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MULTIVARIATE QUANTILES AND MULTIPLE-OUTPUT

REGRESSION QUANTILES: FROM L1 OPTIMIZATION TO

HALFSPACE DEPTH

By Marc Hallin1,2,3, Davy Paindaveine3,4, and Miroslav Šiman4

Université Libre de Bruxelles

A new multivariate concept of quantile, based on a directional

version of Koenker and Bassett’s traditional regression quantiles, is

introduced for multivariate location and multiple-output regression

problems. In their empirical version, those quantiles can be com-

puted efficiently via linear programming techniques. Consistency, Ba-

hadur representation and asymptotic normality results are estab-

lished. Most importantly, the contours generated by those quantiles

are shown to coincide with the classical halfspace depth contours as-

sociated with the name of Tukey. This relation does not only allow

for efficient depth contour computations by means of parametric lin-

ear programming, but also for transferring from the quantile to the

depth universe such asymptotic results as Bahadur representations.

Finally, linear programming duality opens the way to promising de-

velopments in depth-related multivariate rank-based inference.

1. Introduction: Multivariate quantiles and statistical depth. A huge

literature has been devoted to the problem of extending to a multivariate setting the

fundamental one-dimensional concept of quantile; we refer to [31] for a recent survey

and references. An equally huge literature—see [24], [36], and [37] for a compre-

hensive account—is dealing with the concept of (location) depth. The philosophies
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underlying those two concepts at first sight are quite different, and even, to some ex-

tent, opposite. While quantiles resort to analytical characterizations through inverse

distribution functions or L1 optimization, depth often derives from more geometric

considerations such as halfspaces, simplices, ellipsoids, and projections. Both carry

advantages and some drawbacks. Analytical definitions usually bring in efficient

algorithms and tractable asymptotics. The geometric ones enjoy attractive equivari-

ance properties and intuitive contents, but their probabilistic study and asymptotics

are generally trickier, while their implementation, as a rule, leads to heavy combina-

torial algorithms; a highly elegant analytical approach to depth has been proposed

in [25], but does not help much in that respect.

Yet, beyond those methodological differences, quantiles and depth obviously ex-

hibit close notional kinship. In the univariate case, all definitions basically agree

that the depth of a point x ∈ R with respect to a probability distribution P with

strictly monotone distribution function F should be min(F (x), 1 − F (x)), so that

the only points with depth d are xd = F−1(d) and x1−d = F−1(1−d)—the quantiles

of orders d and 1 − d, respectively. Starting with dimension two, no such clear and

undisputable relation has been established so far—how could there be one, by the

way, as long as no clear and undisputable definition of a multivariate quantile has

been agreed upon? Bridging the gap between the two concepts thus would allow

for transferring to the depth universe the analytical and algorithmic tools of the

quantile approach, while sorting out the many candidates for a sound definition of

multivariate quantiles. Therefore, establishing a relation between the quantile and

depth philosophies in R
k, if at all possible, is highly desirable.

An important step in that direction has been made very recently in a paper by

Kong and Mizera ([22]), based on a directional definition of quantiles (as in, e.g., [1],

[3], [4], [6], [8], [11], [21], [32], and [34]). In the Kong and Mizera approach, a quantile

of order τ ∈ (0, 1), is a point qKM;τu ∈ R
k associated with a direction u, that is, with

a point u on the unit sphere Sk−1 (see (2.4) for a precise definition); for given τ , these

quantiles naturally yield (see also [34]) contours {qKM;τu : u ∈ Sk−1}. Those quantile

contours, however, are hardly satisfactory, as the authors themselves admit. They

lack any reasonable form of equivariance, even with respect to translation, heavily

depend on the choice of an origin, and moreover exhibit disturbing mozzarella shapes,

with a perverse tendency to self-intersection. Finally, the construction of any of

them, in principle, involves computing infinitely many univariate quantiles—one for

each u ∈ Sk−1—which of course is impossible in practice. However, associating with
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each quantile qKM;τu the hyperplane πKM;τu running through qKM;τu and orthogonal

to u, and considering, for fixed τ , their envelope over u ∈ Sk−1 (see (2.4) and (4.5)

for a precise definition of those envelopes) yields regions that happen to coincide—

in the population as well as in the empirical case (with obvious notation q
(n)
KM;τu

and π
(n)
KM;τu)—with the celebrated halfspace depth regions associated with the name

of Tukey ([33]).

