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For 238 mutations of residues totally or partially buried in the protein
core, we estimate the folding free energy changes upon mutation using
database-derived potentials and correlate them with the experimentally
measured ones. Several potentials are tested, representing different kinds
of interactions. Local interactions along the chain are described by torsion
potentials, based on propensities of amino acids to be associated with
backbone torsion angle domains. Non-local interactions along the
sequence are represented by distance potentials, derived from propensi-
ties of amino acid pairs or triplets to be at a given spatial distance. We
find that for the set of totally buried residues, the best performing poten-
tial is a combination of a distance potential and a torsion potential
weighted by a factor of 0.4; it yields a correlation coefficient between
computed and measured changes in folding free energy of 0.80. For mu-
tations of partially buried residues, the best potential is a combination of
a torsion potential and a distance potential weighted by a factor of 0.7,
and for the previously analysed mutations of solvent accessible residues,
it is a torsion potential taken individually; the respective correlation coef-
ficients reach 0.82 and 0.87. These results show that distance potentials,
dominated by hydrophobic interactions, represent best the main inter-
actions stabilizing the protein core, whereas torsion potentials, describing
local interactions along the chain, represent best the interactions at the
protein surface. The prediction accuracy reached by the distance poten-
tials is, however, lower than that of the torsion potentials. A possible
reason for this is that distance potentials would not describe correctly the
effect on protein stability due to cavity formation upon mutating a large
into a small amino acid. Last but not least, our results indicate that
although local interactions, responsible for secondary structure formation,
do not dominate in the protein core, they are not negligible for all that.
They have a significant weight in the delicate balance between all the in-
teractions that ensure protein stability.
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Introduction

Serrano, 1996). The main questions concern the
relative importance of hydrophobic versus more
specific interactions, and of local versus non-local

For more than 20 years, experimenters and the-
orists have tried to understand what kind of inter-
actions govern the first stages of protein folding
and lead to the formation of folding intermediates,
and what are the forces that maintain protein stab-
ility (Go & Taketomi, 1978; Govindarajan &
Goldstein, 1995, Unger & Moult, 1996;
Shakhnovich ef al., 1996; Fersht, 1995; Mufoz &
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interactions along the sequence. Site-directed muta-
genesis appears to be a powerful tool to study in-
teractions both in native proteins and in folding
intermediates (Matouschek et al.,, 1989; Serrano
et al., 1992a; Fersht et al., 1992; Itzhaki et al., 1995).
It is indeed possible to detect stability changes
caused by mutation, in the folded and transition
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states, by measuring and comparing the changes in
unfolding and activation free energies. Doing so,
one can get information about the structures that
are already formed in the transition state and, as a
consequence, about the interactions that drive the
folding process.

Whereas now there exists a lot of experimental
data on folding free energy changes upon mutation
obtained by site-directed mutagenesis experiments
(see references in legend to Table 1), only a few
theoretical methods have been developed to pre-
dict such stability changes. Some of these methods
are based on detailed atomic models coupled to
semi-empirical force fields (Basch et al., 1987; Tidor
& Karplus, 1991) and others on rougher descrip-
tions of protein structure or on simplified energetic
criteria (Lee & Levitt, 1991; Lee, 1994; Koehl &
Delarue, 1994; Muiioz & Serrano, 1994; Miyazawa
& Jernigan, 1994; Sippl, 1995). Their performances
are, in general, evaluated by comparing the calcu-
lated folding free energies to the measured ones
and are reasonably good. However, it must be
stressed that the performance tests are restricted to
selected mutations in a single protein, usually even
at a single site. In most studies, the mutated resi-
dues are buried in the protein core; since hydro-
phobic interactions dominate in these regions, the
energetic criteria obviously involve hydrophobi-
city. In the few studies analysing mutations of sol-
vent accessible residues, the stability changes are
correlated with statistical propensities of single
amino acids to be in a-helices or B-strands (Mufoz
& Serrano, 1994), or with distance-dependent resi-
due-residue potentials (Sippl, 1995).

A previous paper of ours (Gilis & Rooman, 1996)
was also devoted to the prediction of stability
changes upon mutation of solvent accessible resi-
dues, with the notable difference that we merged
mutations at different sites and in different pro-
teins. We showed that database-derived potentials
based on backbone torsion angle propensities can
predict reliably the stability changes upon mu-
tation of residues that have a solvent accessibility
larger than 50%. These potentials describe local in-
teractions along the sequence; they do not take into
account the spatial environment of the residues,
but they do consider their environment along the
sequence. For 96 out of the 106 considered mu-
tations, introduced in four different proteins and
peptides, a quite good correlation between com-
puted and measured changes in folding free ener-
gies has been obtained, as measured by a
correlation coefficient of 0.87. The ten excluded
mutations seemed to involve modifications of the
native or denatured backbone structures (we were
able to verify this for one of the mutants whose
structure has been determined), thereby contradict-
ing the basic assumptions of our approach, or to
involve strong hydrophobic interactions, which are
atypical for surface residues. These results led to
the conclusion that local interactions along the
sequence dominate at the surface of the protein.

This analysis is extended and completed here,
with the aim of determining the relative weight of
different types of interactions in each protein
region, and in particular of local versus non-local
interactions along the chain. For that purpose,
single-site mutations involving residues with a sol-
vent accessibility of less than 50% are collected.
The changes in folding free energy are estimated
using several database-derived potentials, describ-
ing different types of interactions. These potentials
are combined with relative weighting coefficients.
By determining the values of these coefficients that
yield the best correlations between experimentally
measured and computed changes in folding free
energy, information is obtained about the inter-
actions that ensure protein stability.

Ensemble of Mutations Considered

A total of 238 mutants is considered (Table 1),
whose stability relative to the wild-type has been
measured experimentally. They correspond to mu-
tations of residues buried in the protein core,
exposing at most 50% of their accessible surface to
the solvent as calculated by SurVol (Alard, 1991)
They involve only single amino acid substitutions
that are not supposed (by their authors) to perturb
the structure of the native and denatured states.
The reason for the latter restriction is that the
mutants are given the same backbone atomic coor-
dinates as the wild-type (see equation (5)). So, we
do not take into account structural rearrangements
upon mutation.

The 238 mutations are introduced at 107 differ-
ent sites in seven proteins: human, chicken, and T4
lysozyme, barnase, tryptophan synthase, chymo-
trypsin inhibitor 2 and apomyoglobin. They are
introduced in all types of secondary structures. In
121 of them, the mutated residue has a solvent
accessibility comprised between 0 and 20%
(Table 1A), in 69 the accessibility is between 20
and 40% (Table 1B), and in 48 it is between 40 and
50% (Table 1C).

