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Different derivations of knowledge-based potentials and analysis
of their robustness and context-dependent predictive power
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The possibility of defining effective potentials from known protein structures, which are sufficiently
accurate to be used for protein-structure-prediction purposes, is investigated. Three types of distance
potentials and three types of backbone torsion potentials are defined, based on propensities of amino acid
pairs to be separated by a given spatial distance or to be associated to a backbone torsion angle domain.
Their differences reside in the way the physical correlations between the amino acids and the conforma-
tional states are extracted from the bulk interactions due to the presence of many residues in a protein.
For the distance potentials, a physical meaning can be associated to the different definitions, given that
some of the potentials favor hydrophobic interactions and others favor interactions between oppositely
charged residues. The performance of the different torsion and distance potentials in structure prediction
procedures, in particular native-fold recognition and evaluation of protein stability changes upon point
mutations, is analyzed. It appears to differ according to the specific proteins and protein environments.
In particular, one of the distance potentials performs better than the others for membrane proteins and in
protein regions involving charged residues, but less well in other protein regions. Furthermore, the depen-
dence of the potentials on the characteristics of the proteins from which they are derived is analyzed. It
is shown that the dependence of the potentials on the length, amino acid composition and secondary-
structure content of the proteins from the dataset is either very limited or rather strong, according to the
type of potential. The results obtained suggest that the main problem limiting the performance of data-
base-derived potentials is their lack of universality : each potential describes with satisfactory accuracy
only the interactions present in certain protein environments.

Keywords:folding free energy; fold recognition; stability changes upon mutation; protein length.

The success of protein-structure prediction from the amino rived from joint frequencies of sequence elements and structural
acid sequence is limited by deficiencies in the conformationalstates in the dataset, e.g. from frequencies of amino acids in
search procedures aiming at finding the global free energy mini- contact [6,15, 16], separated by a certain distance [17, 18],
mum and in the effective potentials used to evaluate the freesolvent accessible [18, 19] or adopting certain values of back-
energies of the conformations. Recently, a number of solutionsbone dihedral angles [20, 21]. These potentials are particularly
to the former problem have been proposed which suggests thewell suited for structure prediction, where certain degrees of
possibility of getting a satisfactory solution in the near future.freedom may be neglected or must be neglected to keep com-
The most promising procedure is constraint-based exhaustiveputer time within reasonable limits.
search [1, 2] or branch-and-bound algorithm [3]. It consists of Database-derived potentials are mean force potentials; they
an ‘intelligent’ search, generating first the structures that arethus focus on certain interactions and average out the others.
most likely to be the lowest energy ones. It has the non-negligi-Their derivation is moreover subject to several approximations
ble advantage of yielding the global minimum with respect to awhose justification is not always obvious [22]. In spite of this,
given energy function, usually in a reasonable time. the results that these potentials yield for structure prediction are

The second problem, the design of a satisfactory effectivesurprisingly good at first sight. In native fold recognition pro-
potential, seems less obvious to solve. Most effective potentialscedures in particular, they perform quite well. This test has how-
developed for structure prediction purposes, in particular foldever been shown to be relatively easy. It constitutes only a zero-
recognition [4, 5],ab initio structure prediction [6, 7] and eval- test, which many potentials are able to fulfill [18]. Database-
uation of stability changes upon mutation [8211], are derived derived potentials perform less well in homologous fold recogni-
from a dataset of known protein structures. They are obtainedtion or ab initio prediction, for example. The shortcomings of
either by optimization of a pre-determined potential function tothe potentials have now been established unambiguously, owing
known protein sequence and structure data [12214], or are de- to the development of search procedures that are able to reach

with certainty the global energy minimum. Using these pro-
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Recently, several analyses have been devoted to evaluate theE-mail : mrooman@ulb.ac.be
Abbreviation.DSSP, dictionary of secondary structures in proteins.quality of database-derived potentials. In particular, Godzik et
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al. [23] analyzed several contact potentials published in the liter- occurrence ofs andc. However, it has been shown that they are
not equal [22], essentially because the probabilitiesP do notature and showed that some of them differ drastically, as moni-

tored by correlation coefficients of less than 0.5; they also found contain a correction for the many-body effect arising from the
presence of other residues than those ins and screening out thethe surprising and unexplained result that crystallographic and

NMR structures yield very different energy parameters. Continu- correlations betweensandc. This biasing effect is clearly under-
stood when the structural statesc are ranges of inter-residue dis-ing this analysis, Skolnick et al. [24] studied the importance

of neglecting chain connectivity in deriving effective potentials. tances. In that case, the most frequent statesc are those in which
residues are not in contact. Thus, if the probability of finding aUsing a model of short chains composed of two types of mono-

mers on a square lattice, Thomas and Dill [25] investigated the sequenceS in a conformationC would be expressed as a product
of the P(c|s) values, the most frequent conformationsC woulddependence of contact potentials on the set of proteins from

which they are derived, and came to the conclusion that the be fully extended. This is in obvious contradiction with observa-
tion, andΠ(c|s) is thus not equal toP(c|s).dependence is very strong. This result was contradicted by Bahar

and Jernigan [26], who observe only a weak dependence. We dispose of two conditions to determine the form of the
Π values: (a) theΠ values correspond to probabilities definedWe attempt here to further clarify the meaning and quality

of effective potentials. Following the formalism described earlier from relative frequencies ofs andc in the dataset and (b) they
must satisfy the conditionΠ(c) 5 constant. The first conditionby one of us [22], we propose different definitions of distance-

dependent residue-residue interaction potentials and of backbone simply amounts to requiring that theΠ values are derived from
the structure dataset. The second condition corresponds to thetorsion potentials, which correspond to different ways of extract-

ing the relevant sequence-structure correlations from the bulk hypothesis that protein conformations are exclusively deter-
mined by their amino acid sequence, thus that all the informationinteractions. These approximations lead to potentials where the

correlations between residues and/or structural states are dif- about the tertiary structure is encoded in the sequence. The form
of Π(c|s) proposed in [22], which satisfies these two conditions,ferently taken into account. The predictive power of the different

potentials is compared, using native fold recognition procedures is
and prediction algorithms of stability changes upon point mu-