A relation is thus established between Kong and Mizera’s directional quantiles

and Tukey’s depth, providing a conceptual bridge between the two concepts. That

relation provides halfspace depth regions with an interesting quantile interpretation:

any given face of a polyhedral empirical Tukey contour of order τ indeed coincides

with the τ -quantile hyperplane associated with the corresponding orthogonal direc-

tion u. While allowing the quantile philosophy to shed some interpretational light on

depth concepts, this unfortunately does not help much in terms of practical compu-

tation of empirical contours. For given τ , indeed, there exist infinitely many quantile

hyperplanes π
(n)
KM;τu, of which only a finite number contribute to the depth contour

of order τ . Unless depth contours are obtained from some other source, the Kong

and Mizera approach does not provide any data-based method for identifying or

constructing the “effective” π
(n)
KM;τu’s. In particular, it does not allow for importing

into the depth universe any of the convenient L1 or linear programming features of

quantiles. Since computing the empirical version of any of their envelopes in prin-

ciple requires considering all u’s in Sk−1, Kong and Mizera suggest sampling Sk−1;

this however only can yield approximate Tukey regions (the probability, in such

sampling, of an actual Tukey contour face being recovered is zero). Summing up,

the relation between the Kong and Mizera quantiles and the Tukey depth contours,

although conceptually quite satisfactory, does not yield the computational benefits

expected from such relation.

Now, Kong and Mizera’s directional quantiles qKM;τu are points in the obser-

vation space R
k while, being orthogonal to u, the associated hyperplanes πKM;τu

do not carry any additional information. If, instead of points, directional quantiles

themselves are characterized as hyperplanes πτu, but in the Koenker and Bassett L1

sense (contrary to Kong and Mizera’s πKM;τu’s, these hyperplanes, in general, are

not orthogonal to u, hence do not coincide with the πKM;τu ones), all the problems

faced by the Kong and Mizera construction almost miraculously vanish. The collec-

tions {πτu : u ∈ Sk−1} indeed do not depend on the origin, are affine-equivariant,

and yield central regions which strictly coincide with the Tukey depth ones. In
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the empirical case (with obvious notation π
(n)
τu ), those collections, contrary to their

Kong and Mizera counterparts, only contain finitely many hyperplanes (the map-

ping u 7→ π
(n)
τu is piecewise constant on Sk−1), among which all those containing

a face of the (polyhedral) empirical Tukey contours. From their depth contour na-

ture, these π
(n)
τu ’s inherit a series of nice properties such as convexity, nestedness,

and affine-equivariance. From their definition as Koenker-Bassett quantiles, they re-

ceive a probabilistic interpretation (allowing for tractable asymptotics : consistency,

Bahadur representations, and asymptotic normality), but, above all, the important

benefits of linear programming algorithms, which thereby automatically transfer to

depth. Moreover, they readily generalize to the regression setting, yielding polyhe-

dral “hypertubes” wrapping (up to the traditional quantile crossings) a median or

deepest regression region, thus extending to the multiple-output context the con-

cept of regression quantiles. A constrained optimization form of the definition also

allows for computing Lagrange multipliers with most interesting statistical appli-

cations. Finally, by resorting to classical linear programming duality, a concept of

directional regression rank score, allowing for multivariate versions of the methods

developed in [13], naturally comes into the picture.

From an applied perspective, the possibility of computing Tukey depth contours

via parametric linear programming is not a small improvement. To the best of

our knowledge, implementable algorithms so far are strictly limited to the two-

dimensional case (k = 2). Our approach allows for higher dimensions, and we could

easily run our algorithms in dimension k = 5, for a few hundreds observations.

Some of the basic ideas of this approach to multivariate quantiles were exposed in

an unpublished master thesis by Laine ([23]), quoted in [18]. In this paper, we care-

fully revive Laine’s ideas, and systematically develop and prove the main properties

of the concept he introduced.

The paper is organized as follows. Section 2 introduces the definitions and main

notation to be used throughout. In Section 3, we study the main properties of the

new quantiles : from their directional quantile nature, they inherit subgradient char-

acterizations (Section 3.1), equivariance properties (Section 3.2), and quantile-like

asymptotics—strong consistency, Bahadur representation, and asymptotic normal-

ity (Section 3.3). In Section 4, we establish the equivalence of the quantile contours

thus obtained with more traditional halfspace (or Tukey) depth contours, as well

as their relation to recent results by Kong and Mizera ([22]). Section 5 is devoted

to the computational aspects of our multivariate quantiles, and Section 6 to their
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extension to tha multiple-output regression context. Section 7 concludes with some

perspectives for future research. Proofs are collected in the Appendix.

