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Abstract

Rank-based inference and, in particular, R-estimation, is a red thread running through
Jana Jurečková’s entire scientific career, starting with her dissertation in 1967, where she
laid the foundations of a point-estimation counterpart to Jaroslav Hájek’s celebrated theory
of rank tests. Cross-information quantities in that context play an essential role. In loca-

tion/regression problems, these quantities take the form
∫

1

0
ϕ(u)ϕg(u)du where ϕ is a score

function and −ϕg(u) := g′(G−1(u))/g(G−1(u)) is the log-derivative of the unknown actual
underlying density g computed at the quantile G−1(u); in other models, they involve more
general scores. Such quantities appear in the local powers of rank tests and the asymptotic
variance of R-estimators. Estimating them consistently is a delicate problem that has been
extensively considered in the literature. We provide here a new, flexible, and very general
method for that problem, which furthermore applies well beyond the traditional case of
regression models.

AMS 1980 subject classification : 62M15, 62G35.
Key words and phrases : Rank tests, R-estimation, cross-information, local power, asymp-

totic variance.

1 Introduction.

1.1 Asymptotic linearity and the foundations of R-estimation.

The 1969 volume of the Annals of Mathematical Statistics is rightly famous for two pathbreaking
papers (Jurečkovà 1969; Koul 1969) that laid the modern foundations of R-estimation. Both
papers were their author’s first publication, based on their Ph.D. dissertations. Both were
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addressing, with different mathematical tools, in slightly different contexts, and under differ-
ent assumptions, the same essential problem: the uniform asymptotic linearity of rank-based
statistics in a regression parameter.

The idea of using rank-based test statistics in order to construct point estimators and con-
fidence regions had been proposed, in 1963, by Hodges and Lehmann (1963), in the context of
one- and two-sample location models. The potential applications of that idea in a much broader
context were clear, and immediately triggered a surge of activity with the objective of extending
the new technique to more general models. The analysis of variance case very soon was devel-
oped by Lehmann himself (Lehmann 1963; see also Sen 1966), very much along the same lines as
in his original paper with Hodges. But the simple and multiple regression cases were consider-
ably more difficult, the main obstacle to the desired result being a uniform asymptotic linearity
property of the rank statistics to be used in the (regression) parameters. That result was more
challenging than expected; it is missing, for instance, in Adichie (1967). It was successfully es-
tablished, simultaneously and independently, in 1967, in two doctoral dissertations, one by Jana
Jurečková (in Czech, defended in Prague; advisor Jaroslav Hájek), the other one by Hira Koul
(defended in Berkeley; advisor Peter Bickel). Although essentially addressing the same issue, the
two contributions (Jurečková 1969; Koul 1969) have little overlap: ranks and Hájek projection
methods on one hand, signed-ranks and Billingsley-style weak convergence techniques on the
other. Both got published in the same 1969 issue of the Annals of Mathematical Statistics.

These uniform asymptotic linearity results paved the way for a complete theory of rank-
based estimation in linear models—see the monographs by Puri and Sen (1985), Jurečková and
Sen (1996), or Koul (1992, 2002) for systematic expositions. This modest contribution to the
subject is a tribute to Jana Jurečková’s pioneering work in the domain.

1.2 Cross-information quantities.

Denoting by Q
˜

(ϑϑϑ0) some rank-based test statistic for a two-sided null hypothesis of the form

ϑϑϑ = ϑϑϑ0, an R-estimator ϑϑϑ
˜

of ϑϑϑ is usually defined as the minimizor of Q
˜

(ϑϑϑ): ϑϑϑ
˜

:= argminϑϑϑ Q
˜

(ϑϑϑ).