Mutations of Residues with a Solvent
Accessibility of Less than 20%

The change in folding free energy AAG between
wild-type and mutant proteins is estimated using
database-derived potentials, either alone or in com-
bination, for the 121 mutants of completely buried
residues listed in Table 1A. The different kinds of
potentials are described in Methods. They involve
on the one hand distance potentials, in particular
the C"-C" potential, based on propensities of
amino acid pairs to be separated by a certain
spatial distance measured between average side-
chain centroids C*, and the C*-Cj(,; ranee potential,
where only residue pairs separated by more
than 15 residues along the sequence are taken
into account in the statistics. On the other

hand, the torsion potentials torsiong,grange and
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Table 1. Set of 238 considered mutations

Sequence Mutated Mutant (b, V,0) Secondary Solvent
Protein? position residues residues Domain® structure® accessibility?

A. Set of 121 mutations of totally buried residues, with solvent accessibility of less than 20%*

Barnase 5 Asn Ala C C 13.8
(IRNB) 7 Phe Leu A H 10.2
10 Val Thr,Ala A H 0.0
13 Tyr Ala A H 20.0
14 Leu Ala A H 0.0
24 Tyr Phe B E 9.0
25 Ile Val,Ala B E 8.0
41 Asn Asp C C 14.5
51 Ile Ala,Val P E 1.1
54 Asp Ala,Asn P E 20.0
58 Asn Ala,Asp G C 45
76 Ile Val,Ala B C 0.0
78 Tyr Phe B C 3.6
88 Ile Val,Ala B E 0.0
89 Leu Val B E 0.0
91 Ser Ala B E 1.3
96 Ile Val,Ala B E 0.0
99 Thr Val B E 0.5
103 Tyr Phe G S 13.9
T4 3 Ile Trp,Tyr,Phe, A H 12.2
lysozyme Leu,Val,Met,
(ILYD) Cys,Ala,Thr
Ser,Gly,Glu,
Asp
30 Gly Ala,Phe G T 19.8
77 Gly Ala A H 14.9
98 Ala Val A H 0.0
117 Ser Val,Ile,Phe A H 0.0
133 Leu Ala A H 0.5
149 Val Cys A H 0.0
152 Thr Ser A H 0.0
Human 23 Ile Val B B 7.0
lysozyme
(1LZ1)
56 Ile Val C T 0.4
59 Tle Val P E 0.9
89 Ile Val C C 2.8
106 Ile Val C G 24
Trp 49 Glu Gly,Ala,Val, B E 1.1
synthase Ile,Leu,Pro,
(TWSY) Tyr,Phe, Trp,
His,Lys,Asn,
GlIn,Asp,Cys,
Met, Thr,Ser
Chymotrypsin 27 Leu Ala C G 0.6
inhibitor 2 31 Ser Gly,Ala P B 16.1
(2CI12) 35 Ala Gly A H 0.0
39 Tle Val,Leu A H 0.0
43 Lys Ala,Gly B C 2.7
51 Leu Ala,lIle,Val B E 19.6
66 Val Ala B E 0.0
67 Arg Ala P E 159
68 Leu Ala B E 0.0
69 Phe Leu,Val,Ala B E 15.2
70 Val Ala B E 7.6
76 Ile Val,Ala P B 1.5
80 Pro Ala P C 0.9
82 Val Thr,Ala,Gly P E 129
Chicken 3 Phe Tyr P C 7.7
lysozyme 15 His Leu C T 20.0
(4LYZ) 31 Ala Val,Ile,Leu A H 0.0
40 Thr Ser,Ile C S 0.0
55 Ile Leu,Val,Phe A T 1.0
Ala, Thr
91 Ser Thr,Val,Ala, A H 0.1

Asp,Tyr
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Table 1—Continued

Sequence Mutated Mutant (D, ) Secondary Solvent
Protein® position residues residues Domain® structure® accessibility®
Apomyoglobin 7 Trp Phe A H 4.8
(4MBN) 14 Trp Phe A H 0.7
68 Val Thr A H 1.5
123 Phe Lys B S 1.1
130 Ala Lys,Leu A H 1.7
131 Met Ala A H 0.0
B. Set of 69 mutations of residues with a solvent accessibility between 20 and 40%*
Barnase 4 Ile Val,Ala B C 28.1
(1RNB) 26 Thr Ser,Val,Ala, P C 24.2
Gly,Asn,Gln,
Glu,Asp
27 Lys Gly A H 295
34 Gly Ala,Ser,Asn, G T 36.1
Asp,His,Lys,
Arg, Thr
45 Val Ala, Thr C H 28.1
62 Lys Arg C S 31.8
84 Asn Ala B C 25.1
109 Ile Val,Ala A C 32.1
110 Arg Ala A C 30.5
T4 11 Glu Phe Met,Ala A H 225
lysozyme
(ILYD) 38 Ser Asp B C 36.2
41 Ala Val A H 279
132 Asn Met,Phe,Ile A H 28.2
157 Thr Val,Asn,Ser, B S 30.8
Asp,Gly,Cys,
Leu,Arg,Ala,
Glu,His,Phe,
Ile
Chymotrypsin 21 Lys Ala,Met B C 34.7
inhibitor 2 22 Thr Val,Ala,Gly C C 35.6
(2C12) 30 Lys Ala P S 34.5
38 Val Ala A H 31.6
48 Ile Val,Ala P E 212
55 Thr Ser,Val,Ala P C 374
57 Val Ala B C 36.9
64 Asp Ala C T 20.7
71 Asp Ala B C 38.9
75 Asn Asp,Ala B B 25.6
79 Val Thr,Ala,Gly P C 24.6
Chicken 34 Phe Tyr C H 33.0
lysozyme
(4LYZ)
Apomyoglobin 36 His GIn B C 23.2
(4MBN)
C. Set of 48 mutations of residues with a solvent accessibility between 40 and 50%8
Barnase 6 Thr Ser,Ala,Gly B S 48.6
(IRNB) Asn,Asp,Gln,
Glu,Pro
17 Tyr Ala,Gly,Ser C H 49.0
18 His GIn,Gly,Ala, G S 46.5
Ser,Asn,Asp,
Lys,Arg
29 Glu Gly,Ala,Ser A H 48.4
33 Leu GIn C T 48.7
36 Val Ala, Thr B C 41.6
77 Asn Ala G S 415
92 Ser Ala A T 43.2
T4 116 Asn Asp A H 48.1
lysozyme
(1LYD) 128 Glu Ala A H 43.9
Chymotrypsin 25 Pro Ala A G 47.9
inhibitor 2 26 Glu Ala,GIn C G 459
(2C12) 36 Lys Ala,Gly A H 41.6
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Table 1—Continued