2. Definition and notation. Consider the k-variate random vector Z := (Z1,

. . . , Zk)
′. The multivariate quantiles we are proposing are directional quantities—

more precisely, (k−1)-dimensional hyperplanes indexed by non-zero vectors τττ rang-

ing over the (open) unit ball (deprived of the origin) Bk := {z ∈ R
k : 0 < ‖z‖ < 1}

of R
k. This directional index τττ naturally factorizes into τττ =: τu, where τ = ‖τττ‖ ∈

(0, 1) and u ∈ Sk−1 := {z ∈ R
k : ‖z‖ = 1}. Denoting by ΓΓΓu an arbitrary k × (k − 1)

matrix of unit vectors such that (u
...ΓΓΓu) constitutes an orthonormal basis of R

k,

we define the τττ -quantile of Z as the regression τ -quantile hyperplane obtained (in

the traditional Koenker and Bassett [20] sense) when regressing Zu := u′Z on the

marginals of Z⊥
u := ΓΓΓ′

uZ and a constant term: the vector u therefore indicates the

direction of the “vertical” axis in the regression, while ΓΓΓu simply provides an or-

thonormal basis of the vector space orthogonal to u. More precisely, denoting by

x 7→ ρτ (x) := x(τ − I[x<0]) the usual τ -quantile check function, we adopt the follow-

ing definition.

Definition 2.1. The τττ -quantile of Z (τττ := τu ∈ Bk) is any element of the

collection Πτττ of hyperplanes πτττ := {z ∈ R
k : u′z = b′

τττΓΓΓ
′
uz + aτττ} such that

(2.1) (aτττ ,b′
τττ )

′ ∈ argmin
(a,b′)′∈Rk

Ψτττ (a,b), where Ψτττ (a,b) := E[ρτ (Zu − b′Z⊥
u − a)].

This definition clearly generalizes the traditional univariate one. For k = 1, indeed,

hyperplanes of dimension k−1 are simply points, Bk reduces to (−1, 0)∪(0, 1), and πτττ

to a “classical” quantile of order 1 − ‖τττ‖ or ‖τττ‖, according as τττ is pointing to the

left or to the right (u = −1 or u = 1).

Note that the quantile hyperplanes πτττ and the “intercepts” aτττ are well-defined

in the sense that they only depend on τττ , not on the coordinate system associated

with the (arbitrary) choice of ΓΓΓu. However, the “slope” coefficients bτττ = bτττ (ΓΓΓu) do

depend on ΓΓΓu, a dependence we do not stress in the notation unless really necessary.

Each quantile hyperplane πτττ (each element (aτττ ,b′
τττ )′ of argmin(a,b′)′∈Rk Ψτττ (a,b))

characterizes a lower (open) quantile halfspace

(2.2) H−
τττ = H−

τττ (aτττ ,bτττ ) :=
{

z ∈ R
k : u′z < b′

τττΓΓΓ
′
uz + aτττ

}
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and an upper (closed) quantile halfspace

(2.3) H+
τττ = H+

τττ (aτττ ,bτττ ) :=
{

z ∈ R
k : u′z ≥ b′

τττΓΓΓ
′
uz + aτττ

}

.

For the sake of comparison, we recall that the upper (closed) directional quantile

halfspaces proposed in [22] are simply defined as

(2.4)

H+
KM;τu := {z ∈ R

k : u′z ≥ u′qKM;τu}, qKM;τu := qτ (u
′Z)u, τ ∈ (0, 1), u ∈ Sk−1,

where qτ (X) stands for the univariate τ -quantile of the random variable X. Direc-

tional quantile hyperplanes πKM;τu (which are orthogonal to u) and lower halfs-

paces H−
KM;τu are defined accordingly. These quantiles are also studied in [27].

Definition 2.1 requires Z to have finite first-order moments. Actually, modifying

the definition into (aτττ ,b
′
τττ )′ := argmin(a,b′)′∈Rk(Ψτττ (a,b) − Ψτττ (0,0)) has no impact

on πτττ , while allowing to relax the moment condition on Zu; finite first-order mo-

ments, however, still are required for Z⊥
u . When u ranges over Sk−1—for instance,

when defining quantile contours—we need finite first-order moments for all Z⊥
u ’s,

hence for Z itself. For the sake of simplicity, we often adopt the following assump-

tion in the sequel.

Assumption (A). The distribution of the random vector Z is absolutely continu-

ous with respect to the Lebesgue measure on R
k, with a density (f , say) that has

connected support, and admits finite first-order moments.

The minimization problem (2.1) may have several solutions, yielding distinct hy-

perplanes πτττ . This, however, does not occur under Assumption (A), as shown in the

following result, which is a particular case of Theorem 2.1 in [27].

Proposition 2.1. Let Assumption (A) hold. Then, for any τττ ∈ Bk, the mini-

mizer (aτττ ,b′
τττ )′ in (2.1), hence also the resulting quantile hyperplane πτττ , is unique.

The family of hyperplanes Π = {πτττ : τττ = τu ∈ Bk} can be considered from two

different points of view. The directional point of view, associated with the fixed-u

subfamilies Πu := {πτττ : τττ = τu, τ ∈ (0, 1)} is the one emphasized so far in

the definition, and provides, for each u, the usual interpretation of a collection of

regression quantile hyperplanes. Another point of view is associated with the fixed-τ

subfamilies Πτ := {πτττ : τττ = τu, u ∈ Sk−1}, which generate quantile contours: this

point of view is developed in Section 4.
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Before turning to the empirical version of our quantiles, let us present an alterna-

tive (but strictly equivalent) definition of πτττ , based on a constrained optimization

formulation.