Under appropriate regularity conditions, and irrespective of the model under study, the asymp-
totic performances of the R-estimator ϑϑϑ

˜
and the related rank test typically are the same. More

specifically, the local powers of rank tests are monotone functions of quantities of the form

(∫ 1

0
ϕ(u)ϕg(u)du

)2

, (1.1)

whereas the related R-estimators are asymptotically normal, with asymptotic variances propor-
tional to the inverse of the same quantity. Here ϕ is the score function defining the rank-based
statistic Q

˜
(ϑϑϑ) from which the R-estimator is constructed, while, in the context of location and

regression, −ϕg(u) := g′(G−1(u))/g(G−1(u)) is the log-derivative of the unknown actual underly-
ing density g (with distribution function G) of the error terms underlying the model, computed
at G−1(u). All usual score functions ϕ themselves being of the form ϕf for some reference
density f , the integral in (1.1) generally is of the form

J (f ; g) :=

∫ 1

0
ϕf (u)ϕg(u) du =

∫ ∞

−∞

f ′(F−1(G(z)))

f(F−1(G(z)))

g′(z)

g(z)
g(z) dz.

Under that form, and since

If := J (f ; f) =

∫ ∞

−∞

(
f ′(z)

f(z)

)2

f(z) dz and Ig := J (g; g) =

∫ ∞

−∞

(
g′(z)

g(z)

)2

g(z) dz
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are Fisher information quantities (for location), J (f ; g) clearly can be interpreted as a cross-
information quantity, which explains the terminology and the notation we are using throughout,
although ϕf and ϕg in the sequel need not be log-derivatives of probability densities.

That relation between rank tests and R-estimators extends to the multiparameter case,
with information and cross-information quantities taking the form of information and cross-
information matrices. It also extends to more general models, much beyond the case of linear
regression, where information and cross-information quantities still take the form (1.1), but
involve scores ϕf and ϕg that are not location scores anymore; the notation J (g) will be used
in a generic way for an integral of the form (1.1) where ϕ is the score of the rank statistic under
study, and ϕg the log-derivative of the unknown actual density g with respect to the appropriate
parameter of interest.

1.3 One-step R-estimation.

An alternative to the classical Hodges-Lehmann argmin definition of an R-estimator was con-
sidered recently, for the estimation of the shape matrix of elliptical observations, by Hallin,
Oja, and Paindaveine (2006). That method, which is directly connected to Le Cam’s one-step
approach to estimation problems, actually extends to a very broad range of uniformly locally
asymptotically normal (ULAN) models, and is based on the local linearization of a rank-based
version of the central sequence of the family.

Such a linearization, in a sense, revives, in the context of Le Cam’s asymptotic theory of
statistical experiments, an old idea that goes back to van Eeden and Kraft (1972) and An-
tille (1974). The same idea also has been exploited by McKean and Hettmansperger (1978),
still in the traditional linear model setting, and in the slightly different approach initiated by
Jaeckel (1972) (which involves the argmin of a function that is not purely rank-based).

One-step estimators avoid some of the computational problems related with argmins of
discrete-valued and possibly non-convex objective functions of (in the multiparameter case)
several variables. Under their original form (as proposed by van Eeden and Kraft), however,
they fail to achieve the same optimality bounds (parametric or nonparametric) as their argmin
counterparts. McKean and Hettmansperger (1978), in the context of linear models with sym-
metric noise, and Hallin, Oja, and Paindaveine (2006), in the context of shape matrix estimation,
solve that problem by introducing an estimated cross-information factor in the linearization step.
Although different from (1.1) (since the scores ϕf and ϕg are those related to shape parame-
ters), the cross-information quantity for shape plays exactly the same role in the asymptotic
covariance of R-estimators of shape as (1.1) does in the asymptotic covariance of R-estimators
of location or regression coefficients.

Whether entering as an essential ingredient in some one-step form of estimation or not,
cross-information quantities explicitly appear in the asymptotic variances of R-estimators, and
thus need to be estimated. Now, the difficulty with cross-information quantities is that, being
expectations, under the unspecified actual density g, of a function which itself depends on that
unknown g, they are not easily estimated. That difficulty may well be one of the main reasons
why R-estimation, despite all its attractive theoretical features, never really made its way to
everyday practice.

