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Different derivations of knowledge-based potentials and analysis
of their robustness and context-dependent predictive power
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The possibility of defining effective potentials from known protein structures, which are sufficiently
accurate to be used for protein-structure-prediction purposes, is investigated. Three types of distance
potentials and three types of backbone torsion potentials are defined, based on propensities of amino acid
pairs to be separated by a given spatial distance or to be associated to a backbone torsion angle domain.
Their differences reside in the way the physical correlations between the amino acids and the conforma-
tional states are extracted from the bulk interactions due to the presence of many residues in a protein.
For the distance potentials, a physical meaning can be associated to the different definitions, given that
some of the potentials favor hydrophobic interactions and others favor interactions between oppositely
charged residues. The performance of the different torsion and distance potentials in structure prediction
procedures, in particular native-fold recognition and evaluation of protein stability changes upon point
mutations, is analyzed. It appears to differ according to the specific proteins and protein environments.
In particular, one of the distance potentials performs better than the others for membrane proteins and in
protein regions involving charged residues, but less well in other protein regions. Furthermore, the depen-
dence of the potentials on the characteristics of the proteins from which they are derived is analyzed. It
is shown that the dependence of the potentials on the length, amino acid composition and secondary-
structure content of the proteins from the dataset is either very limited or rather strong, according to the
type of potential. The results obtained suggest that the main problem limiting the performance of data-
base-derived potentials is their lack of universality: each potential describes with satisfactory accuracy
only the interactions present in certain protein environments.

Keywords:folding free energy; fold recognition; stability changes upon mutation; protein length.

The success of protein-structure prediction from the amino  rived from joint frequencies of sequence elements and structura
acid sequence is limited by deficiencies in the conformationstates in the dataset, e.g. from frequencies of amino acids in
search procedures aiming at finding the global free energy mini-  contact5[616], separated by a certain distance’ [ 18],
mum and in the effective potentials used to evaluate the frgelvent accessiblel8, 19] or adopting certain values of back-
energies of the conformations. Recently, a number of solutiobene dihedral angles [201R These potentials are particularly
to the former problem have been proposed which suggests thell suited for structure prediction, where certain degrees of
possibility of getting a satisfactory solution in the near futuréreedom may be neglected or must be neglected to keep com-
The most promising procedure is constraint-based exhaustiygter time within reasonable limits.
search {, 2] or branch-and-bound algorithm [3]. It consists of Database-derived potentials are mean force potentials; they
an ‘intelligent’ search, generating first the structures that affus focus on certain interactions and average out the others.
most likely to be the lowest energy ones. It has the non-negligiheir derivation is moreover subject to several approximations
ble advantage of yielding the global minimum with respect to gnose justification is not always obvious [22]. In spite of this,
given energy function, usually in a reasonable time. _the results that these potentials yield for structure prediction are

The second problem, the design of a satisfactory effectiw,prisingly good at first sight. In native fold recognition pro-
potential, seems less obvious to solve. Most effective potentialsyyres in"particular, they perform quite well. This test has how-
developed for structure prediction purposes, in particular folder heen shown to be relatively easy. It constitutes only a zero-
recognition [4, 5],ab initio structure prediction [6, 7] and eval- test, which many potentials are able to fulfillg]. Database-

#zﬂg)goga?;ag't“tgf i?%ngﬁs r%?g'rrl\ nllr’ti'f['orr:[a;!;h:rea?:rc')\getg.nd§rived potentials perform less well in homologous fold recogni-
S Wn protein Structures. y IN&8h or ab initio prediction, for example. The shortcomings of

either by opt_imization of a pre-determined patential function tﬂﬁe potentials have now been established unambiguously, owing
known protein sequence and structure da@-{14], or are de- to the development of search procedures that are able to reach
with certainty the global energy minimum. Using these pro-
L : s cedures, it has been shown that the conformations corresponding
de Chimie Organique, Universitdbre de Bruxelles, CP65, av. F. Roo- . . .
sevelt 50, B1050 Brussels, Belgium to Fhe g_lobal minima of the_database-derlved potentials are often
Fax: +32 2 650 36 06. quite different from the native structures [3].
E-mail: mrooman@ulb.ac.be Recently, several analyses have been devoted to evaluate the
Abbreviation.DSSP, dictionary of secondary structures in proteinsquality of database-derived potentials. In particular, Godzik et
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al. [23] analyzed several contact potentials published in the liter-  occurrerscanafc. However, it has been shown that they are

ature and showed that some of them differ drastically, as momiet equal [22], essentially because the probabiliffedo not

tored by correlation coefficients of less than 0.5; they also found contain a correction for the many-body effect arising from the

the surprising and unexplained result that crystallographic apdesence of other residues than those @md screening out the

NMR structures yield very different energy parameters. Continu-  correlations besaeele. This biasing effect is clearly under-

ing this analysis, Skolnick et al. [24] studied the importancstood when the structural stateare ranges of inter-residue dis-

of neglecting chain connectivity in deriving effective potentials. tances. In that case, the most frequectastatasse in which

Using a model of short chains composed of two types of moneesidues are not in contact. Thus, if the probability of finding a

mers on a square lattice, Thomas and Dill [25] investigated the seq&neeconformatiorC would be expressed as a product

dependence of contact potentials on the set of proteins frashthe P(c|s) values, the most frequent conformatio@swould

which they are derived, and came to the conclusion that the be fully extended. This is in obvious contradiction with observa-

dependence is very strong. This result was contradicted by Balian, and/I(cl|s) is thus not equal t&(c|s).