Sequence Mutated Mutant (D, ) Secondary Solvent
Protein® position residues residues Domain® structure® accessibility®
40 Leu Ala,Gly C H 415
42 Asp Ala A H 418
49 Ile Val,Ala,Gly B E 40.0
Thr
53 Val Thr,Ala,Gly P T 48.6
60 Glu Ala B C 49.7
62 Arg Ala B C 44.4
77 Ala Gly C C 40.7
Chicken 68 Arg Lys C S 44.8
lysozyme
(4LYZ)

2 The codes in parentheses correspond to the PDB codes (Bernstein et al., 1977) of the proteins.

® The (¢,y,0) domains of the mutated residues in the wild-type structure, using definitions of Rooman et al. (1991). A corresponds
to right-handed o-helical conformations, C to 3,5-helix, G to left-handed helix, B and P to extended conformations, with B compris-
ing more particularly B-strands and P poly-proline type conformations.

¢ Secondary structure of the mutated residue calculated by DSSP (Kabsch & Sander, 1983). H means o-helix; C, random coil; E,

B-strand; B, isolated B; S, bend and T, turn.

4 Solvent accessibility (in %), defined as the solvent accessible surface area of the residue in its parent protein, computed by Sur-
Vol (Alard, 1991), divided by the solvent accessible surface area of the residue in an extended tripeptide Gly-X-Gly conformation

(Rose et al., 1985).

¢ The measured AAGs are taken from Serrano et al. (1992a), Matouschek et al. (1989), Kellis et al. (1988) Matsumura et al. (1988),
Eriksson et al. (1992), Shoichet et al. (1995), Matthews et al. (1987, 1993), Daopin et al. (1991), Jackson et al. (1993), Itzhaki et al. (1995),
Otzen & Fersht (1995), Takano ef al. (1995), Yutani et al. (1987), Shih ef al. (1995), Shih & Kirsch (1995) and Kay & Baldwin (1996).

f The measured AAGs are taken from Serrano et al. (1992ab), Serrano & Fersht (1989), Zhang et al. (1995), Daopin et al. (1990),
Alber et al. (1987), Shoichet et al. (1995), Otzen & Fersht (1995), Itzhaki ef al. (1995), Jackson et al. (1993), Shih & Kirsch (1995) and

Kay & Baldwin (1996).

& The measured AAGs are taken from Serrano et al. (1992a,b), Matouschek et al. (1989), Serrano & Fersht (1989), Jackson & Fersht
(1994), Itzhaki et al. (1995), Otzen & Fersht (1995), Zhang et al. (1992, 1995) and Shih & Kirsch (1995).

torsion,qgierange are based on propensities of
amino acids to be associated with backbone torsion
angle domains.

The correlation coefficient » between experimen-
tal AAGs and AAGs computed using the distance
potential C*-C* is equal to 0.76, and is yet higher
(r=0.78) for the C'—Cf,; range potential, where
purely non-local interactions along the sequence
are taken into account. This increase is small but
significant. Indeed, when removing 20 randomly
chosen mutations from the total set of 121 mu-
tations and computing the correlation coefficient
on the 101 remaining mutations, higher values are
obtained with the C'~Cli,; range than with the CV'—
C* potential in as much as 99.5% of the 1000 trials.
The good performance of C*-C" potentials on
mutations of buried residues is not surprising,
since these potentials are dominated by hydro-
phobic interactions (Casari & Sippl, 1992; Bryant
& Lawrence, 1993; Kocher et al., 1994), known to
be the dominant forces in the protein core. The
CH—Cfng-range POtential, where the local interactions
are completely cancelled, performs even better. In
accordance with this result, the correlation coeffi-
cients obtained with the torsiong,or.range and tor-
SI0Niqdle-range  POtentials, which describe purely
local interactions along the sequence, are much
lower (r equal to 0.42 and 0.46).

Additional information about the relative im-
portance of the various interactions in the protein
core is obtained by combining several potential
terms with relative weighting coefficients (see

Methods). The highest correlation coefficient on the
set of 121 mutations is obtained with the sum of
the C*~Cf, g range POtential weighted by a factor of
1 and the torsion,gqgierange POtentials weighted by
a factor of 0.4; the correlation coefficient is then
equal to 0.80 (Figure 1). Thus, the addition of a
small contribution from the torsion potentials
increases the correlation coefficient from 0.78 to
0.80. To verify the statistical significance of this
small increase, we exclude again 20 randomly
chosen mutations from the original set, and com-
pute both the optimal weighting factors and the
correlation coefficient on the remaining mutations;
this procedure is repeated 1000 times. It is found
that the correlation coefficients are always higher
with the combined potentials than with the
CH—Clpgrange Potential alone, in each of the 1000
trials. These coefficients are equal, on the average,
to those computed from the full set: 0.78 for the
C'—Cfing-range Potential taken individually and 0.80
for the optimal combination of the C'—Cli,; range
and torsion,qgierange POtentials, with standard de-
viations of less than 0.02. Note that the optimal
weighting factors are not the same in the 1000
trials, but on the average, they are equal to those
obtained from the full set: keeping the weighting
factor of the C*~Cj(,; range potential equal to 1, the
average factor of the torsion,qgie-range pPOtential is
equal to 0.4, with a standard deviation of 0.1.