1.4 Estimation of cross-information quantities.

A vast literature has been devoted to the problem of estimating (1.1) in the context of linear
models with i.i.d. errors (except for Hallin, Oja, and Paindaveine 2006, more general cross-
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information quantities, to the best of our knowledge, have not been considered so far). Four
approaches, mainly, have been investigated.

(a) McKean and Hettmansperger (1978) estimate J (f ; g) as the ratio of a (1 − α) confidence
interval to the corresponding standard normal interquantile range; that idea can be traced back
to Lehmann (1963) and Sen (1966), and requires the arbitrary choice of a confidence level (1−α),
which has no consequence in the limit, but for finite n may have quite an impact (Aubuchon and
Hettmansperger (1984) in the same context propose using the interquartile ranges or median
absolute deviations from the median). A similar idea, along with powerful higher-order methods
leading to most interesting distributional results, is exploited by Omelka (2008), but requires
the same choice of a confidence level (1 − α).

(b) Some other authors (Antille 1974; Jurečková and Sen 1996, p. 321) rely on the asymptotic
linearity property of rank statistics, by evaluating the consequence of a O(n−1/2) perturbation
of ϑϑϑ0 on the test statistic for H0: ϑϑϑ = ϑϑϑ0. This again involves an arbitrary choice—that
of the amplitude cn−1/2, c ∈ R0 (in the multiparameter case, cn−1/2, c ∈ R

k \ {0}) of the
perturbation. Again, different values of c or c lead, for finite n, to completely different estimators;
asymptotically, this has no impact, but finite-n results can be quite dramatically affected.

(c) More sophisticated methods involving window or kernel estimates of g—hence performing
poorly under small and moderate sample sizes—have been considered, for Wilcoxon scores, by
Schuster (1974) and Schweder (1975) (see also Cheng and Serfling 1981; Koul, Sievers and
McKean 1985; Bickel and Ritov 1988; Fan 1991) and, in a more general setting, in Section 4.5
of Koul (2002). Instead of a confidence level (1 − α) or a deviaton c, a kernel and a bandwidth
are to be selected. Density estimation methods, moreover, are kind of antinomic to the spirit
of rank-based methods: if estimated densities are to be used, indeed, using them all the way by
considering semiparametric tests based on estimated scores (in the spirit of Bickel et al. 1993)
seems more coherent than considering ranks.

(d) Finally, jacknifing and the bootstrap also have been utilized in this context: see George
and Osborne (1990) and George et al. (1995) for an investigation of that approach and some
empirical findings.

The approach proposed in Hallin, Oja, and Paindaveine (2006) is of a different nature. It is
based on the asymptotic linearity of a rank-based central sequence, hence requires uniform local
asymptotic normality in the Le Cam sense, and consists in solving a local linearized likelihood
equation. It does not involve any arbitrary choices, and, irrespective of the dimension of the
parameter of interest, its implementation involves one-dimensional optimization only. However,
it only can handle information quantities entering as a scalar factor in the information matrix
of a given model, or, in the case of a block-diagonal information matrix, in some diagonal
block thereof. This places a restriction on the quantities to be estimated, and rules out some
cases, such as the information quantity for skewness derived in Cassart et al. (2010). In this
contribution, we propose a generalization of the Hallin, Oja, and Paindaveine method that
does not require uniform local asymptotic normality, and can accomodate much more general
situations, including that of Cassart et al. (2010).
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2 Consistent estimation of cross-information quantities.