Π (c|s) 5
g(c,s)

o
c

g(c,s)
, whereg(c,s) 5

P(c,s)

P(c)P(s)
. (1)tations. Furthermore, the robustness of database-derived poten-

tials against modifications of the dataset from which they are
derived is examined by varying the length, secondary-structure

The probability of finding a sequenceS in a conformationcontent and amino acid composition of the dataset proteins. Fi-
C, approximated by the product of theΠ values, is related tonally, the implications of these results for the possibility of de-
the free energyGS(C) and the partition functionZS by Boltz-fining sufficiently accurate database-derived potentials are dis-
mann’s law:cussed.

GS(C) < 2kTo
i,j

log Π (ci|sj) 2 kT log ZS (2)

RESULTS where k is Boltzmann’s constant,T a conformational temper-
ature [27] and the indicesi and j indicate the positions of theDeriving potentials from known protein structures. Formal-
structural states and sequence elements along the sequence. Asism. To derive effective potentials from known protein struc-
this expression contains the partition function, it cannot be com-tures, it is necessary to make several basic hypotheses. First, it
pletely evaluated. The quantity that can be evaluated is the fold-must be assumed that protein sequencesS can be divided into
ing free energy∆GS(C), defined as the free energy differencesequence elementss and that conformationsC can be described
between a conformationC and a denatured state. Following [22],in terms of conformational statesc. Typically, sequence elements
we define the denatured state as a state in which sequence ands are single residues or residue pairs, and conformational states
structure are uncorrelated; when the conformational statesc arec are ranges of backbone dihedral angle values, of spatial dis-
inter-residue distances, this state corresponds to the ensemble oftances between residues or of solvent accessibilities. Further-
conformations with no residue-residue contacts. This yieldsmore, it must be assumed that the relative frequency of these

sequence elements and conformational states in the ensemble of
native protein structures is equal to their relative frequency in ∆GS(C) < 2kTo

i,j
log g(ci,sj) 5 2kTo

i,j
log

P(ci,sj)

P(ci)P(sj)
. (3)

the equilibrium conformations of a single protein. Such poten-
tials may be considered as mean force potentials, because some

Other solutions.We now show that, when the sequence ele-of the degrees of freedom are averaged out. For example, when
mentss are amino acid pairs (aj,ak), Eqn (1) is not the only solu-the conformational states are domains of backbone dihedral an-
tion for Π(c|s) that satisfies the aforementioned conditions, ingles, all the side chain degrees of freedom and the backbone
particular Π(c) 5 constant. Indeed, definingΠ in terms of aones that correspond to the same domain are averaged out.
correlation functiong:When they are ranges of spatial distances between, say, Cβ

atoms, all the main and side chain degrees of freedom that are
consistent with the distance constraints are averaged out. Π (ci|aj,ak) 5

g(ci,aj,ak)

o
ci

g(ci,aj,ak)
(4)

Under these assumptions, the conditional probabilityΠ(C|S)
of finding a sequenceS in a conformationC can be approxi-
mated as a product of conditional probabilitiesΠ(c|s) of the the following expressions represent different solutions of
sequence elementss and conformational statesc included in S Π(ci|aj,ak):
and C. An estimation of these probabilitiesΠ(c|s) can be ob-
tained in terms of probabilitiesP of s and c approximated by

g(ci,aj,ak) 5
P(ci,aj,ak)

P(ci)P(aj,ak)
I. (5)their relative frequencies observed in the dataset of known pro-

tein structures. It is tempting to suppose the conditional proba-
bilities Π(c|s) andP(c|s) to be equal, whereP(c|s);P(c, s)/P(s) g(ci,aj,ak) 5

P(ci,aj,ak)

P(ci)P(aj)P(ak)
Ia. (6)

with P(s) the probability ofs andP(c, s) the probability of joint
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Protein structure data.The dataset used to derive the mean
g(ci,aj,ak) 5

P(ci,aj,ak)

[P(ci)P(aj,ak) 1 P(aj)P(ci,ak)1P(ak)P(ci,aj)]/3
Ib. force potentials contains 381 protein chains from the Brookha-

ven databank [28]. It corresponds to the set obtained by the pro-(7)
cedure pdb—select [29, 30] on the databank version of 25 May

g(ci,aj,ak) 5
P(ci,aj,ak)

[P(aj)P(ci,ak) 1 P(ak)P(ci,aj)]/2
II. (8) 1996, with sequence identity lower than 25% and with NMR

structures and structures with resolutions larger than 2.5 A˚
dropped. The set is sometimes restricted to the 217 proteins con-

g(ci,aj,ak) 5
P(ci,aj,ak)

[P(aj,ak)P(ci,aj)P(ci,ak)]/[P(ci)P(aj)P(ak)]
.III. (9) stituted of a single chain, for reasons explained below.