and Jernigan [26], who observe only a weak dependence. We dispose of two conditions to determine the form of the
We attempt here to further clarify the meaning and quality7 values: (a) thell values correspond to probabilities defined

of effective potentials. Following the formalism described earlier  from relative frequenciearad ¢ in the dataset and (b) they

by one of us [22], we propose different definitions of distancenust satisfy the conditiodi/(c) = constant. The first condition

dependent residue-residue interaction potentials and of backbone  simply amounts to requiring fhaalihes are derived from

torsion potentials, which correspond to different ways of extracthe structure dataset. The second condition corresponds to the

ing the relevant sequence-structure correlations from the bulk  hypothesis that protein conformations are exclusively deter-

interactions. These approximations lead to potentials where tméned by their amino acid sequence, thus that all the information

correlations between residues and/or structural states are dif- about the tertiary structure is encoded in the sequence. The for

ferently taken into account. The predictive power of the differerdf I7(c|s) proposed in [22], which satisfies these two conditions,

potentials is compared, using native fold recognition procedures is

and prediction algorithms of stability changes upon point mu- g(c,9) P(c,s)

tations. Furthermore, the robustness of database-derived poten- 1 (€l$) = S’ whereg(c,s) = PP | O]

tials against modifications of the dataset from which they are e

derived is examined by varying the length, secondary-structure . . . .

content and amino acid composition of the dataset proteins. Ej- | "€ Probability of finding a sequencgin a conformation

nally, the implications of these results for the possibility of de& @PProximated by the product of thi values, is related to

fining sufficiently accurate database-derived potentials are difle free energyG(C) and the partition functiorz® by Boltz-
cussed. mann’s law:

GXC) = —kTX log I1(c|s) — kTlog Z° @)

RESULTS wherek is Boltzmann’s constanfl a conformational temper-

Deriving potentials from known protein structures. Formal- ature [27] and the indicesand j indicate the positions of the

ism. To derive effective potentials from known protein strucStructural states and sequence elements along the sequence. As
tures, it is necessary to make several basic hypotheses. Firsthi# €xpression contains the partition function, it cannot be com-
must be assumed that protein sequerBesn be divided into pletely evaluated. The quantity that can be evaluated is the fold-
sequence elemengsand that conformation€ can be described "9 free energy4G<(C), defined as the free energy difference

in terms of conformational states Typically, sequence elementsP€tween a conformatioi and a denatured state. Following [22],

s are single residues or residue pairs, and conformational sta¥i& define the denatured state as a state in which sequence and
c are ranges of backbone dihedral angle values, of spatial diffucture are uncorrelated; when the conformational stases
tances between residues or of solvent accessibilities. Furth&ier-residue distances, this state corresponds to the ensemble of
more, it must be assumed that the relative frequency of thek@nhformations with no residue-residue contacts. This yields

sequence elements and conformational states in the ensemble of P(C.S)
native protein structures is equal to their relative frequency in 4GS(C) = —kT X log g(c,,s) = —KT > log 3 . 3)
the equilibrium conformations of a single protein. Such poten- i i P(c)P(s)

tials may be considered as mean force potentials, because somey., lutions Wi h h hen th |
of the degrees of freedom are averaged out. For example, when ther solutions\We now show that, when the sequence ele-
the conformational states are domains of backbone dihedral ARENtSS are amino acid pairg(ay), Eqn (1) is not the only solu-
gles, all the side chain degrees of freedom and the backbdif! for 77(cls) that satisfies the aforementioned conditions, in
ones that correspond to the same domain are averaged 8 .“CUl"_"rH(C) » cor\stant. Indeed, definingf in terms of a
When they are ranges of spatial distances between, say, Grelation functiorg:
atoms, all the main and side chain degrees of freedom that are 9(c.a,a)
consistent with the distance constraints are averaged out. II (cla,a) = —————
Under these assumptions, the conditional probahilit¢|S) ; 9(c.a;a)
of finding a sequencé& in a conformationC can be approxi- ‘
mated as a product of conditional probabiliti#§c|s) of the the following expressions represent different solutions of
sequence elemenssand conformational statesincluded inS II(c |a,a):
and C. An estimation of these probabilitied(c|s) can be ob-

(4)

tained in terms of probabilitieB of s and ¢ approximated by .a.a) = P(c.a;,a) 5
their relative frequencies observed in the dataset of known prjo- 963, P(c)P(a,a) ®)
tein structures. It is tempting to suppose the conditional proba- P

bilities 71(c|s) andP(c|s) to be equal, wher(c|s)=P(c, s)/P(s) 5. g(c.a,a) = _ PCaa) (6)

with P(s) the probability ofs andP(c, s) the probability of joint P(c)P(a)P(ay)
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B P(c.a.a) Protein structure dataThe dataset used to derive the mean
Ib. 9(c.8.a) = [P(c)P(a,a) + P(a)P(G,a)+P(a)P(c.a))/3 force potentials contains 38rotein chains from the Brookha-
' ' ' ' 2y ven databank [28]. It corresponds to the set obtained by the pro-

( ) P(c.a;,8,) cedure pdb—select [29, 30] on the databank version of 25 May
. gc.a.a) = (8) 1996, with sequence identity lower than 25% and with NMR
[P(@)P(c,a) + P(a)P(c,a)l/i2 structures and structures with resolutions larger than 2.5 A