Let P(n) := {P
(n)
ϑϑϑ;g| ϑϑϑ ∈ ΘΘΘ, g ∈ F} be a family (actually, a sequence of them, indexed by n ∈ N)

of probability measures over some observation space (usually, R
n, equipped with its Borel σ-

field), indexed by a k-dimensional parameter ϑϑϑ ∈ R
k and a univariate probability density g; ϑϑϑ

ranges over some open subset ΘΘΘ of R
k, and g over some broad class of densities F . Associated

with that observation, assume that there exists an n-tuple (Z
(n)
1 (ϑϑϑ), . . . , Z

(n)
n (ϑϑϑ)) of residuals

such that Z
(n)
1 (ϑϑϑ0), . . . , Z

(n)
n (ϑϑϑ0) under P

(n)
ϑϑϑ;g are independent and identically distributed with

density g iff ϑϑϑ = ϑϑϑ0.

Denoting by R
(n)
i (ϑϑϑ) the rank of Z

(n)
i (ϑϑϑ) among Z

(n)
1 (ϑϑϑ), . . . , Z

(n)
n (ϑϑϑ), the vector R(n)(ϑϑϑ) :=

(R
(n)
1 (ϑϑϑ), . . . , R

(n)
n (ϑϑϑ)) under P

(n)
ϑϑϑ;g is uniformly distributed over the n! permutations of {1, . . . , n},

irrespective of g—a distribution-freeness property which serves as the starting point of rank tests
and R-estimation of ϑϑϑ in the family P(n).

Our goal is to estimate consistently a cross-information quantity J (g) > 0 that enters the
picture through the following assumption.

Assumption (A) There exists a sequence S
˜

(n)(ϑϑϑ) of k-dimensional R(n)(ϑϑϑ)-measurable

statistics such that, under P
(n)
ϑϑϑ;g,

(i) S
˜

(n)(ϑϑϑ), n ∈ N is uniformly tight and asymptotically uniformly bounded away from the
origin; more precisely, for all ε > 0, there exist δε > 0, Mε and Nε such that, for all n ≥ Nε,

P
(n)
ϑϑϑ;g

[
δε ≤ ‖S

˜
(n)(ϑϑϑ)‖ ≤ Mε

]
≥ 1 − ε as n → ∞;

(ii) there exists a continuous mapping ϑϑϑ 7→ ΥΥΥ−1(ϑϑϑ), where ΥΥΥ−1(ϑϑϑ) is a full-rank k × k matrix
such that

S
˜

(n)(ϑϑϑ + n−1/2t(n)) = S
˜

(n)(ϑϑϑ) − J (g)ΥΥΥ−1(ϑϑϑ)t(n) + oP(1) as n → ∞ (2.1)

for any bounded sequence t(n) ∈ R
k.

We will also need

Assumption (B) A root-n consistent estimator ϑ̂ϑϑ
(n)

of ϑϑϑ is available, such that, under P
(n)
ϑϑϑ;g,

S
˜

(n)(ϑ̂ϑϑ
(n)

) is asymptotically bounded away from zero: for all ε > 0, there exist δε and Nε such

that

P
(n)
ϑϑϑ;g

[
‖S

˜
(n)(ϑ̂ϑϑ

(n)
)‖ ≥ δε

]
≥ 1 − ε

for all n ≥ Nε.

Note that part (i) of Assumption (A) is rather mild, as it is satisfied as soon as S
˜

(n)(ϑϑϑ)

under P
(n)
ϑϑϑ;g is converging in distribution to a random vector that has no atom at the origin.

As for part (ii), it does not require the asymptotic linearity (2.1) to be uniform. Similarly,

Assumption (B) requires that S
˜

(n)(ϑ̂ϑϑ
(n)

) asymptotically has no atom at 0. The statistic S
˜

(n)

indeed is to provide, via its local behavior (2.1), an estimator for J (g)—not a test statistic, nor
(through some estimating equation) an estimator for ϑϑϑ: Assumption (B) thus explicitly rules

out an estimator that would be obtained as ϑ̂ϑϑ
(n)

= argminϑϑϑ‖S
˜

(n)(ϑϑϑ)‖.
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In order to control for the uniformity of local behaviors, a discretized version ϑ̂ϑϑ
(n)