To remove every residual doubt about the above
results, an additional test is performed, showing
that the 0.02 increase in the correlation coefficient
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Figure 1. AAGs computed with the sum of the
CH—Clong-range Potential and the torsioniggierange POtEN-
tial weighted by a factor of 0.4, as a function of the
measured AAGs for the 121 mutations of totally buried
residues listed in Table 1A. The AAGs are in kcal/mol.
The mutations in barnase, T4 lysozyme, human lyso-
zyme, Trp synthase, chymotrypsin inhibitor 2, chicken
lysozyme and apomyoglobin are indicated with the
symbols +, ¢, O, * A, x and Y/, respectively.
Mutations, for which the van der Waals radii of the
mutated and mutant amino .'oacids, defined by Levitt
(1976), differ by less than 0.1 A or by more than 0.5 A
are represented in red and blue, respectively. The line
corresponds to the regression line on the 121 mutations;
its equation is : ¥y =0.59 x — 0.85. The linear correlation
coefficient between measured and computed AAGs is
equal to 0.80.

is not an artifact due to the optimization of the
weighting factors. This test consists of shuffling the
AAGs computed with the torsion ,qqie-range POtEN-
tials for the 121 mutations, and adding these
values to the AAGs computed with the C'-Cl;,,.
range potential, using all possible values of the
weighting coefficients. It turns out that a 0.02
improvement of the correlation is observed, for
some values of the weighting factors, in only one
of the 1000 trials. Thus, these different tests all lead
to the same conclusion: though the increase of the
correlation coefficient upon adding a contribution
from the torsion potential is small, it is neverthe-
less statistically significant.

This result means that, though the hydrophobic
interactions dominate for fully buried residues, the
local interactions along the sequence are not negli-
gible. This seems a priori to contradict the better
performance of the C'-Cf,, nee potential com-
pared to the C+*-CH potentiaf. However, the local
interactions described by the C-CH potential are
based on propensities of residue pairs separated by
a given distance along the sequence to be separ-
ated by a certain spatial distance. These are not

equivalent to the local interactions described by
the torsion potentials, which are based on propen-
sities of residues to adopt certain main-chain tor-
sion angles and are more closely related to
secondary structure propensities. Thus, these see-
mingly contradictory results can be reconciled by
stating that the local interactions along the chain,
responsible for secondary structure formation, are
non-negligible in the protein core.

To confirm the non-negligible effect of local in-
teractions along the chain even for the most buried
residues, we repeat the above analysis for the sub-
set of mutations of residues with a solvent accessi-
bility in the 0 to 5% range. It could indeed be
suspected that this effect would be due to the mu-
tations of residues with almost 20% solvent accessi-
bility. This is not the case. We find indeed that the
potential leading to the best correlation in the 0 to
5% subset is the combination of the C"—Cli,; range
potential with the torsion,;ygierance pOtential
weighted by a factor of 0.5. The correlation coeffi-
cient is even higher than that of the 0 to 20% set: it
is equal to 0.83. The change in weighting coeffi-
cient from 0.4 to 0.5 is not significant, since its stan-
dard deviation is equal to 0.1, as mentioned above.
So, the contribution of local interactions along the
chain is really non-negligible in the protein core.

Mutations of Residues with a Solvent
Accessibility Between 20 and 40%

For the 69 mutations of partially buried residues
with solvent accessibility comprised between 20
and 40%, listed in TablelB, neither torsion poten-
tials nor distance potentials taken individually
yield good correlations between computed and ex-
perimental AAGs. The correlation coefficient is
indeed equal to 0.57 using the best performing tor-
sion potential, the torsiong,o.range POtential, and to
0.58 using the best performing distance potential,
the C*—C* potential. This is not surprising, consid-
ering that fully buried residues are dominated by
hydrophobic interactions, as shown in the previous
section, and that solvent accessible residues are, as
for them, dominated by local interactions along the
sequence, as shown by Gilis & Rooman (1996). It
seems thus logical that both types of interactions
are important for partially buried residues.

As expected, combinations of torsion and dis-
tance potentials perform much better than either
potential taken individually. The highest cor-
relation coefficient is obtained with the combi-
nation of the torsiong,.nge potential weighted
by a factor of 1 and the C"-C" potential weighted
by a factor of 0.7 (Figure 2). What emerges from
this result is that the importance of local inter-
actions along the chain gains ground when moving
from the protein core towards the surface. Indeed,
the weight of the torsion potential relative to
the distance potential increases and moreover, the
C*-C" potential, which contains a contribution
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Figure 2. AAGs computed with the sum of the
torsiongorerange  pOtential and the C"-C" potential
weighted by a factor of 0.7, as a function of the
measured AAGs for the 69 mutations of partially buried
residues with a solvent accessibility between 20 and
40%, listed in Table 1B. The AAGs are in kcal/mol. The
mutations in barnase, T4 lysozyme, chymotrypsin in-
hibitor 2, chicken lysozyme and apomyoglobin are indi-
cated with the symbols +, ¢, A, x and V/, respectively.
The line corresponds to the regression line obtained
with four out of the 69 mutations excluded by our sort-
ing procedure; its equation is: y =0.72 x — 0.15. The
excluded mutations are indicated by the name of the
mutated amino acid, followed by their position in the
sequence, followed by the name of the mutant amino
acid. The linear correlation coefficient between measured
and computed AAGs is equal to 0.71 on all 69 mu-
tations, and to 0.82 when the four mutations are
rejected.

from local interactions, starts to perform better
than the C*~Cf, ., 1ange potential.

However, the correlation coefficient obtained
with the combination of the torsiong, range POten-
tial and the CH-CH" potential is not very high
(r=0.71), though higher than that of the individ-
ual potentials. Looking at Figure 2, we observe
that the low correlation coefficient is due to a few
mutations that are far from the main group.
According to our automatic sorting procedure (see
Methods), the four mutations that must be
excluded to get better correlations are Thr26 — Glu
in barnase, Ala4l — Val in T4 lysozyme and
Asp71 — Ala and Val79 — Gly in chymotrypsin
inhibitor 2. The correlation coefficient on the 65
remaining mutations is equal to 0.82.

Several reasons can be invoked to explain why
these four mutations are far from the regression
line: the structures of the native or denatured states
may be modified upon mutation, thereby contra-
dicting the basic hypothesis of our approach, or
the relevant interactions are not well described by

the considered combination of torsion and C*-C*
potentials. It seems that the second explanation
holds in the case of the four excluded mutations.
Indeed, as shown in Figure 3(a), the mutation
Thr26 — Glu in barnase fits well in the group of 96
mutations of solvent accessible residues considered
by Gilis & Rooman (1996), with AAGs computed
by the torsiong,grrange potential. The stability
change caused by this mutation seems thus to be
essentially governed by local interactions along the
sequence. The three other excluded mutations,
Ala4l — Val in T4 lysozyme, Asp71 — Ala and
Val79 — Gly in chymotrypsin inhibitor 2, fit
well in the group of mutations of residues that
have a solvent accessibility of less than 20%, with
AAGs computed with the combination of the
C'—Cling-range potential and the torsionggie-range
potential weighted by a factor of 0.4, as seen in
Figure 3(c). For these mutations, hydrophobic
interactions seem preponderant.