Distance potentials.Three types of distance potentials are
The numerators are identical in these five expressions and repre-obtained by considering in Eqns (10212) the conformational
sent the probability of joint occurrences of two amino acidsaj statesc to be inter-residue distancesdij, measured between the
andak and a conformational stateci. The denominators representtwo amino acidsai andaj :
different ways of approximating the correlations betweenaj, ak

I.and ci present in the numerator. If the eventsaj, ak and ci were
independent, these five expressions would all be equal to one.∆GS(C) < 2kTo

i <j

log
P(dij ,ai,aj)

P(dij)P(ai,aj)
(14)

Expression I is equivalent to Eqn (1) and corresponds to the
solution proposed in [22]. In this case, the correlation function

II.g measures the correlations between the residue pairs (aj,ak) and
∆GS(C) < 2kTo

i <j

log
P(dij,ai,aj)

[P(ai)P(dij ,aj) 1 P(aj)P(dij,ai)]/2
(15)the conformational stateci. Expression Ia is very similar to I, as

the joint probabilityP(ai,aj) of amino acid pairs is not very dif-
ferent from the productP(ai)P(aj) of the probabilities of the indi- III.
vidual amino acids ; we checked that the correlation coefficient

∆GS(C) < 2kTo
i<j

log
P(dij,ai,aj)

[P(ai,aj)P(dij,ai)P(dij,aj)]/[P(dij)P(ai)P(aj)]
.betweenP(ai,aj) and P(ai)P(aj) is equal to 0.98 and that the re-

gression line has a slope of 0.98. Expressions Ib, II and III are
(16)obtained by approximatingP(ci,aj,ak) in different ways in terms

of P(aj,ak), P(ci,ak) and P(ci,aj). In expression II, the measuredThe inter-residue distancesdij can be computed between CA
correlation is between (ci,aj), i.e. a conformational state at posi-atoms, Cβ atoms, side-chain centroids or any other atoms or
tion i and an amino acid at position j, andak, i.e. an amino acid pseudo-atoms, yielding somewhat different potentials [18]. Here
at position k. Expression Ib can be considered as the averagewe choose to compute the distancesdij between average side-
between I and II. Expression III is much more different :g mea- chain centroids, noted Cµ, defined as the average coordinate cen-
sures the strength of the triplet correlations (ci,aj,ak) relative to ters of all side-chain conformations of a given amino acid type
the pair correlations (aj,ak), (ci,aj) and (ci,ak). observed in the protein dataset [18] ; for Gly residues, the Cµ

Further variations can be constructed by replacing in II andand CA positions coincide. The inter-Cµ distances between 3 A˚
III P(aj,ak) by P(aj)P(ak). Apart from these variations, Eqns (52 and 8 Å are divided into 25 bins of 0.2 A˚ width ; all distances
9) represent all the solutions that are symmetric in the aminoof more than 8 A˚ are merged into a single bin, and so are all
acidsaj andak and that do not take solvent molecules explicitlydistances of less than 3 A˚ . In deriving the potentials, pairs of
into account. Inserting these expressions into Eqn (3), we obtainconsecutive residues (j 5 i11) are not considered. For pairs
the folding free energy of types I, II and III : separated by126 sequence positions, probabilities are computed
I. separately, yielding six distinct potentials describing local in-

teractions along the chain. Pairs separated by more than seven
∆GS(C) < 2kTo

i,j,k

log
P(ci,aj,ak)

P(ci)P(aj,ak)
(10) positions along the sequence are all merged, leading to a non-

local interaction potential. The so-defined distance potentials are
II. referred to as Cµ-Cµ potentials.

Type I potential corresponds to the most widely used dis-∆GS(C) < 2kTo
i,j,k

log
P(ci,aj,ak)

[P(ak)P(ci,aj) 1 P(aj)P(ci,ak)]/2
(11)

tance potential [17, 18], type III is similar to the residue-medi-
ated effective contact energies of Bahar and Jernigan [26] andIII.
type II has to our knowledge never been considered before. The

∆GS(C) < 2kTo
i,j,k

log
P(ci,aj,ak)

[P(aj,ak)P(ci,aj)P(ci,ak)]/[P(ci)P(aj)P(ak)]
. different behavior of these potentials is exemplified in Fig.1,

for selected residue pairs. It appears that potentials I and III
(12) differ most and that potential II is in some way the average

between the two others.In what follows, only these three types of folding free energies
Potentials I and III favor different kinds of interactions. Po-will be considered. The energies obtained with expressions Ia

tential I favors hydrophobic interactions, as clearly seen in Fig.1and Ib (Eqns 627) are dropped, because they are not sufficiently
for the Asp-Arg and Ile-Val pairs. In contrast, potential III favorsdifferent from those obtained with expressions I and II.
salt bridge interactions relative to hydrophobic interactions. ItCorrection for sparse data.Due to the limited dataset, the
nearly vanishes for all hydrophobic pairs (e.g. Ile-Val and Phe-statistics are not always reliable, especially for rare amino acid
Tyr) and has a pronounced minimum for oppositely charged resi-pairs and conformational states. To compensate for this, we use
dues (e.g. Asp-Arg). It has, moreover, a less pronounced mini-a correction which is a generalization of the correction originally
mum than potential I for disulfide bridges (Cys-Cys) and a lessintroduced in [17]. It amounts to replace the correlation function
pronounced maximum for equally charged residues (e.g. Asp-g given in Eqns (529) by the following expression:
Glu). For charged-polar interactions (e.g. Asp-Ser) potential III

g(ci,aj,ak) → σ 1 n(aj,ak)g(ci,aj,ak)

σ 1 n(aj,ak)
(13) is favorable whereas I is unfavorable.