P(c,a,a,) ) dr_opped. The set is sor_netimes restricted to _tmemoteins con-
[P(a,a)P(C.,a;)P(C.,a)]/[ P(c)P(a)P(a)] stituted of a single chain, for reasons explained below.
i o i ) Distance potentialsThree types of distance potentials are
The numerators are identical in these five expressions and repdgtained by considering in Eqnsd—12) the conformational

sent the probability of joint occurrences of two amino a@ds statesc to be inter-residue distancels, measured between the
anda, and a conformational stag: The denominators representyyo amino acids, anda:

different ways of approximating the correlations betwegra,
andc present in the numerator. If the everisa, and ¢ were

. oc.a.a) =

independent, these five expressions would all be equal to oneq GYC) = _kTE log M (14)
Expression | is equivalent to Eqm)(and corresponds to the i< P(d;)P(a.a)

solution proposed in [22]. In this case, the correlation function

g measures the correlations between the residue @jag) @nd ) P(d;a,3,)

the conformational statg. Expression la is very similar to |, as 4G¥C) = —kTE log L (15)

the joint probabilityP(a,,a;) of amino acid pairs is not very dif- i< [P(a)P(d;,a) + P(&)P(d;,a)]/2
ferent from the produd®(a)P(a;) of the probabilities of the indi-

vidual amino acids; we checked that the correlation coefﬁcier;’t'GS(C) TS P(d;,a,a)
betweenP(a;,a) and P(a)P(a) is equal to 0.98 and that the re- ~ —KI' 2,109 :
gression line has a slope of 0.98. Expressions Ib, 1l and Ill are = [P@.a)P(d;.a)P(d;.a)V[P(d,)P(a)P(a)]

obtained by approximating(c,a,a,) in different ways in terms (16)

of P(a;,a), P(c,a) andP(c,a). In expression Il, the measuredThe inter-residue distanced; can be computed between: C
correlation is betweerc(a), i.e. a conformational state at poSi-atoms, € atoms, side-chain centroids or any other atoms or
tion i and an amino acid at position j, aad i.e. an amino acid pseydo-atoms, yielding somewhat different potentis. [Here
at position k. Expressmn.lb can be conS|derqu as the average choose to compute the distanaksbetween average side-
between | and II. Expression Ill is much more differegtmea-  chajn centroids, noted“Cdefined as the average coordinate cen-
sures the strength of the triplet correlatiowsa(,a,) relative to  ters of all side-chain conformations of a given amino acid type
the pair correlations,ay), (c:,&) and €a). o observed in the protein datasd®[; for Gly residues, the 'C
Further variations can be constructed by replacing in Il anghg ¢ positions coincide. The inter‘Gdistances between 3 A
Il P(a;,a) by P(a)P(ay). Apart from these variations, Eqns€5 and 8°A are divided into 25 bins of 0.2 Avidth; all distances
9) represent a” the SOIUt'OnS that are Symmet”c |n the am"’dﬁ more than 8°Aare merged |nto a S|ng|e b|nl and SO are a”
acidsa; anda, and that do not take solvent molecules explicitljistances of less than 3.An deriving the potentials, pairs of
into account. Inserting these expressions into Eqn (3), we obt@ignsecutive residueg € i+1) are not considered. For pairs
the folding free energy of types I, Il and IlI: separated by—6 sequence positions, probabilities are computed
l. ( ) separately, yielding six distinct potentials describing local in-
. P(c,a,a teractions along the chain. Pairs separated by more than seven
4G1(C) = _kTi% log P(c)P(a,a) (10) positions along the sequence are all merged, leading to a non-
local interaction potential. The so-defined distance potentials are

II. referred to as GC* potentials.

P(Ci !ai rak)

AGYC) = —kTE log (11) Type | potential corresponds to the most widely used dis-
ik [P@)P(c.a) + P(ay)P(c.ay]/2 tance potential 7, 18], type Il is similar to the residue-medi-
M. ated effective contact energies of Bahar and Jernigan [26] and
P(c.a,.a) type Il has to our knowledge never been considered before. The

AG(C) =~ —KT 2 log - different behavior of these potentials is exemplified in Rig.
H [P(8,80P(c.3)P(G2)VP(C)P(@)PE] for selected residue pairs. It appears that potentials | and IlI
(12)  differ most and that potential Il is in some way the average
In what follows, only these three types of folding free energiegetween the two others.
will be considered. The energies obtained with expressions la Potentials | and Il favor different kinds of interactions. Po-
and lb (Eqns 6-7) are dropped, because they are not sufficientliential | favors hydrophobic interactions, as clearly seenin Fig.
different from those obtained with expressions | and II. for the Asp-Arg and lle-Val pairs. In contrast, potential 11l favors
Correction for sparse dataDue to the limited dataset, the salt bridge interactions relative to hydrophobic interactions. It
statistics are not always reliable, especially for rare amino adigarly vanishes for all hydrophobic pairs (e.g. lle-Val and Phe-
pairs and conformational states. To compensate for this, we Ug&) and has a pronounced minimum for oppositely charged resi-
a correction which is a generalization of the correction originallgues (e.g. Asp-Arg). It has, moreover, a less pronounced mini-
introduced in 17]. It amounts to replace the correlation functiormum than potential | for disulfide bridges (Cys-Cys) and a less

g given in Eqns (5-9) by the following expression: pronounced maximum for equally charged residues (e.g. Asp-
o + n(a,a)9(c.a,a) _Glu). For charged-polar interactions (e.g. Asp-Ser) potential Ill
o(ci,a,a) — (13) is favorable whereas | is unfavorable.
o +n(a,a) It is difficult to determine which of these mean force poten-

wheren(a,a.,) denotes the number of occurrences of the amintials is closest to the true potential, as we do not know exactly
acid pair §,a) in the dataset an@ is a parameter that we what the true potential is. For instance, the importance of elec-
choose equal to 50, based on earlier tes83. [ trostatic versus hydrophobic interactions is not fixed throughout
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Fig.2. Type | (white rectangles), Il (light grey rectangles) and Il