# of ϑ̂ϑϑ
(n)

will be considered in theoretical asymptotic statements. Such a version can be obtained, for
instance, by letting

(ϑ̂ϑϑ
(n)

# )i := (cn1/2)−1sign((ϑ̂ϑϑ
(n)

)i)⌈cn
1/2|(ϑ̂ϑϑ

(n)
)i|⌉, i = 1, . . . , k

for some arbitrary discretization constant c > 0. This discretization trick is quite standard in
the context of one-step estimation. While retaining root-n consistency, discretized estimators
indeed enjoy the important property of asymptotic local discreteness, that is, as n → ∞, they
only take a bounded number of distinct values in ϑϑϑ-centered balls with O(n−1/2) radius. In
fixed-n practice, however, such discretizations are irrelevant (one cannot work with an infinite
number of decimal values, and c can be chosen arbitrarily large). The reason why discretization
is required in asymptotic statements is that (see, for instance, Lemma 4.4 of Kreiss 1987), (2.1)

then also holds with n1/2(ϑ̂ϑϑ
(n)

# − ϑϑϑ) substituted for t(n), yielding

S
˜

(n)(ϑ̂ϑϑ
(n)

# ) = S
˜

(n)(ϑϑϑ) − n1/2J (g)ΥΥΥ−1(ϑϑϑ)(ϑ̂ϑϑ
(n)

# − ϑϑϑ) + oP(1) (2.2)

as n → ∞ under P
(n)
ϑϑϑ;g. This stochastic form of (2.1) in a sense takes care of uniformity problems.

We now describe the construction of our estimator of J (g). For any λ ∈ R
+, define

ϑϑϑ
˜

(n)
λ := ϑ̂ϑϑ

(n)

# + n−1/2λΥΥΥ(ϑ̂ϑϑ
(n)

# )S
˜

(n)(ϑ̂ϑϑ
(n)

# ). (2.3)

When λ ranges over the positive real line, ϑϑϑ
˜

(n)
λ for fixed n thus moves, monotonically with

respect to λ, along a half-line with origin ϑ̂ϑϑ
(n)

# . Note that any ϑϑϑ
˜

(n)
λ , once discretized into ϑϑϑ

˜
(n)
λ#,

provides a new root-n consistent and asymptotically locally discrete estimator of ϑϑϑ to which (2.2)

applies. It follows that

S
˜

(n)(ϑϑϑ
˜

(n)
λ#) − S

˜
(n)(ϑ̂ϑϑ

(n)

# ) = −λJ (g)S
˜

(n)(ϑ̂ϑϑ#) + oP(1), (2.4)

still as n → ∞ under P
(n)
ϑϑϑ;g. Moreover, ϑϑϑ

˜
(n)
λ# also can serve as the starting point for an iteration

of the type (2.3), yielding, for any µ ∈ R
+, a further root-n consistent estimator of the form

ϑϑϑ
˜

(n)
λ# + n−1/2µΥΥΥ(ϑϑϑ

˜
(n)
λ#)S

˜
(n)(ϑϑϑ

˜
(n)
λ#). (2.5)

From (2.4) we thus obtain, for all λ > 0,

S
˜

(n)′(ϑϑϑ
˜

(n)
λ#)ΥΥΥ′(ϑϑϑ

˜
(n)
λ#)ΥΥΥ(ϑ̂ϑϑ

(n)

# )S
˜

(n)(ϑ̂ϑϑ
(n)

# ) (2.6)

= (1 − λJ (g))S
˜

(n)′(ϑ̂ϑϑ
(n)

# )ΥΥΥ′(ϑϑϑ
˜

(n)
λ#)ΥΥΥ(ϑ̂ϑϑ

(n)

# )S
˜

(n)(ϑ̂ϑϑ
(n)

# ) + oP(1)

= (1 − λJ (g))S
˜

(n)′(ϑ̂ϑϑ
(n)

# )ΥΥΥ′(ϑϑϑ)ΥΥΥ(ϑϑϑ)S
˜

(n)(ϑ̂ϑϑ
(n)

# ) + oP(1). (2.7)

The intuition behind our method lies in the fact that (2.6), which is the scalar product of the
increments in (2.3) and (2.5), is, up to oP(1)’s, a decreasing linear function (2.7) of λ: since ΥΥΥ
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has full-rank, the quadratic form in (2.7) indeed is positive definite. That function takes positive
values for λ close to zero, and changes sign at λ = J −1(g).