It is difficult to determine which of these mean force poten-
tials is closest to the true potential, as we do not know exactlywheren(aj,ak) denotes the number of occurrences of the amino

acid pair (aj,ak) in the dataset andσ is a parameter that we what the true potential is. For instance, the importance of elec-
trostatic versus hydrophobic interactions is not fixed throughoutchoose equal to 50, based on earlier tests [18].
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Fig.2. Type I (white rectangles), II (light grey rectangles) and III
(dark grey rectangles) backbone torsion potentials for selected
amino acid pairs. The folding free energies∆G are given for the six
backbone torsion domains corresponding to thetrans conformation, re-
ferred to as A and C for helical conformations with A beingA-helical
and C 310-helical, B and P for extended conformations with B corre-
sponding more specifically toβ-structures, and G and E for conforma-
tions with positivef-angle values [20]. The amino acid pairs are repre-
sented by the name of the two amino acids, sometimes separated by ‘•’
symbols to indicate unspecified amino acids along the sequence. The
underlined residues indicate the positions of the backbone torsion do-
mains whose energy values are computed.

Inserting these definitions into in Eqns (10212), we obtain three
types of backbone torsion potentials :

I.Fig. 1. Cµ-Cµ distance potentials derived from the protein subsets
containing small proteins (dashed line) and large proteins (solid ∆GS(C) < 2kTo

i,j,k

1

ζk

log
P(ti,aj,ak)

P(ti)P(aj,ak)
(17)

line). The folding free energies∆G are given as a function of the inter-
Cµ distanced (in Å), for six different amino acid pairs (6 rows) and for

II.potentials I to III (3 columns) defined by Eqns (14216). The inter-Cµ

distances are divided into bins of 0.2-A˚ width. The curves are slightly ∆GS(C) < 2kTo
i,j,k

1

ζk

log
P(ti,aj,ak)

[P(aj)P(ti,ak) 1 P(ak)P(ti,aj)]/2
(18)

smoothed for aesthetic reasons. The potentials shown correspond to
those describing non-local interactions along the chain (see text).

III.

∆GS(C) < 2kTo
i,j,k

1

ζk

log
P(ti,aj,ak)

[P(aj,ak)P(ti,aj)P(ti,ak)]/[P(ti)P(aj)P(ak)]
.

the proteins, but depends on the environment : solvent-accessible
(19)salt bridges are not very favorable energetically, whereas fully

buried ones are [31]. To give a more objective evaluation of The indicesi, j, k satisfy i28 < j < k<i 18 and cover a se-
quence window of17 residues;ζk is a normalization factor en-the mean force potentials, we use them in structure prediction

algorithms, as described in the next section. suring that the contribution of each residue in the window is
counted once and is equal to the window size except near chainBackbone torsion potentials.Backbone torsion potentials are

obtained by considering the conformational statesc to be do- ends. Only type I torsion potential (Eqn17) has been described
before [20, 22].mains of backbone torsion angles (φ, ψ, ω), notedt. As in Roo-

man et al. [20], we consider seven domains, six for thetrans These three types of torsion potentials are depicted in Fig. 2
for selected residue patterns. It is noteworthy that torsion poten-peptide bond conformation and one for thecis conformation.
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tials I and III differ most and that potential II is intermediate, find that potentials I, II and III identify the native sequence-
structure match for 83%, 80% and 52% of the dataset proteins,like observed for Cµ-Cµ potentials. The similarity between tor-

sion potentials I and II and between torsion potentials II and III respectively. Thus, on the average, potential I performs best and
potential III worst, and potential II performs nearly as well ascan clearly be seen when correlating their energy values for all

residue patterns and torsion angle domains. The correlation coef- potential I. However, though the average performance of poten-
tial III is rather low, in some specific cases it performs betterficients I2II, II 2III and I2III are indeed equal to 0.95, 0.94

and 0.88, respectively. It can also be noted that, in all depicted than the two other potentials. This is the case for chains L and
M of the photosynthetic reaction center (1PRC). This protein isexamples, the torsion angle domain of minimum (or maximum)

energy is the same for potentials I and II, but often differs for a membrane protein and its chains L and M, well recognized by
potential III, are situated inside the membrane. The two otherpotential III.

That the similarity is highest between potentials I and II and chains of the protein, C and H, situated at least in part outside
the membrane, are, in contrast, better recognized by potential I.between potentials II and III can also be deduced from their

definitions (Eqns17219). Potential II reduces to potential I if These results are easily understood if one remembers that
hydrophobic interactions have much less weight in potential IIIone makes the approximationsP(ti,aj) < P(ti)P(aj) andP(aj,ak)

< P(aj)P(ak). The latter condition is nearly exact, as mentioned than in potential I and II. It seems thus that potential I and II
are better suited for evaluating the folding free energy of non-above, but the former is not and measures the correlation be-

tween a single residue and a torsion angle domain. The same two membrane, globular proteins, with a hydrophobic core. How-
ever, potential III seems to yield a better folding free energyapproximations allow to transform potential III into potential II.

But, to transform potential III into I, one needs to make the estimation for proteins in an apolar medium, such as membrane
proteins.approximationP(ti,aj) < P(ti)P(aj) twice, thereby increasing the

error and explaining the larger difference between potentials I Similar results are obtained with the algorithm predicting
stability changes upon single-site mutations. The three Cµ-Cµand III than between I and II or II and III.