(dark grey rectangles) backbone torsion potentials for selected
amino acid pairs. The folding free energiedG are given for the six
backbone torsion domains corresponding to tthes conformation, re-
ferred to as A and C for helical conformations with A beiadelical

and C 3q-helical, B and P for extended conformations with B corre-
sponding more specifically t@-structures, and G and E for conforma-
tions with positive¢-angle values [20]. The amino acid pairs are repre-
sented by the name of the two amino acids, sometimes separated by ‘¢’
symbols to indicate unspecified amino acids along the sequence. The
underlined residues indicate the positions of the backbone torsion do-
mains whose energy values are computed.

—0-53 e e T e s s Inserting these definitions into in EQnE0—12), we obtain three
d types of backbone torsion potentials:
Fig.1. C-C* distance potentials derived from the protein subsets . 1 P(t,a,a,)
containing small proteins (dashed line) and large proteins (solid AGS(C) = —szflog”ia" (17)
line). The folding free energiegG are given as a function of the inter- ik i P(t)P(a,ax)
C distanced (in A), for six different amino acid pairs (6 rows) and for
potentials | to 1l (3 columns) defined by Eqns4-16). The inter-€ II. 1 P(t
distances are divided into bins of 0.2w#dth. The curves are slightly 4GS(C) ~ 7|<T2 —log (t.a.3) (18)
smoothed for aesthetic reasons. The potentials shown correspond to ik G [P(&)P(t,a) + P(a)P(t,a)]/2
those describing non-local interactions along the chain (see text). i
1610413 & AP POPERa
ik 1 iy ’ i
the proteins, but depends on the environment: solvent-accessible e 4 % 4 (19)

salt bridges are not very favorable energetically, whereas fully

buried ones are [3. To give a more objective evaluation of The indiceg, k satisfyi—8=j <k=i +8 and cover a se-

the mean force potentials, we use them in structure predictiqunence window ofl 7 residues{, is a normalization factor en-

algorithms, as described in the next section. suring that the contribution of each residue in the window is
Backbone torsion potential&ackbone torsion potentials arecounted once and is equal to the window size except near chain

obtained by considering the conformational state® be do- ends. Only type | torsion potential (Etif) has been described

mains of backbone torsion angles (/, w), notedt. As in Roo- before [20, 22].

man et al. [20], we consider seven domains, six for tiagms These three types of torsion potentials are depicted in Fig. 2

peptide bond conformation and one for this conformation. for selected residue patterns. It is noteworthy that torsion poten-
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tials | and Il differ most and that potential Il is intermediate, find that potentials I, Il and Il identify the native sequence-
like observed for &-C potentials. The similarity between tor- structure match for 83%, 80% and 52% of the dataset proteins,
sion potentials | and Il and between torsion potentials Il and 11l respectively. Thus, on the average, potential | performs best and