Let therefore (c is an arbitrary discretization constant that plays no role in practical imple-
mentations)

λ
(n)
− := min

{
λℓ :=

ℓ

c
such that S

˜
(n)′(ϑϑϑ

˜
(n)
λℓ+1#

)ΥΥΥ′(ϑϑϑ
˜

(n)
λℓ+1#

)ΥΥΥ(ϑ̂ϑϑ
(n)

# )S
˜

(n)(ϑ̂ϑϑ
(n)

# ) < 0
}

(2.8)

and λ
(n)
+ := λ

(n)
− + 1

c . Defining J (n)(g) := (λ(n))−1, where λ(n) is based on a linear interpolation

between λ
(n)
− and λ

(n)
+ , namely

λ(n) := λ
(n)
− +

(λ
(n)
+ − λ

(n)
− )S

˜
(n)′(ϑϑϑ

˜
(n)

λ
(n)
− #

)ΥΥΥ′(ϑϑϑ
˜

(n)

λ
(n)
− #

)ΥΥΥ(ϑ̂ϑϑ
(n)

# )S
˜

(n)(ϑ̂ϑϑ
(n)

# )

[S
˜

(n)′(ϑϑϑ
˜

(n)

λ
(n)
− #

)ΥΥΥ′(ϑϑϑ
˜

(n)

λ
(n)
− #

) − S
˜

(n)′(ϑϑϑ
˜

(n)

λ
(n)
+ #

)ΥΥΥ′(ϑϑϑ
˜

(n)

λ
(n)
+ #

)]ΥΥΥ(ϑ̂ϑϑ
(n)

# )S
˜

(n)(ϑ̂ϑϑ
(n)

# )

= λ
(n)
− +

1

c

S
˜

(n)′(ϑϑϑ
˜

(n)

λ
(n)
− #

)ΥΥΥ′(ϑϑϑ
˜

(n)

λ
(n)
− #

)ΥΥΥ(ϑ̂ϑϑ
(n)

# )S
˜

(n)(ϑ̂ϑϑ
(n)

# )

[S
˜

(n)′(ϑϑϑ
˜

(n)

λ
(n)
− #

)ΥΥΥ′(ϑϑϑ
˜

(n)

λ
(n)
− #

) − S
˜

(n)′(ϑϑϑ
˜

(n)

λ
(n)
+ #

)ΥΥΥ′(ϑϑϑ
˜

(n)

λ
(n)
+ #

)]ΥΥΥ(ϑ̂ϑϑ
(n)

# )S
˜

(n)(ϑ̂ϑϑ
(n)

# )
,

we have the following result (see the Appendix for the proof).

Proposition 2.1 Let Assumptions (A) and (B) hold. Then J (n)(g) = J (g)+oP(1) as n → ∞,

under P
(n)
ϑϑϑ;g.

As already mentioned, discretizing the estimators is a mathematical device which is needed
in the proof of asymptotic results but makes little sense in a fixed-n practical situation, as a
very large discretization constant can be chosen. In practice, assuming that Assumptions (A)
and (B) hold, we recommend directly computing J (n)(g) as

(J (n)(g))−1 := λ(n) := inf
{
λ such that S

˜
(n)′(ϑϑϑ

˜
(n)
λ )ΥΥΥ′(ϑϑϑ

˜
(n)
λ )ΥΥΥ(ϑ̂ϑϑ

(n)
)S
˜

(n)(ϑ̂ϑϑ
(n)

) < 0
}
.