Definition 2.2. The τττ -quantile of Z (τττ := τu ∈ Bk) is any element of the

collection Πτττ of hyperplanes πτττ := {z ∈ R
k : c′τττz = aτττ} such that

(2.5) (aτττ , c′τττ )′ ∈ argmin
(a,c′)′∈Mu

Ψc
τ (a, c),

where Ψc
τ (a, c) := E[ρτ (c

′Z − a)] and Mu := {(a, c′)′ ∈ R
k+1 : u′c = 1}.

Clearly, if (aτττ ,b′
τττ )

′ is a minimizer of (2.1), then (aτττ , c′τττ )′ := (aτττ , (u − ΓΓΓubτττ )
′)′

minimizes the objective function in (2.5); conversely, for any minimizer (aτττ , c′τττ )′

of (2.5), (aτττ ,b′
τττ )

′ := (aτττ , (−ΓΓΓ′
ucτττ )′)′ minimizes the objective function in (2.1). The

two definitions thus coincide; in particular, the lower and upper quantile halfspaces
{

z ∈ R
k : c′τττz < aτττ

}

and
{

z ∈ R
k : c′τττz ≥ aτττ

}

associated with the quantile hyper-

planes of Definition 2.2 coincide with those of (2.2)-(2.3), and therefore, depending

on the context, the notation H±
τττ (aτττ ,bτττ ), H±

τττ (aτττ , cτττ ), or simply H±
τττ will be used in-

differently. Definition 2.1 and Definition 2.2 both have advantages and, in the sequel,

we use them both. Definition 2.1 is preferred in this section since it carries all the

intuitive contents of our concept; the advantages of Definition 2.2, of an analytical

nature, will appear more clearly in Sections 3.1 and 5.

The empirical versions of our quantile hyperplanes and the corresponding lower

and upper quantile halfspaces naturally follow as sample analogs of the population

concepts. To be more specific, let Z(n) := (Z1, . . . ,Zn) be an n-tuple (n > k) of

k-dimensional random vectors: we define the empirical τττ -quantile of Z(n) as any

element of the collection Π
(n)
τττ of hyperplanes π

(n)
τττ := {z ∈ R

k : u′z = b
(n)′
τττ ΓΓΓ′

uz+a
(n)
τττ }

such that (with obvious notation)

(2.6)

(a
(n)
τττ ,b

(n)′
τττ )′ ∈ argmin

(a,b′)′∈Rk

Ψ
(n)
τττ (a,b), with Ψ

(n)
τττ (a,b) := n−1

n
∑

i=1

ρτ (Ziu − b′Z⊥
iu − a),

or equivalently, of hyperplanes π
(n)
τττ := {z ∈ R

k : c
(n)′
τττ z = a

(n)
τττ } such that

(2.7) (a
(n)
τττ , c

(n)′
τττ )′ ∈ argmin

(a,c′)′∈Mu

Ψ
c(n)
τττ (a, c), with Ψ

c(n)
τττ (a, c) := n−1

n
∑

i=1

ρτ (c
′Zi−a).

These empirical quantiles—which for given u clearly coincide with the Koenker and

Bassett [20] hyperplanes in the coordinate system (u
...ΓΓΓu)—allow for defining, in an
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obvious way, the empirical analogs H
(n)−
τττ and H

(n)+
τττ of the lower and upper quantile

halfspaces in (2.2)-(2.3); see Figures 1 and 2 for an illustration (computational details

are provided in Section 5).

Of course, empirical distributions are inherently discrete, so that empirical τττ -

quantiles and halfspaces in general are not uniquely defined. However, the minimizers

of (2.6) (equivalently, of (2.7)), for given τττ , are “close to each other”, in the sense

that the set of minimizers is convex—hence, connected (this readily follows from the

fact that the objective functions are convex); this set is shrinking, as n → ∞, to a

single point which corresponds to the uniquely defined population quantile, provided

that the following assumption is fulfilled (see the asymptotic results of Section 3.3

for details).

Assumption (An). The observations Zi, i = 1, . . . , n are i.i.d. with a common

distribution satisfying Assumption (A).

Finally, note that, since the empirical versions of our quantiles, for given u, are

defined as standard single-output quantile regression hyperplanes, they inherit the

linear programming features of the Koenker-Bassett theory. This certainly is one of

the most important and attractive properties of the proposed quantiles; see Section 5

for details.