can clearly be seen when correlating their energy values for albtential 11l worst, and potential 1l performs nearly as well as
residue patterns and torsion angle domains. The correlation coef-  potential I. However, though the average performance of poter
ficients I=Il, Il =1l and I-Ill are indeed equal to 0.95, 0.94tial Ill is rather low, in some specific cases it performs better
and 0.88, respectively. It can also be noted that, in all depicted than the two other potentials. This is the case for chains L anc
examples, the torsion angle domain of minimum (or maximurmyl of the photosynthetic reaction centdiPRC). This protein is
energy is the same for potentials | and II, but often differs for a membrane protein and its chains L and M, well recognized by
potential Ill. potential Ill, are situated inside the membrane. The two other
That the similarity is highest between potentials | and Il and  chains of the protein, C and H, situated at least in part outside
between potentials Il and 1ll can also be deduced from thetihe membrane, are, in contrast, better recognized by potential I.
definitions (Eqnd7—19). Potential Il reduces to potential | if These results are easily understood if one remembers that
one makes the approximatiot,a) ~ P(t)P(a) andP(a,a) hydrophobic interactions have much less weight in potential 111
~ P(a,)P(a). The latter condition is nearly exact, as mentioned than in potential | and Il. It seems thus that potential | and I
above, but the former is not and measures the correlation lzge better suited for evaluating the folding free energy of non-
tween a single residue and a torsion angle domain. The sametwo membrane, globular proteins, with a hydrophobic core. How
approximations allow to transform potential lll into potential Il.ever, potential Ill seems to yield a better folding free energy
But, to transform potential Il into |, one needs to make the estimation for proteins in an apolar medium, such as membrane
approximationP(t,a) = P(t;)P(a) twice, thereby increasing the proteins.
error and explaining the larger difference between potentials | Similar results are obtained with the algorithm predicting
and 1l than between | and Il or Il and Il stability changes upon single-site mutations. The threecC
Contrary to the &C~ distance potentials where types 1to Il potentials | to Il are used in turn to predict the folding free
could be related to the varying importance of hydrophobic arghergy changes of21 mutations of fully buried residues, and
electrostatic interactions, there seems to be no physical inter- the computed values are correlated with the experimental one
pretation for the different torsion potentials | to Ill. We can onlyOn the average, we find that potential | performs better on this
give a statistical interpretation, which is that the measured corre-  set than potential I, which performs better than potential Il.
lations are between two residues,g,) and a torsion angle do- The correlation coefficient between measured and computed
main () in torsion potential |, and between a residag &nd a changes in folding free energies is indeed equal to 0.78, 0.74
residue and a torsion angle domaina() in potential Il. In po- and 0.67 for potential I, Il and IIl, respectively.
tential Ill, the correlation between a residug) (and a residue Restricting the setl@l mutations to the subset of 75 muta-
and a torsion angle domait,4,) is compared to the correlation tions where both the mutated and mutant amino acids are hy-
between a residuea() and a torsion angle domait)( It seems drophobic yet increases the difference in performance of the po-
at first sight that the definition of torsion potential | is the mostentials: the correlation coefficient becomes equal to 0.63, 0.50
meaningful; this will be confirmed in the subsequent sections. and 0.22 for potentials I, Il and Ill. In contrast, on the 46 remain-
ing mutations, which do not involve purely hydrophobic interac-
Testing the predictive power of the different potentials. tions, the three potentials behave roughly equally well, with cor-
Structure prediction algorithmsTo compare the predictive relation coefficients of 0.78, 0.75 and 0.79. On the subset of
power of the different types of distance and backbone torsidhese 46 mutations where the mutant or mutated amino acids (or
potentials and to analyze the effect of the modification of the both) are charged, the correlation coefficient is equal to 0.82,
balance between the dominating interactions, two prediction &-78 and 0.83. Thus, potential | is only superior for hydrophobic
gorithms are used. The first, called metaFoR@][is a native interactions; for non-hydrophobic interactions potentials | and
fold recognition algorithm, which proceeds by threading sdi perform nearly equally well, with even a slightly better score
guences over all the structures from a dataset, without allowing for potential Ill.
insertions and deletions in the sequence, and identifies native Predictive power of the different types of backbone torsion
sequence-structure matches on the basis of mean force potaoientials.To test the predictive power of the backbone torsion
tials. To limit computer time, we use a smaller set than that us@dtentials | to 11l given by Eqnsi{7—19), we use the algorithm
for deriving the potentials. It containst1 protein chains from that predicts the stability changes of single-site mutations on a
the Brookhaven databank [28], whose structure has been detst of 106 mutations of solvent accessible residues. The results
mined by X-ray crystallography to better than 2.5&solution, obtained with potentials | and Il are almost similar: the correla-
and which exhibit less than 20% sequence identity (see [32] foon appears to be good except filf mutations— the same for
a list). potentials | and IlI- that are situated far from the regression
The second prediction algorithm evaluates stability changése; as described in1p], these mutations seem to perturb the
upon point mutations on the basis of database-derived potentials backbone conformation or to involve atypical interactions for
[10, 11]. The computed differences in folding free energies besurface residues. On the 96 remaining mutations, the correlation
tween mutant and wild-type structures are compared to experi- coefficients between computed and measured folding free er
mentally measured values. Two sets of mutations are used: aagly changes are equal to 0.85 and 0.84 for type | and type Il
of 106 mutations of surface residues with solvent accessibility potentials, respectively. Potential Il performs thus slightly less
of at least 50%, whose folding free energy difference has bewmll than potential I, but remains predictive. The performance
shown to be well predicted by backbone torsion potentitd$,[ of potential Ill, in contrast, is not good at all. Its correlation
and a set ofi21 mutations of fully buried residues with solventcoefficient is indeed equal to 0.45, thereby excluding this poten-
accessibility between 0 and 20%, whose folding free energy dif- tial for prediction purposes. Because this potential does not seen
ference is well estimated by“@+ distance potentialsif]. to have a physical interpretation, we do not see on which subset
Predictive power of the different types of distance potentialsf mutations it could perform better.
Using in turn the three €C* potentials | to Ill, given by Using the native fold recognition algorithm metaFoRe, the
Eqgns (4—16), in the fold recognition algorithm metaFoRe, we same trend is observed. Type | torsion potential allows us to
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recognize the native structure of 76% of the database proteins, 1.0 —————
which is a very high score if one remembers that this potential
describes only local interactions along the chain, known to be
unable to fold proteins. Type Il potential recognizes 59% of the
proteins and type Il potential only 29%; they are thus signifi-

cantly less well performing than type | potential.

05|

o
)
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o

.