Indeed, for large values of the discretization constant c, ϑ̂ϑϑ
(n)

# and ϑ̂ϑϑ
(n)

are arbitrarily close, as

well as λ
(n)
− and λ

(n)
+ defined in (2.8).

3 Appendix: Proof of Proposition 2.1

To start with, let us show that λ
(n)
− , defined in (2.8), hence also λ

(n)
+ , is OP(1) under P

(n)
ϑϑϑ;g.

Assume therefore it is not: then, there exist ǫ > 0 and a sequence ni ↑ ∞ such that, for all

L ∈ R and i, P
(ni)
ϑϑϑ;g [λ

(ni)
− > L] > ǫ. This implies, for arbitrarily large L, that

P
(ni)
ϑϑϑ;g

[
S
˜

(ni)′(ϑϑϑ
˜

(ni)
L# )ΥΥΥ′(ϑϑϑ

˜
(ni)
L# )ΥΥΥ(ϑ̂ϑϑ

(ni)

# )S
˜

(ni)(ϑ̂ϑϑ
(ni)

# ) > 0
]

> ǫ,

hence, in view of (2.7),

P
(ni)
ϑϑϑ;g

[
(1 − LJ (g))S

˜
(ni)′(ϑ̂ϑϑ

(ni)

# )ΥΥΥ′(ϑϑϑ)ΥΥΥ(ϑϑϑ)S
˜

(ni)(ϑ̂ϑϑ
(ni)

# ) + ζ(ni) > 0
]

> ǫ

7



for all i, where ζ(n), n ∈ N is some oP(1) sequence. For L > (J (g))−1, this entails, for all i,

P
(ni)
ϑϑϑ;g

[
0 < S

˜
(ni)′(ϑ̂ϑϑ

(ni)

# )ΥΥΥ′(ϑϑϑ)ΥΥΥ(ϑϑϑ)S
˜

(ni)(ϑ̂ϑϑ
(ni)

# ) < |ζ(ni)|
]

> ǫ,

which contradicts Assumption (B) that S
˜

(n)(ϑ̂ϑϑ
(n)

) is uniformly bounded away from zero. It

follows that λ
(n)
− is OP(1) under P

(n)
ϑϑϑ;g; actually, we have shown the stronger result that, for any

L > (J (g))−1, limn→∞ P
(n)
ϑϑϑ;g[λ

(n)
− > L] = 0.

In view of Assumption (B), for all η > 0, there exist δη > 0 and an integer Nη such that

P
(n)
ϑϑϑ;g

[
S
˜

(n)′(ϑ̂ϑϑ
(n)

# )ΥΥΥ′(ϑϑϑ
˜

(n)
# )ΥΥΥ(ϑ̂ϑϑ

(n)

# )S
˜

(n)(ϑ̂ϑϑ
(n)

# ) ≥ δη

]
≥ 1 − η/2

for all n ≥ Nη. In view of (2.4), the fact that λ
(n)
− and λ

(n)
+ are OP(1), and Assumption (A),

for all η > 0 and ε > 0, there exists an integer Nε,δ ≥ Nη such that, for all n ≥ Nε,δ (with λ
(n)
±

standing for either λ
(n)
− or λ

(n)
+ ),

P
(n)
ϑϑϑ;g

[
(1 − J (g)λ

(n)
± )S

˜
(n)′(ϑ̂ϑϑ

(n)

# )ΥΥΥ′(ϑϑϑ
˜

(n)
# )ΥΥΥ(ϑ̂ϑϑ

(n)

# )S
˜

(n)(ϑ̂ϑϑ
(n)

# )

∈
[
S
˜

(n)′(ϑϑϑ
˜

(n)
λ±#)ΥΥΥ′(ϑϑϑ

˜
(n)
λ±#)ΥΥΥ(ϑ̂ϑϑ

(n)

# )S
˜

(n)(ϑ̂ϑϑ
(n)

# ) ± ε
]]

≥ 1 − η/2.