There is thus a clear dependence of the best per-
forming potentials on the solvent accessibility of
the mutated residues. This dependence is, how-
ever, not absolute: the importance of local versus
non-local interactions along the chain is not always
identical for residues with the same solvent accessi-
bility, but some fluctuations in the balance between
these interactions may appear. The optimal combi-
nation of potential terms selected for each set of
mutations, characterized by a certain range of sol-
vent accessibility, corresponds to the best compro-
mise for all mutations in the set.

Mutations of Residues with Solvent
Accessibility Between 40 and 50%

The 48 mutations of residues with solvent acces-
sibility in this range, listed in Table 1C, do not
seem to present common characteristics, contrary
to all other mutations. Indeed, none of the tested
potentials, alone or in combination, yields reason-
ably high correlation coefficients: r is at most equal
to 0.55. This result means either that the inter-
actions causing the stability changes are not the
same for these 48 mutations, or that some mu-
tations perturb the structure of the backbone or de-
natured state. To determine if the first explanation
is the right one, we investigate if subgroups of the
48 mutations fit in the three other considered sets
of mutants, i.e. the sets of mutations of totally bur-
ied, partially buried and solvent accessible resi-
dues, with solvent accessibilities of less than 20%,
between 20% and 40% and larger than 50%, re-
spectively. This is done as follows. We start by
identifying which of the 48 mutations fits best in
the set of mutations of solvent accessible residues,
that is, which mutation leads to the largest increase
in the correlation coefficient. This mutation is then
added to the set and the procedure is repeated
until none of the remaining mutations increases
the correlation coefficient (or, more precisely, does
not decrease it by more than 0.02). Then, using the
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Figure 3. Computed AAGs as a function of measured AAGs, for subsets of mutations whose stability changes are
mainly due to local interactions along the chain (a), non-local interactions (c) or both (b). Mutations of residues that
have a solvent accessibility larger than 50%, between 40 and 50%, between 20 and 40% and smaller than 20% are
indicated by the symbols 4, ¢, o and +, respectively. The AAGs are in kcal/mol. (a) AAGs computed with the tor-
Si0Ngorerange POteNtial, as a function of the measured AAGs, for the 120 mutations that are dominated by local inter-
actions along the sequence. Among these 120 mutations, 96 have a solvent accessibility of at least 50% and are listed
by Gilis & Rooman (1996); for 23 the accessibility is in the range 40 to 50% and for one, it is in the range 20 to 40%.
The linear correlation coefficient between measured and computed AAGs is 0.89. The line corresponds to the re-
gression line, whose equation is y = 0.79x — 0.23. (b) AAGs computed with the sum of the torsiong,erange potential
and the C"-C* potential weighted by a factor of 0.7, as a function of the measured AAGs, for the 76 mutations for
which local and non-local interactions along the chain are roughly equally important. Among these, 65 have a solvent
accessibility in the 20 to 40% range and 11 in the 40 to 50% range. The linear correlation coefficient between
measured and computed AAGs is 0.80. The line corresponds to the regression line and its equation is y =0.71
x—021. (c) AAGs computed with the sum of the C"— Cl, . range potential and the torsionyigdierange POtential
weighted by a factor of 0.4, as a function of the measured AAGs, for the 138 mutations that are dominated by non-
local interactions. Among these, 121 have a solvent accessibility of less than 20%, three have an accessibility in the 20
to 40% range and 14 in the 40 to 50% range. The linear correlation coefficient between measured and computed
AAGs is 0.79. The line corresponds to the regression line; its equation is y = 0.57 x — 0.85.
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same procedure, we identify which of the remain-
ing mutations fit in the set of mutations of partially
buried residues, and finally, if the yet remaining
mutations fit in the set of totally buried residues.

Following this procedure, the mutations of resi-
dues with solvent accessibility between 40 and
50% are divided into three groups. A group of 23
mutations is added to the set of 96 mutations of
solvent accessible residues (Figure 3(a)), another
group of 11 mutations is added to the 65 mutations
of partially buried residues (Figure 3(b)), and the
14 remaining mutations are added to the set of
121 mutations of completely buried residues
(Figure 3(c)). The correlation coefficients of these
three sets of 119, 76 and 135 mutants are equal to
0.89, 0.80 and 0.80, respectively, and are thus quite
good.

Thus, in the 40 to 50% solvent accessibility
range, about half of the mutations can be included
in the ensemble of mutations of solvent accessible
residues and are hence dominated by local inter-
actions along the sequence. In roughly another
quarter of the mutations, local and non-local inter-
actions are of the same order of magnitude, and in
the last quarter, non-local interactions dominate. It
thus appears that solvent accessibility is not a good
measure for determining what the dominant inter-
actions are in the 40 to 50% accessibility range.

Prediction Accuracy Reached with
Distance and Torsion Potentials

To estimate the relative precision with which
distance and torsion potentials evaluate AAGs, the
plots of measured AAGs versus AAGs computed
with either of the two potentials are compared. In
particular, the plot containing the 121 mutations of
totally buried residues with AAGs computed with
the C*—Cf s range Potential is superimposed with
the plot containing the 106 mutations of solvent
accessible residues with AAGs computed with the
torsiong,ortrange potential (Figure 4). In doing so,
the computed AAGs for the surface residues were
rescaled in such a way that their regression line co-
incides with the regression line of the mutations of
completely buried residues, leaving the correlation
coefficient unchanged. This allows an easier com-
parison of the two potentials. As seen in Figure 4,
the dispersion of the points around the regression
line is much larger for the distance potential than
for the torsion potential. Even the ten mutations of
surface residues, which are considered to be far
from the regression line and are excluded from the
correlation, are closer to the regression line than
many mutations of buried residues. Thus, the dis-
tance potential measures less well the stability
changes upon mutation for totally buried residues
than the torsion potential does for surface residues.