Robustness of database-derived potential3he dependence of
knowledge-based potentials on the characteristics of the proteins

large proteins
Ly
o [$)]

from which they are derived is investigated. The considered -1.5¢ 1
characteristics are the length of the amino acid sequence, the 00 e
secondary-structure content and the amino acid composition. For 250 1510 205 00 05 1.0
this analysis, the protein structures from the dataset are sorted small proteins
as a function of one of these characteristics and are divided into @
three subsets, differing with respect to that characteristic. For
example, for analyzing the dependence on the chain length, the 15
dataset structures are sorted according to the length of the pro-
tein to which they belong and divided into three subsets contain- , 1ol
ing small, medium-size and large proteins, respectively. The di- k=
vision into three subsets is performed in such a way that the %’ 051
number of residues in each subset is closd/® of the total g
number of residues. g 00
The effective potentials are derived separately on the three 5_0.5
subsets. The difference between them is estimated by correlating
the energy values of all sequence elements and structural states -1.0]
computed on one subset, with the equivalent values computed
on another subset. The energy values computed from less than -15
five observations are not taken into account in the correlation, -1.5-1.0 -05 00 0‘_5 10 15
to avoid non-physical sparse data effects. To render the depen- small proteins
dence of the potentials as clear as possible, the correlations are (b)

performed on the potentials derived from the two subsets that i i
differ most with respect to the considered characteristic. For thid- 3. Correlation between type | potentials computed from the sub-

. . . set of small proteins and the subset of large proteinsThe regression
protein length, for example, it amounts to correlate the potenthiﬁes are computed using the algorithm of least rectangles (Eqra2).

derived from the subsets of smallest and largest proteins. 4y Type | backbone torsion potential (EqF). Each point represents the
The linear regression lines are computed using the algorithgiding free energy value/G of an amino acid pairg,a) and a torsion

of least rectangles [33], which determines the coeffici@sid angle domain.. To avoid overloading the picture, only the energy values

b of the regression ling = a+ bx so as to minimize the sum of for the residue pairsa(a,) contained in a sequence window-[1,i+1]

the surface areas of the rectangles: around residué are considered. The equation of the regression line is
N y = 1.01x and the correlation coefficient is equal to 0.9b) Type | C-
2 Iy, —a—bx] | % — yi—a (20) C* distance potential (Eqtd). Each point represents the folding free
- L b energy valuedG of an amino acid pairg,a,) and an inter-€ distance

d;. The equation of the regression lineyis= 0.85<—0.01 and the corre-
wheren is the number of points. This algorithm ensures that thetion coefficient is equal to 0.92.
optimal regression line is independent of the choice ofxthed

variables, contrary to the usually employed algorithm of leas . . . -
gquares. The coeffi%ienh;andb thgt mir?im)i/ze qun (20) are otf the torsion potential, the correlation coefficient between the
energy values computed from the set of smallest and largest pro-

n teins is high (0.9) and the slope of the regression line is almost
E (y. — (y)? equal tol (Table1 and Fig. 3a). In the case of the-C~ poten-
-1 (21) tial, the correlgtion' cogfficient is also high (0.92),. bu.t.the slope
2 (% — () of the regression line is equal to 0.85 and thus significantly de-
P parts from1 (Table 1 and Fig. 3b). This means that when the
a=q) —bx 22) energy values are computed from large proteins, they are on the
average smaller, by a factor of 0.85, than those computed from

where(x) and(y) denote the mean of the values and; values, small proteins. Furthermore, as the correlation coefficient is
respectively. high, the “@C* potentials computed from the set of small and

The considered mean force potentials are those describeddrge proteins have similar shapes; the dependence on protein
the previous sections: the three types @f(@ distance poten- size seems thus to reduce to the multiplication by a global factor,
tials given by Eqns14—16) and the three types of backboneandependently of the particular amino acids and distance range.
torsion potentials given by Eqn${—19). The results are sum- However, a detailed analysis shows that the dependence on
marized in Tablel and are described below. protein size of type | GCr potentials is not completely indepen-

Dependence on protein lengthet us consider first the back-  dent of the residue pairs (Big-or example, the lle-Val poten-
bone torsion and ‘€C* distance potentials of type I. These twatial, illustrating the potential of hydrophobic residue pairs, does
potentials are found to exhibit somewhat different dependences not depend at all on protein length. The same is true for the
on the length of the proteins from which they are derived: th&sp-Ser potential, with one charged and one hydrophobic resi-
torsion potential is almost totally independent of protein length  due. The potentials between two charged residues differ more
whereas the €C* potential slightly depends on it. In the casesignificantly. In particular, when the charges are of opposite
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Table 1. Dependence of mean force potentials on the characteristics of the proteins from which they are derivegéor each potential, the
correlation coefficient between the energy values computed from the two protein subsets that differ most with respect to the considered characteristi
is given, as well as the slope of the regression line (in parentheses). The considered characteristics are the length of the protein chain, the percentz
of helices computed by DSSP [34], the percentagg-sfructures computed by DSSP [34], the percentage of apolar residues (Ala, Cys, lle, Leu,
Met, Phe, Tyr, Trp, Val), and the percentage of charged residues.