3. Multivariate quantiles as directional quantiles. In this section, we de-

scribe the “directional” properties of our quantiles. We first derive and discuss the

subgradient conditions associated with the optimization problems (2.1) and (2.5),

then state the strong equivariance properties of our empirical quantiles. Finally,

asymptotic results are presented.

3.1. Subgradient conditions. Under Assumption (A), the objective function Ψτττ

appearing in Definition 2.1 is convex and continuously differentiable on R
k. There-

fore, our population τττ -quantiles can be equivalently defined as the collection of

hyperplanes associated with the solutions (aτττ ,b
′
τττ )′ of the system of equations

(3.1) grad(a,b′)′ Ψτττ (a,b) = 0.

These hyperplanes thus are characterized by the relations

0 = (∂aΨτ (a,b))(aτττ ,b′
τττ )′ = P[u′Z < b′

τττΓΓΓ
′
uZ + aτττ ] − τ(3.2a)

= P[Z ∈ H−
τττ (aτττ ,bτττ )] − τ,

0 = (gradbΨτττ (a,b))(aτττ ,b′
τττ )′ = −τ E[ΓΓΓ′

uZ] + E[ΓΓΓ′
uZ I[Z∈H−

τττ (aτττ ,bτττ )]].(3.2b)
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Clearly, (3.2a) provides our multivariate τττ -quantiles with a natural probabilistic

interpretation, as it keeps the probability of their lower halfspaces equal to τ(= ‖τττ‖).
As for (3.2b), it can be rewritten as

(3.3) ΓΓΓ′
u

[

1

1 − τ
E[Z I[Z∈H+

τττ ]] −
1

τ
E[Z I[Z∈H−

τττ ]]

]

= 0,

which—combined with (3.2a)—shows that the probability mass centers 1
τ E[Z I[Z∈H−

τττ ]]

and 1
1−τ E[Z I[Z∈H+

τττ ]] of the lower and upper τττ -quantile halfspaces share the same

projection on the corresponding quantile hyperplanes πτττ—equivalently, that the

straight line through those probability mass centers is parallel to u(= τττ/τ). Note

moreover that, quite trivially,

(1 − τ)

(

1

1 − τ
E[Z I[Z∈H+

τττ ]]

)

+ τ

(

1

τ
E[Z I[Z∈H−

τττ ]]

)

= E[Z]

so that the overall probability mass center also belongs to the same straight line.

Now consider the gradient conditions associated with Definition 2.2, which state

that (aτττ , cτττ , λτττ ) are solutions of the system

(3.4) grad(a,c,λ)Lτττ (a, c, λ) = 0, with Lτττ (a, c, λ) := Ψc
τ (a, c) − λ(u′c − 1)

(the Lagrangian function of the problem). Equivalently (indeed, the only points

in R
k+2 where (a, c, λ) 7→ Lτττ (a, c, λ) is not continuously differentiable are of the

form (0,0′, λ)′, hence cannot be associated with a minimum of (2.5)), the latter

gradient conditions rewrite

0 = (∂aLτττ (a, c, λ))(aτττ ,cτττ ,λτττ ) = P[c′τττZ < aτττ ] − τ = P[Z ∈ H−
τττ (aτττ , cτττ )] − τ,(3.5a)

0 = (gradcLτττ (a, c, λ))(aτττ ,cτττ ,λτττ ) = τ E[Z] − E[Z I[Z∈H−

τττ (aτττ ,cτττ )]] − λτττu,(3.5b)

0 = (∂λLτττ (a, c, λ))(aτττ ,cτττ ,λτττ ) = 1 − u′cτττ .(3.5c)

For such a constrained optimization problem, gradient conditions in general are nec-

essary but not sufficient. In this case, however, note that premultiplying both sides

of (3.5b) by ΓΓΓ′
u yields (3.2b), which clearly implies that, disregarding the Lagrange

multiplier λτττ and (3.5c) to focus on (the coefficients of) the quantile hyperplane πτττ ,

the necessary conditions (3.5a)-(3.5b) are no weaker than the necessary and suffi-

cient ones in (3.2a)-(3.2b), hence are necessary and sufficient, too.

Now, we argue that the gradient conditions (3.4) associated with Definition 2.2

are actually richer than those (3.1) associated with the original definition of our
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quantiles, which is actually one of the main reasons why we also consider that

alternative definition. Indeed, (3.5b), which can be rewritten as

(3.6)
1

1 − τ
E[Z I[Z∈H+

τττ ]] −
1

τ
E[Z I[Z∈H−

τττ ]] =
λτττ

τ(1 − τ)
u,

is clearly more informative than (3.2b)-(3.3), as it clarifies the role of the La-

grange multiplier λτττ . Such a multiplier, which in general only measures the im-

pact of the boundary constraint (in this case, constraint (3.5c)), here appears as

a functional that is potentially useful for testing (central, elliptical, or spherical)

symmetry or for measuring directional outlyingness and tail behavior of the dis-

tribution; see Section 7. Moreover, premultiplying (3.5b) with c′τττ yields λτττ (c
′
τττu) =

E[(τ − I[c′τττZ−aτττ <0])c
′
τττZ], that is, by using (3.5a) and (3.5c),

(3.7) λτττ = Ψc
τ (aτττ , cτττ ),

so that λτττ is nothing but the minimum achieved in (2.5) (equivalently, in (2.1)).