The reason for the lesser performance of distance
potentials is not obvious. It can be argued that it is
due to the fact that only distances between residue
pairs are considered; correlations between residue
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Figure 4. Dispersion of the AAGs of totally buried resi-
dues computed with a C*-C" potential compared to
that of the AAGs of surface residues computed with a
torsion potential. The AAGs are in kcal/mol. The mu-
tations indicated by the symbol + correspond to the 121
mutations of totally buried residues listed in Table 1A.
Their AAGs are computed with the C*'~Cf(,; range POten-
tial. The line corresponds to the regression line on these
121 mutations; its equation is: y = 0.59 x — 0.85. The lin-
ear correlation coefficient between measured and com-
puted AAGs is equal to 0.80. The mutations indicated
by the symbols o and o correspond to the 106 mutations
of surface residues, with solvent accessibility of at least
50%, analysed by Gilis & Rooman (1996). The red sym-
bols correspond to the subset of 96 mutations for which
measured and computed AAGs correlate well and the
blue symbols correspond to the ten mutations that are
considered to be too far from the regression line and are
excluded from the correlation; these ten mutations seem
to modify the native or denatured states or imply inter-
actions that are atypical for surface residues. The AAGs
of these 106 mutations are computed with the torsion-
short-range POtential. The regression line is obtained on the
96 mutations and the corresponding correlation coeffi-
cient is equal to 0.87. The AAGs on the 106 mutations
of surface residues have been rescaled in such a way
that their regression line coincides with the regression
line of the 121 mutations of buried residues, without
changing the correlation coefficient. This allows us to
compare the dispersion around the regression line on
both sets.

triplets and quadruplets are not taken into account.
This does not seem to be crucial, however. We
tested indeed the triplet potential CH-CH-C¥,
based on contacts between three residues (see
Methods). With this potential, the measured and
computed AAGs have a correlation coefficient of
0.75, which is slightly lower than that obtained
with the pair potential C*—C*. It is thus certainly
not the neglect of triplet correlations that explains
the large dispersion around the regression line.
The reason why the CM-CH-CH" potential gives
somewhat less good results than the C*-C* poten-

-20 00 2.0 4.0 6.0
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tial may be attributed to the fact that the former is
a contact-non-contact potential whereas the latter
is a more precise distance-dependent potential, and
also, that the statistics on residue triplets are less
reliable than on residue pairs because of the lim-
ited data.

Another reason for the limited performance of
distance potentials on buried residues might be
that the backbone structure is modified upon mu-
tation. This hypothesis can readily be tested on
eight out of the 121 mutations of completely buried
residues, whose structures have been solved by
X-ray crystallography to better than 2 A resolution.
They correspond to the mutations Ile3 — Tyr,Gly77
— Ala,Ala98 — Val Leul33 — Ala,Asn149 — Cys
and Thr152 — Ser in T4 lysozyme and Tyr78 — Phe
and Ser91 — Ala in barnase. For these eight
mutants, the AAG can be computed as the difference
between the folding free energy AG%(C,) of the
mutant structure C,, and the folding free energy
AG®(C,) of the wild-type structure C,, or, as in the
previous sections, with the hypothesis that the
mutant and wild-type backbone structures coincide,
that is, C,, = C,,. The AAGs computed in these two
ways turn out to be similar. Indeed, the correlation
coefficient on the 121 mutations is equal to 0.80,
whether the eight above mentioned mutations are
computed with the C,, =C, assumption or not.
Hence, the modification of the backbone structure
does not seem, at least from this result, to be respon-
sible for the large dispersion of AAG values around
the regression line, observed for mutations of buried
residues.

This result justifies furthermore the approxi-
mation made throughout this study that wild-type
and mutant proteins have the same backbone
structure (C,, = C,). This approximation turns out
to be even more accurate for mutations of buried
residues than for mutations of surface residues,
where some of the mutations had to be excluded
from the correlation because they caused structural
rearrangements implying the modification of back-
bone torsion angle domains. This can easily be
understood, considering that residues in the pro-
tein core are much more constrained and only
small backbone rearrangements can occur, which
are hardly detectable by our potentials. Moreover,
even if the structure of the wild-type and mutant
proteins are both available, it is sometimes better
to overlook one of the structures and to use the
C,,=C, approximation, especially when one of
the structures is not well resolved. For example,
for the mutation Ile3 — Leu in T4 lysozyme, both
the wild-type and mutant structures are known,
but the latter has a resolution of 2.6 A and the root
mean square deviation of the backbone coordinates
after superposition is as high as 1.7 A; the structur-
al differences are not confined in the region of the
mutation, but are dispersed over the whole struc-
ture. As a result, the computed AAGs differ by
1.9 kcal/mol, according to whether the approxi-
mation C,,=C, is used or not. This difference is

non-physical, it is only due to the limited resol-
ution of one of the structures.

Finally, a last reason that could explain the lesser
performance of the C*-C" potential compared to
the torsion potential is that the former does not
describe sufficiently accurately the interactions that
stabilize the residues in the protein core. It has
been shown that an important factor of stability
changes upon mutation of residues in the protein
core is the cavity formation when mutating a large
into a small amino acid and the strain caused by
mutating a small into a large amino acid (Kellis
et al., 1989; Eriksson et al., 1992; Kocher et al., 1996).
The stability changes differ according to the en-
vironment of the mutated residues. If there is re-
sidual flexibility in the structure, cavities can be
more readily filled and strain can be relaxed. It is
not obvious whether database-derived potentials
account for this effect. Torsion potentials certainly
do not, given that they represent local interactions
along the chain. Distance potentials could in prin-
ciple account for it, as they describe the spatial en-
vironment of residues. However, it is not sure that
they are sensitive enough, as the created and filled
cavities are small compared to the distance pre-
cision of the potentials. This is more especially true
as distances are computed between average side-
chain centroids, which can occasionally be rather
different from the exact ones and have steric over-
laps that do not occur in the true structures. More-
over, due to the approximation that the
environment can be described by pair or triplet in-
teractions, a global view of the environment of a
given residue, necessary for detecting cavities, is
lacking.

In order to support the hypothesis that the
width of the distribution around the regression line
can at least in part be explained by the neglect of
effects due to cavity formation or filling, we ident-
ify the mutations of totally buried residues, among
the 121 considered ones, for which the mutated
and mutant amino acids have roughly the same
size. Two amino acids are defined as having simi-
lar sizes if their radii, defined by Levitt (1976), dif-
fer by 0.1 A at most. This subgroup contains the 23
mutations depicted in red in Figure 1. When corre-
lating their computed AAGs with their measured
AAGs, we find a correlation coefficient of 0.87,
against 0.80 for the whole set of 121 mutations. On
the contrary, the correlation coefficient of the
50 mutations where the mutated and mutant
amino acids differ significantly in size, as
measured by a change in the amino acid radius of
more than 0.5 A, depicted in Figure 1 in blue, is
equal to 0.80 and thus identical to that computed
on the whole set.