Potential Correlation coefficent for
length percentage helix percentggstructure percentage apolar percentage charged

C-C- I 0.92 (0.85) 0.89 1.06) 0.89 (0.95) 0.891(02) 0.89 (.10)

Il 0.86 (0.91) 0.83 (1.00) 0.83 (0.99) 0.831(00) 0.83 (.03)

Il 0.79 (0.93) 0.74 (0.96) 0.751(05) 0.75 (0.98) 0.76 (0.95)
Torsion I 0.9 (0.99) 0.83 (.08) 0.84 (0.95) 0.881(03) 0.89 (.06)

Il 0.63 (1.01) 0.53 (1.03) 0.54 (0.99) 0.591(02) 0.59 (.04)

1] 0.35 (1.02) 0.26 (.03) 0.27 (0.97) 0.321(03) 0.32 (.05)

sign, as in the Asp-Arg pair, the potential presents a deeper mini-  protein length observed for derivation | disappears for deriva-
mum in large than in small proteins. This can be explained Hions Il and Ill. In contrast, for the Asp-Ser pair, potential IlI
the fact that in small proteins charged residues are often located exhibits a dependence on protein length, whereas potentials
at the protein surface and that the formation of a salt bridge &d Il do not. The way potentials are normalized can thus affect
much less stabilizing for solvated charged residues than for their dependence on a given characteristic.
charged residues buried in the protein cor¢][3he Cys-Cys This detailed analysis shows that the dependence of poten-
potential presents a pronounced minimum for both small and tials on protein size may be vanishing, very limited or rather
large proteins, but the minimum is deeper for small proteinfarge according to the type of potential and the normalization
This reflects the fact that small proteins are much more fre- scheme. This conclusion explains the apparent disagreement be
guently stabilized by disulfide bridges. tween earlier studies, where distance potentials were found
Thus, according to the residue pair, type 4@ potential either to be independent on protein length [26], or to strongly
computed from large proteins is slightly larger, equal or smallelepend on it [25]. We would like to add that a dependence on
in absolute value than that derived from small proteins. On the  protein length can also appear for technical reasons, if one is no
average, it is somewhat smaller. This result can be interpreteareful when deriving the potentials. In particular, it must be
as reflecting the fact that the stability of small proteins requires mentioned that the aforementioned results“f@-ttista@nce
optimal residue-residue interactions, whereas large proteins qaotentials are not obtained from the complete dataset of 38
accommodate a larger number of interactions that are neither proteins but from the subset containimgptteeeths com-
very favorable nor very unfavorable. posed of a single chain. When considering the full set mixing
Type Il and type Il potentials are found to depend much single-chain and multi-chain proteins, a significant dependence
more on protein length than type | potentials (Tabje This is of type | C-C* potential on protein size is found: the average of
especially true for backbone torsion potentials. The correlation the energy differences computed from large and small proteins i
coefficients between energy values derived from large and smeatjual to —0.32 (instead of 0.Dfor single-chain proteins), and
proteins are as low as 0.63 and 0.35 for type Il and Ill torsion the average of the square of the energy differences is equal tc
potentials respectively. One of the reasons of this strong dep&h35 (instead of Q.1). The correlation coefficient is also slightly
dence seems to be that the average of the absolute values of type  lower (0.88 instead of 0.92). The reason of the observed dep
Ill energies are lower than the corresponding type Il valuedence on protein length is purely technical. When computing the
which are themselves lower than the type | values: they are-C‘@otential from multi-chain proteins, we take into account
equal to 0.07, @0 and 016. Type Il energy values seem closepairs of residues with one residue situated in one chain and the
to the precision level of the potentials, so that the poor correla- other in another chain. Since most of these residue pairs are nc
tion can be attributed to noise effects. The lack of robustnessiofcontact, especially when the chains form different domains,
type Il and particularly type Il torsion potentials can be taken the inclusion of these pairs amounts essentially to populating the
as an additional indication that these potentials have no physicain-contact bin, grouping the residues separated by more than
significance. 8 A This population is not counterbalanced by a population in
In the case of the «=C+ potentials, the dependence of type lithe other bins because, when the sequences of the different
and type Il potentials on protein size is measured by correlation  chains are homologous, pairs of residues contained in the sam
coefficients of 0.86 and 0.79 (Tablg. The dependence is thuschain are counted only once. As a result of the higher population
more limited, though larger than that of type 4-C potential. in the non-contact bin, all the energy values are shifted by a
These results are consistent with the fact that the mean of thesitive number. It has to be stressed that for the torsion poten-
absolute values of type I, Il and Ill energies are equal to 0.23, tial, the dependence on protein length is independent of whethe
0.36 and 012, respectively, and thus larger than the correspondingle-chain or multi-chain proteins are used.
ing torsion energy values. Furthermore, the slopes of the regres- Dependence on secondary structure conténtanalyze the
sion line are larger for the type Il and Il potentials (0.8nd dependence of the potentials on the secondary-structure content,
0.93) than for the type | potential (0.85), thereby indicating that the proteins from the dataset are sorted according to the propor-
the dependence on protein length of type Il and H{@ poten- tion of their residues that are in helical conformation, using the
tials does not reduce to the multiplication by a global factor, as  definitions oDitionary of secondary structure in proteins
it is the case for type | €C* potential. (DSSP) [34]. Similar results are obtained when sorting the pro-
That types I, Il and Ill @-C* potentials exhibit different de- teins according to the fractioff-structure; the set containing
pendences on protein length is visible in FigFor the Asp-Arg the largest proportion of helices roughly coincides with the set
pair, the difference is particularly marked: the dependence on containing the smallest propoftistmuaftures.
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Both backbone torsion and@* potentials of type | present in particular for evaluating stability changes upon mutation of
a small dependence on the secondary-structure content, whittarged residues and for fold recognition of protein chains inside
does not simply reduce to the multiplication by a global factor. membranes where the hydrophobic effect is weakened. There
The correlation coefficient between energy values derived froare thus specific proteins, and specific protein regions, where
helical versus non-helical proteins is indeed equal to 0.83 and-C*@otential 11l performs better than the two others. The rela-