It follows that for all η > 0, ε > 0 and n ≥ Nε,δ, letting δ = δη ,

P
(n)
ϑϑϑ;g

[
A

(n)
ε,δ

]
:= P

(n)
ϑϑϑ;g

[
(1 − J (g)λ

(n)
± )S

˜
(n)′(ϑ̂ϑϑ

(n)

# )ΥΥΥ′(ϑϑϑ
˜

(n)
# )ΥΥΥ(ϑ̂ϑϑ

(n)

# )S
˜

(n)(ϑ̂ϑϑ
(n)

# )

∈
[
S
˜

(n)′(ϑϑϑ
˜

(n)
λ±#)ΥΥΥ′(ϑϑϑ

˜
(n)
λ±#)ΥΥΥ(ϑ̂ϑϑ

(n)

# )S
˜

(n)(ϑ̂ϑϑ
(n)

# ) ± ε
]

and S
˜

(n)′(ϑ̂ϑϑ
(n)

# )ΥΥΥ′(ϑϑϑ
˜

(n)
# )ΥΥΥ(ϑ̂ϑϑ

(n)

# )S
˜

(n)(ϑ̂ϑϑ
(n)

# ) ≥ δ

]
≥ 1 − η.

Next, denote by D̂(n), D(n) and D
(n)
± the graphs of the mappings

λ 7→ S
˜

(n)′(ϑϑϑ
˜

(n)
λ−#)ΥΥΥ′(ϑϑϑ

˜
(n)
λ−#)ΥΥΥ(ϑ̂ϑϑ

(n)

# )S
˜

(n)(ϑ̂ϑϑ
(n)

# )

−c(λ − λ−)[S
˜

(n)′(ϑϑϑ
˜

(n)
λ−#)ΥΥΥ′(ϑϑϑ

˜
(n)
λ−#) − S

˜
(n)′(ϑϑϑ

˜
(n)
λ+#)ΥΥΥ′(ϑϑϑ

˜
(n)
λ+#)]ΥΥΥ(ϑ̂ϑϑ

(n)

# )S
˜

(n)(ϑ̂ϑϑ
(n)

# ),

λ 7→ (1 − J (g)λ)S
˜

(n)′(ϑ̂ϑϑ
(n)

# )ΥΥΥ′(ϑ̂ϑϑ
(n)
# )ΥΥΥ(ϑ̂ϑϑ

(n)

# )S
˜

(n)(ϑ̂ϑϑ
(n)

# ),

and

λ 7→ (1 − J (g)λ)S
˜

(n)′(ϑ̂ϑϑ
(n)

# )ΥΥΥ′(ϑ̂ϑϑ
(n)
# )ΥΥΥ(ϑ̂ϑϑ

(n)

# )S
˜

(n)(ϑ̂ϑϑ
(n)

# ) ± ε,

respectively. These graphs are four random straight lines, intersecting the horizontal axis at

λ(n) (our estimator), λ0 := (J (g))−1, λ+
0 and λ−

0 , respectively. Since D
(n)
± and D(n) are parallel,

with a negative slope, we have that
λ−

0 ≤ λ0 ≤ λ+
0 .

8



Under A
(n)
ε,δ , that common slope has absolute value at least J (g)δ, which implies that

λ+
0 − λ−

0 ≤ 2ε/J (g)δ.

Still under A
(n)
ε,δ , for λ values between λ

(n)
− and λ

(n)
+ , D̂(n) is lying between D

(n)
− and D

(n)
+ , which

entails
λ−

0 ≤ λ(n) ≤ λ+
0 .

Summing up, for all η > 0 and ε > 0, there exist δ = δη > 0, and N = NεJ (g)δ/2,δ such that,

for any n ≥ N , with P
(n)
ϑϑϑ;g probability larger than 1 − η,

|λ(n) − λ0| ≤ λ+
0 − λ−

0 ≤ ε. �
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