,
up to the second decimal, when a value of s = 50 is used.
This is due to the fact that, for all considered mutations,
the residue pairs comprising the mutated residue are
sufficiently represented in our dataset to yield reliable
statistics.

Correlating measured and computed DDG values

The computed DDG values are compared with the
experimentally determined values, and the correlation
coefficient is computed, assuming a linear regression. To
estimate the significance of this correlation, the prob-
ability, referred to as P, that the same correlation would
arise by random sampling in an uncorrelated population
is computed (Fisher, 1958).
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Note added in proof: We verified that this is the case on the structure of the Ala82 : Pro mutant (1L24).