To assess the statistical significance of the
increase of the correlation coefficient from 0.80 for
the full set of 121 mutations up to 0.87 for the sub-
set of 23 mutations with almost no size modifi-
cation, we randomly choose 23 mutations out of
the full set and compute the correlation coefficient
r on this subset. Repeating this procedure 1000
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times, it is found that r is equal to 0.87 or more in
10% of the subsets. At first sight, there seems thus
to be 90% chance that the observed increase is stat-
istically significant. But one has to remember that
the randomly picked mutations usually do not
have any common property, contrary to the 23 mu-
tations chosen on the basis of residue size. The
chance of picking 23 well correlating mutations
sharing a common property is difficult to estimate,
but is obviously much lower than 10%. Thus, we
cannot be absolutely sure that the increase of the
correlation coefficient from 0.80 up to 0.87 is mean-
ingful, but the confidence level is certainly much
higher than 90%.

We can hence conclude that the correlation
between measured AAGs and AAGs computed
with the C*-C" potential for completely buried
residues appears to be significantly higher when
the sizes of the mutant and mutated residues are
similar and no cavities are created or filled. This
result does not prove, but brings clear support to
the hypothesis that the factor limiting the ability of
distance potentials to evaluate the AAGs of buried
residues is that they do not take properly into
account the effect of cavities in the protein core.

Conclusion

It was shown here that the crucial factor deter-
mining the relative importance of local versus non-
local interactions along the chain is the solvent
accessibility of the mutated residues. The dominant
interactions for surface residues, with solvent
accessibilities of at least 50%, are local along the
chain and well described by torsion potentials,
whereas the dominant interactions for totally bur-
ied residues, with solvent accessibilities of 20% at
most, are non-local along the chain and well
described by the C*-CH potentials dominated by
hydrophobic forces. However, we would like
emphasize that the local interactions responsible
for secondary structure formation, though less im-
portant than hydrophobic interactions, play a non-
negligible role even for the most buried residues.
The importance of these interactions is often
unduly overlooked. For partially buried residues,
with solvent accessibilities between 20 and 50%,
local and non-local interactions are, on the average,
roughly equally important. Their relative import-
ance can vary from one position to another,
depending on the type of mutated and mutant
amino acid and of their environment. This vari-
ation is especially strong for mutated residues with
accessibilities between 40 and 50%. In this twilight
zone, the solvent accessibility of the mutated resi-
due is not a good measure for determining what
the dominant interactions are. If it would be poss-
ible to know the solvent accessibility of both the
mutated and mutant residues, one could probably
estimate more reliably the relative importance of
local and non-local interactions. But this infor-
mation is usually not available, as only a few

mutant structures have been determined. It could
be envisaged to position the side-chains of the
mutant sequence in the wild-type structure using
side-chain positioning algorithms, and to compute
the solvent accessibility of the mutant residue in
the so-modelled structure. But the drawback of this
approach is that side-chain positioning algorithms
are not 100% reliable.

The local and non-local interactions along the
chain described by the torsion and C*-C" poten-
tials, respectively, are not the only important inter-
actions that contribute to stabilize the protein core.
Another important (de)stabilizing effect is due to
cavity formation or filling. This effect is particu-
larly important for certain mutations, involving
residues in closely packed environments with no
residual flexibility. Our analysis seems to indicate
that the potentials used fail to correctly describe
this effect. In principle, it would be possible to de-
fine a new kind of database-derived potential that
would be specifically designed to account for it. It
is, however, not obvious that such a potential can
be constructed in practice. Indeed, this effect
requires a description at the atomic level of detail,
where small cavities and strain provoked by some-
what too closely packed atoms come into play.
Such effects are difficult to account for using resi-
due-based effective potentials. But if one succeeds
in designing a potential that accounts for these
effects in a satisfactory fashion, it would be a great
achievement, as it seems to be the last important
type of interaction not represented by any data-
base-derived potential. Such new potentials contain
the promise of improving significantly all structure
prediction algorithms, whether it is fold recog-
nition, inverse folding, ab initio predictions or pre-
diction of stability changes upon mutation.

Though the correlation between computed and
measured AAGs is not perfect, it is far from bad
and can be used for prediction purposes to yield a
first estimation of the stability changes to be
expected. We would like to stress that the predic-
tive value of our procedure owes to the fact that
the correlations are valid for mutations at different
sites and in different proteins. For about 90% of
the mutated residues with a solvent accessibility of
more than 50%, predicted and measured AAGs
have a correlation coefficient of 0.87. Among the
mutations of residues whose accessibility is in the
20 to 40% range, 95% have a correlation coefficient
of 0.82. And for the ensemble of mutated residues
with an accessibility of at most 20%, the correlation
coefficient is of 0.80; this coefficient increases up to
0.83 for the subset of mutated residues with at
most 5% solvent accessibility. Only for the mu-
tations of residues whose solvent accessibility is in
the 40 to 50% range, does the predictive power of
our procedure break down. But yet, the AAGs of
these mutations can be estimated in three different
ways, by using the optimal potential of the set of
totally buried, partially buried or surface residues.
There remains, however, an uncertainty about
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which of the three computed AAGs must be
trusted.

Methods

Formalism for deriving effective potentials
from known structures

To derive potentials from known protein struc-
tures, sequences S are divided into sequence ele-
mentss (e.g. residues, residue pairs or residue
triplets) and conformations C are divided into
structural states c (e.g. ranges of torsion angles or
inter-residue distances). The frequencies of c and s
in the dataset of known proteins are computed,
yielding an estimation of the probability of ¢, P(c),
and the probability of ¢ knowings, P(c|s). Using
the formalism described by Rooman & Wodak
(1995), these probabilities are related to the folding
free energy, AG*(C), using;

_—kTZI

where the indices i and j indicate the position(s)
along the sequence of the structural states and
sequence elements, respectively, k is the Boltzmann
constant and T a conformational temperature
(Pohl, 1971) taken to be room temperature. The
folding free energy, AG>(C), is the difference
between the free energy of the sequence S adopting
a conformation C,G%(C), and the free energy of a
denatured-like state of S,G°, in which the confor-
mational states ¢ and the sequence elements s are
uncorrelated.

P(Cz|5])

AG(O) =GO -G°

M

Torsion potentials

Torsion potentials are computed from the pro-
pensities of residues to be associated to certain
values of the backbone torsion angles (¢b,{,®). For
that purpose, the (¢,§,0) map (Ramachandran &
Sasisekharan, 1968) is divided into seven torsion
angle domains, six for the frans conformation,
denoted A, C, B, P, E and G, and one for the cis
conformation, denoted O (Rooman et al., 1991,
1992).