Contrary to the Cµ-Cµ distance potentials where types I to III potentials I to III are used in turn to predict the folding free
energy changes of121 mutations of fully buried residues, andcould be related to the varying importance of hydrophobic and

electrostatic interactions, there seems to be no physical inter- the computed values are correlated with the experimental ones.
On the average, we find that potential I performs better on thispretation for the different torsion potentials I to III. We can only

give a statistical interpretation, which is that the measured corre- set than potential II, which performs better than potential III.
The correlation coefficient between measured and computedlations are between two residues (aj,ak) and a torsion angle do-

main (ti) in torsion potential I, and between a residue (aj) and a changes in folding free energies is indeed equal to 0.78, 0.74
and 0.67 for potential I, II and III, respectively.residue and a torsion angle domain (ti,ak) in potential II. In po-

tential III, the correlation between a residue (aj) and a residue Restricting the set of121mutations to the subset of 75 muta-
tions where both the mutated and mutant amino acids are hy-and a torsion angle domain (ti,ak) is compared to the correlation

between a residue (ak) and a torsion angle domain (ti). It seems drophobic yet increases the difference in performance of the po-
tentials: the correlation coefficient becomes equal to 0.63, 0.50at first sight that the definition of torsion potential I is the most

meaningful; this will be confirmed in the subsequent sections. and 0.22 for potentials I, II and III. In contrast, on the 46 remain-
ing mutations, which do not involve purely hydrophobic interac-
tions, the three potentials behave roughly equally well, with cor-Testing the predictive power of the different potentials.

Structure prediction algorithms.To compare the predictive relation coefficients of 0.78, 0.75 and 0.79. On the subset of
these 46 mutations where the mutant or mutated amino acids (orpower of the different types of distance and backbone torsion

potentials and to analyze the effect of the modification of the both) are charged, the correlation coefficient is equal to 0.82,
0.78 and 0.83. Thus, potential I is only superior for hydrophobicbalance between the dominating interactions, two prediction al-

gorithms are used. The first, called metaFoRe [18], is a native interactions; for non-hydrophobic interactions potentials I and
III perform nearly equally well, with even a slightly better scorefold recognition algorithm, which proceeds by threading se-

quences over all the structures from a dataset, without allowing for potential III.
Predictive power of the different types of backbone torsioninsertions and deletions in the sequence, and identifies native

sequence-structure matches on the basis of mean force poten-potentials.To test the predictive power of the backbone torsion
potentials I to III given by Eqns (17219), we use the algorithmtials. To limit computer time, we use a smaller set than that used

for deriving the potentials. It contains141 protein chains from that predicts the stability changes of single-site mutations on a
set of106 mutations of solvent accessible residues. The resultsthe Brookhaven databank [28], whose structure has been deter-

mined by X-ray crystallography to better than 2.5-A˚ resolution, obtained with potentials I and II are almost similar: the correla-
tion appears to be good except for10 mutations2 the same forand which exhibit less than 20% sequence identity (see [32] for

a list). potentials I and II2 that are situated far from the regression
line; as described in [10], these mutations seem to perturb theThe second prediction algorithm evaluates stability changes

upon point mutations on the basis of database-derived potentials backbone conformation or to involve atypical interactions for
surface residues. On the 96 remaining mutations, the correlation[10, 11]. The computed differences in folding free energies be-

tween mutant and wild-type structures are compared to experi- coefficients between computed and measured folding free en-
ergy changes are equal to 0.85 and 0.84 for type I and type IImentally measured values. Two sets of mutations are used: a set

of 106 mutations of surface residues with solvent accessibility potentials, respectively. Potential II performs thus slightly less
well than potential I, but remains predictive. The performanceof at least 50%, whose folding free energy difference has been

shown to be well predicted by backbone torsion potentials [10], of potential III, in contrast, is not good at all. Its correlation
coefficient is indeed equal to 0.45, thereby excluding this poten-and a set of121 mutations of fully buried residues with solvent

accessibility between 0 and 20%, whose folding free energy dif- tial for prediction purposes. Because this potential does not seem
to have a physical interpretation, we do not see on which subsetference is well estimated by Cµ-Cµ distance potentials [11].

Predictive power of the different types of distance potentials.of mutations it could perform better.
Using the native fold recognition algorithm metaFoRe, theUsing in turn the three Cµ-Cµ potentials I to III, given by

Eqns (14216), in the fold recognition algorithm metaFoRe, we same trend is observed. Type I torsion potential allows us to
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recognize the native structure of 76% of the database proteins,
which is a very high score if one remembers that this potential
describes only local interactions along the chain, known to be
unable to fold proteins. Type II potential recognizes 59% of the
proteins and type III potential only 29%; they are thus signifi-
cantly less well performing than type I potential.

Robustness of database-derived potentials.The dependence of
knowledge-based potentials on the characteristics of the proteins
from which they are derived is investigated. The considered
characteristics are the length of the amino acid sequence, the
secondary-structure content and the amino acid composition. For
this analysis, the protein structures from the dataset are sorted
as a function of one of these characteristics and are divided into
three subsets, differing with respect to that characteristic. For
example, for analyzing the dependence on the chain length, the
dataset structures are sorted according to the length of the pro-
tein to which they belong and divided into three subsets contain-
ing small, medium-size and large proteins, respectively. The di-
vision into three subsets is performed in such a way that the
number of residues in each subset is close to1/3 of the total
number of residues.