0.89, for the torsion and“AC* potentials respectively, and thetive performance of the different distance potentials is thus
slope of the regression line .08 and1.06 (Table1). It is context dependent.
noteworthy that the €C+ distance potential depends somewhat For the backbone torsion potentials, the conclusions are
less on the secondary-structure content of the proteins from somewhat different. Type | torsion potential is found to be very
which they are derived than the backbone torsion potential; thpewerful, especially for predicting stability changes upon muta-
can be related to the fact that the definition of torsion potentials tion of surface residues, whereas type Il torsion potential, and
involves domains of backbone torsion angles, which are directly a lesser extent type Il potential, have a much lower prediction
related to secondary structures. score. This does not seem to differentiate torsion potentials from
Type Il and Il potentials appear to depend much more o@+-C+ potentials. What does differentiate them, however, is that
the secondary structure content than the type | potentials, as ob- we were unable to find subsets of residues, or particular prote
served for protein length. Again, the dependence is much largarvironments, where torsion potential Il performs better than
for the backbone torsion potentials, for the same reasons as those torsion potential 1. This leads to the tentative conclusion th:
described above. only type | backbone torsion potentials is useful for prediction
Dependence on amino acid compositi®imilar results are  purposes.
obtained for the dependence of the potentials on the amino acid The second main conclusion is that database-derived poten-
composition. The proteins from the dataset are sorted either ac- tials depend either weakly or strongly on the characteristics ©
cording to the fraction of their residues that are charged, or atwe proteins from which they are derived, according to the type
cording to the fraction of their residues that are hydrophobic. of potential and normalization scheme. Backbone torsion poten-
The dependence is non-zero but rather limited for type‘d Ctials Il and Il show a strong but irrelevant dependence, as they
C and backbone torsion potentials, as measured by correlation have a weak predictive value and seem invalid for prediction
coefficients between 0.88 and 0.89 and slopes betwehand For the other potentials, i.e. type | backbone torsion and type
1.10 (Table1). For type Il and Il C-C* and backbone torsion —lll C#-C* potentials, the observed dependence is quite limited
potentials, on the contrary, the dependence is much more salnd seems insignificant compared with the imperfections due to
stantial. the various approximations made when deriving the potentials,
such as the assumption that all different interactions are indepen-
dent. It is certainly not the dependence of these potentials on
DISCUSSION database size, secondary-structure content or amino acid compo-
sition that is responsible for their limited performance in struc-
Two main conclusions can be drawn from the above analytre prediction. To confirm this statement unambiguously, we
sis. First, according to the chosen correction for the many-body used the fold-recognition procedure metaFoRe in conjunction
effect responsible for the screening out of interactions betweerith type I-1lIl C#-C* potentials and type | torsion potential,
amino acids, the derived“@ distance potentials attach dif- where these potentials are derived either from the set of large
ferent weights to the different types of interactions, in particulgroteins or from the set of small proteins. The results so obtained
to hydrophobic and electrostatic interactions-@ potential 1 is  are almost undistinguishable from those shown before, where
dominated by the hydrophobic effect, while interactions betwedhe potentials are computed on the full dataset. Thus, for all
oppositely charged residues are predominant in potential Ill; po-  practical purposes, these potentials can be considered as ind
tential Il is the average between these two extremes. By analygendent of the characteristics of set of proteins from which they
ing existing contact potentials, Godzik et al. [23] already high- are derived, provided that the set contains sufficiently well re-
lighted the existence of two groups of distance potentials, solved crystal structures with low or no sequence identity.
which the most favorable interactions are either between hy- It becomes thus increasingly clear that there does not exist
drophobic amino acids or oppositely charged residues>‘@o- single database-derived potential of universal predictive value.
tential | seems thus to belong to Godzik’s first group and poten-  The dominant interactions vary according to the position and
tial 1l to the second. What we have shown here is that thesgmvironment in the parent protein, with the consequence that
different potentials result from different ways of correcting for  different definitions of distance potentials are better suited to
the many-body effect. In potential I, the state with two givewifferent protein environments and that backbone torsion poten-
amino acids separated by a certain distance is compared with tials perform better at the protein surface whereas distance p
the state with any two amino acids separated by that distantentials perform better in the core. Of course, several potentials
As charged residues are generally solvated and thus make few do well in simple tests such as native fold recognition, but ir
contacts, this normalization does not give much weight to elemore demanding tests, not any of the potentials does show a
trostatic interactions. In potential Ill, the state with two given satisfactory performance. The main problem seems to be that
amino acids separated by a certain distance is compared wtitle optimal potential, defined by the interactions that have to be
the state with each of the two amino acids separated by that considered explicitly and those that may be averaged over, an
distance from any other amino acid. Here, interactions betwebn the manner of extracting the relevant sequence-structure cor-
oppositely charged residues are very favorable, as they are com-  relations from the bulk interactions, is highly context dependent
pared with interactions of each of the charged residues withis different at the surface and in the core, and it depends on the
other residues. types of residues and secondary structures involved. The issue
The performances of the* distance potentials I, Il and remains thus to design a sufficiently accurate potential function,
IIl'in native fold recognition and prediction of stability changes or context-dependent combination of potential terms.
upon mutation are found to differ, potential Il having the lowest
average score. However, a detailed analysis reveals that potentialwe thank Christian Lemer for discussions in the initial stages of this
Il performs better than potentials | and Il in some specific casesprk. D. G. is a Research Assistant at feends pour la Formation a
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