Two types of torsion potentials have been pre-
viously developed and tested (Rooman et al., 1991,
1992; Kocher et al., 1994; Gilis & Rooman, 1996).
Only the most performing one is considered here.
It takes into account the probability that the torsion
angle domain f; at position i along the sequence,
and pairs of domains (t,¢) at positions i and j
along the sequence, are associated with an amino
acid a; at position k. Equation (1) becomes:

AGS(C) = —kT ()
( ,; 2 )
o
where N is the number of residues in the sequence
S. We consider a “’short range” backbone potential,
noted torsiong,oriranger  Which comprises contri-

butions from residues in the interval
k—1<i<j<k+1 along the sequence, and a
“middle range” potential, torsionsgierancer With
k—8 <i <j < k+8. The normalization tactor {,
ensures that the contribution of each residue in the
window [k—1k+1] or [k—8k+ 8] is counted
once. It is equal to the window width, except near
chain ends.

Distance potentials

Pair potentials

Pair potentials are computed from propensities
of two residues 4; and g;, at positions i and j along
the sequence, to be separated by a spatial distance
d;j (Kocher et al., 1994). Probabilities of residues
separated by one to six positions along the
sequence are computed separately, whereas prob-
abilities of residues separated by seven positions
and more are all merged. This distinction yields
potentials that represent both local and non-local
interactions along the chain. The folding free
energy defined by these potentials is, according to
equation (1):

X PHdjla;, a)
—kT Y log—:— @)

ij=1

AGS(C) = 3)

with i+ 1<j and with the probabilities P~/
being independent of |i —j| for |i —j|>7. The
inter-residue distances d;; are computed between
the average centroids, d”, which are specific to
each amino acid type and are defined as the aver-
age of the atomic coordinate centres of all confor-
mations of side-chains of the same type observed
in the protein dataset (Kocher et al., 1994). The dis-
tances between 3 and 8 A are grouped into 25 bins
of 0.2 A width and the distances larger than 8 A
are merged. Further details are given in Kocher
et al. (1994). This potential, called C*-C" potential,
yields better performances than the C*-C* and
CP-CP potentials, where the inter-residue distances
are computed between C%s and CPs, respectively.
Thus, only results with the former are presented.

In a variant of this potential, only residues separ-
ated by more than 15 residues along the sequence
(li — j| > 15) are taken into account. The value of 15
has been obtained by optimizing the correlations
between measured and computed AAGs on the set
of mutations of completely buried residues. This
potential represents only non-local interactions
along the sequence and is referred to as C"'-Cl;,,,
potential.

range

Triplet potentials

Triplet potentials are computed from propensi-
ties of three residues a; 4, a; to be in contact. Two
residues 4; and a; are considered to be in contact
when thelr spatial distance d;; is less than 7 A. To
have valid statistics, only contact and non-contact
bins are considered: one in which all three residues
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are simultaneously in contact, one in which none
of the three are in contact, and six where there are
contacts between residues, but not simultaneously
between the three residues. Residues separated by
less than 11 positions along the chain are not taken
into account; this value has been adjusted to get
the best correlation between computed and
measured AAGs on the set of mutations of comple-
tely buried mutations. According to equation (1),
the folding free energy is:

P(dyj, diy, dixlai, a;, ax)
P(dyj, dix, djx)

N
AG*(C) = —kT ) " log (4)

ij=1
The inter-residues distances d;, dy, d; are com-
puted between the average centroids C*and the po-
tential is called C*—C*—C* potential.

Correction for sparse data

When computing all the above mentioned poten-
tials, the correction for sparse data described by
Gilis & Rooman (1996) is applied.

Weighted combination of potential terms

Linear combinations of different potential terms
are tested. In particular, we consider the combi-
nations of the type AAG*(C)” + BAG*(C)® where
AG*(C)™ corresponds to the torsiongo range OF
torsion, iqqierance pOtentials and AG%(C)? to the
C*—CH or C”—éﬁmg_mn . potentials. A and B are real
values between 0 and 1; the tested values are A,
B=0.0,01,02, ..., 1.0.

Protein structure data

The potentials are derived from a set of 141 well
resolved (<2.5A) and refined proteins from the
Brookhaven databank (Bernstein et al., 1997), with
less than 20% sequence identity or no structural
homology. A list of these proteins can be found in
Wintjens et al. (1996). To avoid biasing the predic-
tions towards the native structure, the potentials
are derived from all proteins from the set except
those that have more than 20% sequence identity
with the protein on which predictions are per-
formed.

Computing folding free energy changes
upon mutation

To compare our results with experimental ones,
we have to calculate a difference in folding free
energy, AAG, between mutant and wild-type. In a
first step, we compute the folding free energy of
the mutant protein, AG"™"""(C,), and of the wild-
type protein, AG“v¢(C,), using equations (2) to
(4). C,, corresponds to the native structure of the
wild-type. It is thus assumed, unless stated other-
wise, that the wild-type and mutant proteins have
the same backbone structure. The AAG is calcu-
lated using the sign convention:

AAG = AGm”mm(Cw) _ AGwild-typE(Cw) (5)

The folding free energy difference is thus negative
when the mutant protein is more stable than the
wild-type protein.

Correlating measured and computed AAGs

To compare experimentally determined AAGs
and computed AAGs of a set of mutations, a corre-
lation coefficient is calculated, assuming a linear re-
gression. To estimate the significance of this
correlation, the probability # that the same corre-
lation would arise by random sampling in an
uncorrelated population is computed (Fisher,
1958). For all sets of mutations considered in this
paper, Z is lower than 107 the correlations are
thus undoubtedly statistically significant.

Another issue is the error on the computed cor-
relation coefficients. To estimate this error, we take
the full set of mutations, drop a number of ran-
domly chosen mutations and compute the corre-
lation coefficient on the remaining mutations. This
procedure is repeated 1000 times. The average cor-
relation coefficient on these 1000 trials and the
standard deviation is then computed, thereby giv-
ing an estimation of the validity of the computed
correlation coefficients.

Automatic sorting procedure

An automatic sorting procedure is used to deter-
mine which of the mutations in a given set are re-
sponsible for the low value of the correlation
coefficient. It proceeds by rejecting the mutation
that leads to the highest correlation coefficient for
the mutations remaining in the set. This procedure
is repeated until the correlation coefficient exceeds
a certain value.
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