The effective potentials are derived separately on the three
subsets. The difference between them is estimated by correlating
the energy values of all sequence elements and structural states
computed on one subset, with the equivalent values computed
on another subset. The energy values computed from less than
five observations are not taken into account in the correlation,
to avoid non-physical sparse data effects. To render the depen-
dence of the potentials as clear as possible, the correlations are
performed on the potentials derived from the two subsets that

Fig.3. Correlation between type I potentials computed from the sub-differ most with respect to the considered characteristic. For the
set of small proteins and the subset of large proteins.The regression

protein length, for example, it amounts to correlate the potentialslines are computed using the algorithm of least rectangles (Eqns 21222).
derived from the subsets of smallest and largest proteins. (a) Type I backbone torsion potential (Eqn17). Each point represents the

The linear regression lines are computed using the algorithmfolding free energy value∆G of an amino acid pair (aj,ak) and a torsion
of least rectangles [33], which determines the coefficientsa and angle domainti. To avoid overloading the picture, only the energy values
b of the regression liney 5 a1bx so as to minimize the sum of for the residue pairs (aj,ak) contained in a sequence window [i21,i11]

around residuei are considered. The equation of the regression line isthe surface areas of the rectangles :
y 5 1.01x and the correlation coefficient is equal to 0.91. (b) Type I Cµ-
Cµ distance potential (Eqn14). Each point represents the folding freeo

n

i51

[yi 2 a 2 bxi] Fxi 2
yi 2 a

b
G (20) energy value∆G of an amino acid pair (aj,ak) and an inter-Cµ distance

dij. The equation of the regression line isy 5 0.85x20.01 and the corre-
wheren is the number of points. This algorithm ensures that thelation coefficient is equal to 0.92.
optimal regression line is independent of the choice of thex and
y variables, contrary to the usually employed algorithm of least

of the torsion potential, the correlation coefficient between thesquares. The coefficientsa andb that minimize Eqn (20) are
energy values computed from the set of smallest and largest pro-
teins is high (0.91) and the slope of the regression line is almost
equal to1 (Table1 and Fig. 3a). In the case of the Cµ-Cµ poten-
tial, the correlation coefficient is also high (0.92), but the slopeb 5!o

n

i 51

(yi 2 kyl)2

o
n

i 51
(xi 2 kxl)2

(21)
of the regression line is equal to 0.85 and thus significantly de-
parts from1 (Table 1 and Fig. 3b). This means that when the
energy values are computed from large proteins, they are on the

a 5 kyl 2 b kxl (22) average smaller, by a factor of 0.85, than those computed from
small proteins. Furthermore, as the correlation coefficient iswherekxl andkyl denote the mean of thexi values andyi values,

respectively. high, the Cµ-Cµ potentials computed from the set of small and
large proteins have similar shapes; the dependence on proteinThe considered mean force potentials are those described in

the previous sections: the three types of Cµ-Cµ distance poten- size seems thus to reduce to the multiplication by a global factor,
independently of the particular amino acids and distance range.tials given by Eqns (14216) and the three types of backbone

torsion potentials given by Eqns (17219). The results are sum- However, a detailed analysis shows that the dependence on
protein size of type I Cµ-Cµ potentials is not completely indepen-marized in Table1 and are described below.

Dependence on protein length.Let us consider first the back- dent of the residue pairs (Fig.1). For example, the Ile-Val poten-
tial, illustrating the potential of hydrophobic residue pairs, doesbone torsion and Cµ-Cµ distance potentials of type I. These two

potentials are found to exhibit somewhat different dependences not depend at all on protein length. The same is true for the
Asp-Ser potential, with one charged and one hydrophobic resi-on the length of the proteins from which they are derived: the

torsion potential is almost totally independent of protein length due. The potentials between two charged residues differ more
significantly. In particular, when the charges are of oppositewhereas the Cµ-Cµ potential slightly depends on it. In the case
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Table 1. Dependence of mean force potentials on the characteristics of the proteins from which they are derived.For each potential, the
correlation coefficient between the energy values computed from the two protein subsets that differ most with respect to the considered characteristic,
is given, as well as the slope of the regression line (in parentheses). The considered characteristics are the length of the protein chain, the percentage
of helices computed by DSSP [34], the percentage ofβ-structures computed by DSSP [34], the percentage of apolar residues (Ala, Cys, Ile, Leu,
Met, Phe, Tyr, Trp, Val), and the percentage of charged residues.

Potential Correlation coefficent for

length percentage helix percentageβ-structure percentage apolar percentage charged

Cµ-Cµ I 0.92 (0.85) 0.89 (1.06) 0.89 (0.95) 0.89 (1.02) 0.89 (1.10)
II 0.86 (0.91) 0.83 (1.00) 0.83 (0.99) 0.83 (1.00) 0.83 (1.03)
III 0.79 (0.93) 0.74 (0.96) 0.75 (1.05) 0.75 (0.98) 0.76 (0.95)

Torsion I 0.91 (0.99) 0.83 (1.08) 0.84 (0.95) 0.88 (1.03) 0.89 (1.06)
II 0.63 (1.01) 0.53 (1.03) 0.54 (0.99) 0.59 (1.02) 0.59 (1.04)
III 0.35 (1.02) 0.26 (1.03) 0.27 (0.97) 0.32 (1.03) 0.32 (1.05)

sign, as in the Asp-Arg pair, the potential presents a deeper mini- protein length observed for derivation I disappears for deriva-
tions II and III. In contrast, for the Asp-Ser pair, potential IIImum in large than in small proteins. This can be explained by

the fact that in small proteins charged residues are often located exhibits a dependence on protein length, whereas potentials I
and II do not. The way potentials are normalized can thus affectat the protein surface and that the formation of a salt bridge is

much less stabilizing for solvated charged residues than for their dependence on a given characteristic.
This detailed analysis shows that the dependence of poten-charged residues buried in the protein core [31]. The Cys-Cys

potential presents a pronounced minimum for both small and tials on protein size may be vanishing, very limited or rather
large according to the type of potential and the normalizationlarge proteins, but the minimum is deeper for small proteins.