The sample objective functions Ψ
(n)
τττ (a,b) and Ψ

c(n)
τττ (a, c) in (2.6)-(2.7) are not

continuously differentiable. They however have directional derivatives in all direc-

tions, which can be used to formulate fixed-u subgradient conditions for the empiri-

cal τττ -quantiles, τττ = τu. Focusing first on the constrained optimization problem (2.7),

it is easy to show that the coefficients (a
(n)
τττ , c

(n)′
τττ )′ and the corresponding Lagrange

multiplier λ
(n)
τττ of any empirical τττ -quantile π

(n)
τττ = {z ∈ R

k : c
(n)′
τττ z = a

(n)
τττ } must

satisfy (letting r
(n)
iτττ := c

(n)′
τττ Zi − a

(n)
τττ , i = 1, . . . , n)

n−1
n
∑

i=1

I
[r

(n)
iτττ

<0]
≤ τ ≤ 1

n

n
∑

i=1

I
[r

(n)
iτττ

≤0]
,(3.8a)

−n−1
n
∑

i=1

Z−
i I

[r
(n)
iτττ

=0]
≤ τ

[

1

n

n
∑

i=1

Zi

]

−
[

n−1
n
∑

i=1

ZiI[r
(n)
iτττ

<0]

]

− λ
(n)
τττ u ≤ 1

n

n
∑

i=1

Z+
i I

[r
(n)
iτττ

=0]
, and(3.8b)

0 = 1 − u′c
(n)
τττ ,(3.8c)

where z+ := (max(z1, 0), . . . ,max(zk, 0))
′ and z− := (−min(z1, 0), . . . ,−min(zk, 0))′.

These necessary conditions are obtained by imposing that directional derivatives in

each of the 2(k + 2) semi-axial directions of the (a, c′, λ)′-space be nonnegative

at (a
(n)
τττ , c

(n)′
τττ , λ

(n)
τττ )′.
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For n ≫ k, we clearly may interpret (3.8a) and (3.8b) as an approximate version

of their population analogs (3.5a) and (3.5b), roughly with the same consequences

(condition (3.8c) simply restates our boundary constraint). More specifically, (3.8a)

indicates that

(3.9)
N

n
≤ τ ≤ N + Z

n
, hence

P

n
≤ 1 − τ ≤ P + Z

n
,

where N , P , and Z are the numbers of negative, positive, and zero values, respec-

tively, in the residual series r
(n)
iτττ , i = 1, . . . , n. This implies that, for non-integer

values of nτ , empirical τττ -quantile hyperplanes have to go through some of the Zi’s.

Actually, if the data points are in general position (which of course holds with proba-

bility one under Assumption (An)), there exists a sample τττ -quantile hyperplane π
(n)
τττ

which fits exactly k observations; (3.9) then holds with Z = k (see Sections 2.2.1

and 2.2.2 of [18]). Note that the inequalities in (3.8a)-(3.8b) (hence also in (3.9))

must be strict if the sample τττ -quantile is to be uniquely defined. Finally, as we will

see in (5.2) below, the value of λ
(n)
τττ , parallel to the population case, is the minimal

one that can be achieved in (2.7), hence also in (2.6).

For the unconstrained definition of our empirical quantiles in (2.6), necessary and

sufficient subgradient conditions can be obtained by applying Theorem 2.1 of [18],

since (2.6) is nothing but a standard single-output quantile regression optimization

problem. Assuming that the data points are in general position and defining, for

any k-tuple of indices h = (i1, . . . , ik), 1 ≤ i1 < . . . < ik ≤ n,

(3.10) Yu(h) := Z
′(h)u and Xu(h) := (1k

... Z′(h)ΓΓΓu),

where Z(h) := (Zi1 , . . . ,Zik) and 1k = (1, . . . , 1)′ ∈ R
k, Koenker’s result, in the

present context, states that (aτττ ,b′
τττ )

′ = (Xu(h))−1
Yu(h) (we just pointed out that,

under such conditions, there always exists a quantile hyperplane fitting exactly k

observations) is a solution of (2.6) if and only if

(3.11) − τ1k ≤ ξξξτττ (h) ≤ (1 − τ)1k,

where

(3.12) ξξξτττ (h) := (X′
u(h))−1

∑

i/∈h

(

τ − I[ri<0]

)

(

1

ΓΓΓ′
uZi

)

,

with ri := u′Zi − b′
τττΓΓΓ

′
uZi − aτττ . Again, this solution is unique if and only if the

inequalities in (3.11) are strict; see [18]. As for the constrained case, it follows from
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the linear programming theory that (aτττ , c
′
τττ )′ are the coefficients of a τττ -quantile

hyperplane iff (3.12) holds with ri := c′τττZi − aτττ (still with a unique solution when

the inequalities are strict).