This reflects the fact that small proteins are much more fre- scheme. This conclusion explains the apparent disagreement be-
tween earlier studies, where distance potentials were foundquently stabilized by disulfide bridges.

Thus, according to the residue pair, type I Cµ-Cµ potential either to be independent on protein length [26], or to strongly
depend on it [25]. We would like to add that a dependence oncomputed from large proteins is slightly larger, equal or smaller

in absolute value than that derived from small proteins. On the protein length can also appear for technical reasons, if one is not
careful when deriving the potentials. In particular, it must beaverage, it is somewhat smaller. This result can be interpreted

as reflecting the fact that the stability of small proteins requires mentioned that the aforementioned results for the Cµ-Cµ distance
potentials are not obtained from the complete dataset of 381optimal residue-residue interactions, whereas large proteins can

accommodate a larger number of interactions that are neither proteins but from the subset containing the 217 proteins com-
posed of a single chain. When considering the full set mixingvery favorable nor very unfavorable.

Type II and type III potentials are found to depend much single-chain and multi-chain proteins, a significant dependence
of type I Cµ-Cµ potential on protein size is found: the average ofmore on protein length than type I potentials (Table1). This is

especially true for backbone torsion potentials. The correlation the energy differences computed from large and small proteins is
equal to20.32 (instead of 0.01 for single-chain proteins), andcoefficients between energy values derived from large and small

proteins are as low as 0.63 and 0.35 for type II and III torsion the average of the square of the energy differences is equal to
0.35 (instead of 0.11). The correlation coefficient is also slightlypotentials respectively. One of the reasons of this strong depen-

dence seems to be that the average of the absolute values of type lower (0.88 instead of 0.92). The reason of the observed depen-
dence on protein length is purely technical. When computing theIII energies are lower than the corresponding type II values,

which are themselves lower than the type I values: they are Cµ-Cµ potential from multi-chain proteins, we take into account
pairs of residues with one residue situated in one chain and theequal to 0.07, 0.10 and 0.16. Type III energy values seem close

to the precision level of the potentials, so that the poor correla- other in another chain. Since most of these residue pairs are not
in contact, especially when the chains form different domains,tion can be attributed to noise effects. The lack of robustness of

type II and particularly type III torsion potentials can be taken the inclusion of these pairs amounts essentially to populating the
non-contact bin, grouping the residues separated by more thanas an additional indication that these potentials have no physical

significance. 8 A˚ . This population is not counterbalanced by a population in
the other bins because, when the sequences of the differentIn the case of the Cµ-Cµ potentials, the dependence of type II

and type III potentials on protein size is measured by correlation chains are homologous, pairs of residues contained in the same
chain are counted only once. As a result of the higher populationcoefficients of 0.86 and 0.79 (Table1). The dependence is thus

more limited, though larger than that of type I Cµ-Cµ potential. in the non-contact bin, all the energy values are shifted by a
positive number. It has to be stressed that for the torsion poten-These results are consistent with the fact that the mean of the

absolute values of type I, II and III energies are equal to 0.23, tial, the dependence on protein length is independent of whether
single-chain or multi-chain proteins are used.0.36 and 0.12, respectively, and thus larger than the correspond-

ing torsion energy values. Furthermore, the slopes of the regres- Dependence on secondary structure content.To analyze the
dependence of the potentials on the secondary-structure content,sion line are larger for the type II and III potentials (0.91 and

0.93) than for the type I potential (0.85), thereby indicating that the proteins from the dataset are sorted according to the propor-
tion of their residues that are in helical conformation, using thethe dependence on protein length of type II and III Cµ-Cµ poten-

tials does not reduce to the multiplication by a global factor, as definitions of theDictionary of secondary structure in proteins
(DSSP) [34]. Similar results are obtained when sorting the pro-it is the case for type I Cµ-Cµ potential.

That types I, II and III Cµ-Cµ potentials exhibit different de- teins according to the fraction ofβ-structure; the set containing
the largest proportion of helices roughly coincides with the setpendences on protein length is visible in Fig.1. For the Asp-Arg

pair, the difference is particularly marked : the dependence on containing the smallest proportion ofβ-structures.
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Both backbone torsion and Cµ-Cµ potentials of type I present in particular for evaluating stability changes upon mutation of
charged residues and for fold recognition of protein chains insidea small dependence on the secondary-structure content, which

does not simply reduce to the multiplication by a global factor. membranes where the hydrophobic effect is weakened. There
are thus specific proteins, and specific protein regions, whereThe correlation coefficient between energy values derived from

helical versus non-helical proteins is indeed equal to 0.83 and Cµ-Cµ potential III performs better than the two others. The rela-
tive performance of the different distance potentials is thus0.89, for the torsion and Cµ-Cµ potentials respectively, and the

slope of the regression line is1.08 and1.06 (Table1). It is context dependent.
For the backbone torsion potentials, the conclusions arenoteworthy that the Cµ-Cµ distance potential depends somewhat

less on the secondary-structure content of the proteins from somewhat different. Type I torsion potential is found to be very
powerful, especially for predicting stability changes upon muta-which they are derived than the backbone torsion potential; this

can be related to the fact that the definition of torsion potentials tion of surface residues, whereas type III torsion potential, and
to a lesser extent type II potential, have a much lower predictioninvolves domains of backbone torsion angles, which are directly

related to secondary structures. score. This does not seem to differentiate torsion potentials from
Cµ-Cµ potentials. What does differentiate them, however, is thatType II and III potentials appear to depend much more on

the secondary structure content than the type I potentials, as ob- we were unable to find subsets of residues, or particular protein
environments, where torsion potential III performs better thanserved for protein length. Again, the dependence is much larger

for the backbone torsion potentials, for the same reasons as those torsion potential I. This leads to the tentative conclusion that
only type I backbone torsion potentials is useful for predictiondescribed above.

Dependence on amino acid composition.Similar results are purposes.
The second main conclusion is that database-derived poten-obtained for the dependence of the potentials on the amino acid

composition. The proteins from the dataset are sorted either ac- tials depend either weakly or strongly on the characteristics of
the proteins from which they are derived, according to the typecording to the fraction of their residues that are charged, or ac-

cording to the fraction of their residues that are hydrophobic. of potential and normalization scheme. Backbone torsion poten-
tials II and III show a strong but irrelevant dependence, as theyThe dependence is non-zero but rather limited for type I Cµ-

Cµ and backbone torsion potentials, as measured by correlation have a weak predictive value and seem invalid for prediction.
For the other potentials, i.e. type I backbone torsion and typecoefficients between 0.88 and 0.89 and slopes between1.02 and

1.10 (Table1). For type II and III Cµ-Cµ and backbone torsion I2III C µ-Cµ potentials, the observed dependence is quite limited
and seems insignificant compared with the imperfections due topotentials, on the contrary, the dependence is much more sub-

stantial. the various approximations made when deriving the potentials,
such as the assumption that all different interactions are indepen-
dent. It is certainly not the dependence of these potentials on
database size, secondary-structure content or amino acid compo-DISCUSSION
sition that is responsible for their limited performance in struc-
ture prediction. To confirm this statement unambiguously, weTwo main conclusions can be drawn from the above analy-

sis. First, according to the chosen correction for the many-body used the fold-recognition procedure metaFoRe in conjunction
with type I2III C µ-Cµ potentials and type I torsion potential,effect responsible for the screening out of interactions between

amino acids, the derived Cµ-Cµ distance potentials attach dif- where these potentials are derived either from the set of large
proteins or from the set of small proteins. The results so obtainedferent weights to the different types of interactions, in particular

to hydrophobic and electrostatic interactions. Cµ-Cµ potential I is are almost undistinguishable from those shown before, where
the potentials are computed on the full dataset. Thus, for alldominated by the hydrophobic effect, while interactions between

oppositely charged residues are predominant in potential III ; po- practical purposes, these potentials can be considered as inde-
pendent of the characteristics of set of proteins from which theytential II is the average between these two extremes. By analyz-

ing existing contact potentials, Godzik et al. [23] already high- are derived, provided that the set contains sufficiently well re-
solved crystal structures with low or no sequence identity.lighted the existence of two groups of distance potentials, in

which the most favorable interactions are either between hy- It becomes thus increasingly clear that there does not exist a
single database-derived potential of universal predictive value.drophobic amino acids or oppositely charged residues. Cµ-Cµ po-

tential I seems thus to belong to Godzik’s first group and poten- The dominant interactions vary according to the position and
environment in the parent protein, with the consequence thattial III to the second. What we have shown here is that these

different potentials result from different ways of correcting for different definitions of distance potentials are better suited to
different protein environments and that backbone torsion poten-the many-body effect. In potential I, the state with two given

amino acids separated by a certain distance is compared with tials perform better at the protein surface whereas distance po-
tentials perform better in the core. Of course, several potentialsthe state with any two amino acids separated by that distance.

As charged residues are generally solvated and thus make few do well in simple tests such as native fold recognition, but in
more demanding tests, not any of the potentials does show acontacts, this normalization does not give much weight to elec-

trostatic interactions. In potential III, the state with two given satisfactory performance. The main problem seems to be that
the optimal potential, defined by the interactions that have to beamino acids separated by a certain distance is compared with

the state with each of the two amino acids separated by that considered explicitly and those that may be averaged over, and
by the manner of extracting the relevant sequence-structure cor-distance from any other amino acid. Here, interactions between

oppositely charged residues are very favorable, as they are com- relations from the bulk interactions, is highly context dependent:
it is different at the surface and in the core, and it depends on thepared with interactions of each of the charged residues with

other residues. types of residues and secondary structures involved. The issue
remains thus to design a sufficiently accurate potential function,The performances of the Cµ-Cµ distance potentials I, II and

III in native fold recognition and prediction of stability changes or context-dependent combination of potential terms.
upon mutation are found to differ, potential III having the lowest
average score. However, a detailed analysis reveals that potentialWe thank Christian Lemer for discussions in the initial stages of this

work. D. G. is a Research Assistant at theFonds pour la Formation a`III performs better than potentials I and II in some specific cases,
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