We stress that no conditions (in particular, no moment conditions) are required

here; only, the data points are assumed to be in general position.

3.2. Equivariance properties. In this short section, we study how the proposed

τττ -quantiles behave under various transformations—in particular, the affine ones—of

the underlying distribution, and state the equivariance properties of the correspond-

ing finite-sample concepts.

For the sake of simplicity, results for population quantiles here are stated under

Assumption (A); more general statements can be derived, however, by simply taking

into account—typically in the same fashion as in Theorem 3.1 below—the possible

non-unicity of the resulting τττ -quantiles (see Proposition 2.1). It is then easy to check

that, with obvious notation, for any invertible k × k matrix M and any k-vector d,

(3.13) πτMu/‖Mu‖(MZ + d) = Mπτu(Z) + d.

In other words, the quantile hyperplane of MZ+d with order τ in the direction given

by Mu coincides with the image, under the affine transformation z 7→ Mz + d, of

the quantile hyperplane of Z with the same order τ but for direction u. In particular,

for translations of Z, we have

πτu(Z + d) = πτu(Z) + d,

for any k-vector d, which confirms that our concept of multivariate quantiles is not

localized at any point of the k-dimensional Euclidean space; this was not so clear

in Section 2 since the center of the unit sphere Sk−1 (the origin of R
k) seems to

play an important role in their definitions). This is in sharp contrast with other

directional quantile contours that are defined with respect to some location center,

such as those of [22] (under the terminology quantile biplots) and [34].

Note that for any τ ∈ (0, 1) and any u ∈ Sk−1,

(3.14) π(1−τ)u(Z) = πτ(−u)(Z),

with the corresponding upper and lower quantile halfspaces exchanged: intH±
(1−τ)u(Z)

= intH∓
τ(−u)(Z). Clearly, there is no general link between πτ(−u)(Z) and πτu(Z) un-

less the distribution of Z is centrally symmetric with respect to some k-vector θθθ.
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Now, as shown by the following result, the sample versions of our quantiles are

equivariant.

Theorem 3.1. For any τ ∈ (0, 1), u ∈ Sk−1, invertible k × k matrix M and

any k-vector d, we have

Π
(n)
τMu/‖Mu‖(MZ1 + d, . . . ,MZn + d) = M

[

Π(n)
τu (Z1, . . . ,Zn)

]

+ d,

Π(n)
τu (Z1 + d, . . . ,Zn + d) = Π(n)

τu (Z1, . . . ,Zn) + d,

and

Π
(n)
(1−τ)u(Z1, . . . ,Zn) = Π

(n)
τ(−u)(Z1, . . . ,Zn),

where equalities have to be understood as set equalities (see page 7 for the notation).

We skip the proof, which is straightforward.

3.3. Asymptotic results. This section derives, under Assumption (An) above,

strong consistency, asymptotic normality, and Bahadur-type representation results

for sample τττ -quantiles and related quantities.

Under Assumption (A), the population τττ -quantiles (aτττ ,b′
τττ )′ and (aτττ , c′τττ )′ always

are uniquely defined (Proposition 2.1), unlike their sample counterparts (a
(n)
τττ ,b

(n)′
τττ )′

and (a
(n)
τττ , c

(n)′
τττ )′; in the sequel, the latter notation will be used for arbitrary sequences

of solutions to (2.6) and (2.7), respectively.

Strong consistency of our sample τττ -quantiles, namely the fact that (a
(n)
τττ ,b

(n)′
τττ )′

converges to (aτττ ,b
′
τττ )′ almost surely as n → ∞, holds under Assumption (An);

this follows, e.g., from [14], Section 2.3. Asymptotic normality and Bahadur-type

representation results, however, require stronger assumptions. More precisely, we

will need the following reinforcement of Assumption (An).

Assumption (A′
n). The observations Zi, i = 1, . . . , n are i.i.d. with a common

distribution that is absolutely continuous with respect to the Lebesgue measure on R
k,

with a density (f , say) that has a connected support, and admits finite second-order

moments. Moreover, there exist some constants r > k − 2 and C, s > 0 such that f

satisfies

|f(z1) − f(z2)| ≤ C‖z1 − z2‖s
(

1+
∥

∥

∥

z1 + z2

2

∥

∥

∥

2
)−(3+r+s)/2

,

for all z1, z2 ∈ R
k.
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As we show in the Appendix (see the proof of Theorem 3.2), Assumption (A′
n)

implies that the (strictly convex) function (a,b′)′ 7→ Ψτττ (a,b) (see Definition 2.1) is

twice differentiable at (aτττ ,b′
τττ )

′, with Hessian matrix

Hτττ :=

∫

Rk−1

(

1 x′

x xx′

)

f((aτττ + b′
τττx)u + ΓΓΓux) dx(3.15)

= J′
u

(

∫

u⊥

(

1 z′

z zz′

)

f((aτττ − c′τττz)u + z) dσ(z)

)

Ju =: J′
uH

c
τττJu,

where u⊥ := {z ∈ R
k : u′z = 0} and Ju denotes the (k + 1) × k block-diagonal

matrix with diagonal blocks 1 and ΓΓΓu. Strict convexity of course guarantees that Hτττ

is positive semidefinite. The asymptotic results in Theorem 3.2 below furthermore

require

Assumption (Bτττ). Hτττ is positive definite.

Letting ξξξi,τττ (a,b) := −(τ−I[u′Zi−b′ΓΓΓ′
uZi−a<0]

)

Żi and ξξξc
i,τττ (a, c) := −(τ−I[c′Zi−a<0]

)

Żi,

where Żi := (1,Z′
i)
′, we have

Vτττ := Var[J′
uξξξ1,τττ (aτττ ,bτττ )]

= J′
u

(

τ(1 − τ) τ(1 − τ)E[Z′]

τ(1 − τ)E[Z] Var[(τ − I[Zi∈H−
τττ ])Z]

)

Ju

= J′
uVar[ξξξc

1,τττ (aτττ , cτττ )]Ju =: J′
uV

c
τττJu.

We are then ready to state an asymptotic normality and Bahadur-type represen-

tation result for our sample τττ -quantile coefficients, which is the main result of this

section.

Theorem 3.2. Let Assumptions (A′
n) and (Bτττ ) hold. Then, as n → ∞,

√
n

(

a
(n)
τττ − aτττ

b
(n)
τττ − bτττ

)

= − 1√
n

H−1
τττ J′

u

n
∑

i=1

ξξξi,τττ (aτττ ,bτττ ) + oP(1)(3.16)

L→ Nk(0,H−1
τττ VτττH

−1
τττ ).(3.17)

Equivalently, with Pk = diag(1,−Ik),

√
n

(

a
(n)
τττ − aτττ

c
(n)
τττ − cτττ

)

= − 1√
n

Pk

(

Hc
τττ

)−
n
∑

i=1

ξξξc
1,τττ (aτττ , cτττ ) + oP(1)(3.18)

L→ Nk+1(0,Pk

(

Hc
τττ

)−
Vc

τττ

(

Hc
τττ

)−
P′

k),(3.19)
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where (Hc
τττ )

− denotes the Moore-Penrose pseudoinverse of Hc
τττ . Moreover,

√
n (λ

(n)
τττ − λτττ ) =

1√
n

n
∑

i=1

(

ρτ (c′τττZi − aτττ ) − λτττ
)

+ oP(1)(3.20)

L→ N (0,Var[ρτ (c
′
τττZ1 − aτττ )]).(3.21)

As ρτ (·) is a nonnegative function, the distribution of
√

n (λ
(n)
τττ − λτττ ) is likely to

be skewed for finite n (see (3.20)), which can be partly corrected via a normalizing

transformation such as that from [9]. Also, the proof of the above theorem can be

easily generalized to derive the asymptotic joint distribution of vectors of the form

(a
(n)
τττ1 ,b

(n)′

τττ1 , . . . , a
(n)
τττJ

,b
(n)′

τττJ
)′, J ∈ N0.

Theorem 3.2 of course paves the way to inference about τττ -quantiles; in partic-

ular, it allows to build confidence zones for them. Testing linear restrictions on

τττ -quantiles coefficients—that is, testing null hypotheses of the form H0 : (aτττ ,b
′
τττ )′ ∈

M(a0,b0,ΥΥΥ) := {(a0,b
′
0)

′ + ΥΥΥv : v ∈ R
ℓ} (indexed by some k-vector (a0,b

′
0)

′ and

some full-rank k × ℓ matrix ΥΥΥ, ℓ < k)—can be achieved in the same way as in [26].

Defining and studying such tests requires a detailed investigation of the asymptotic

behavior of the constrained estimators

(ã
(n)
τττ , b̃

(n)′
τττ )′ := argmin

(a,b′)′∈M(a0,b0,ΥΥΥ)
Ψ

(n)
τττ (a,b),

which is beyond the scope of this work.

4. Multivariate quantiles as depth contours. Turning to the contour na-

ture of our multivariate quantiles, we first define the (population and sample) quan-

tile regions and contours that naturally follow from Definitions 2.1-2.2 and their em-

pirical counterparts, and state their basic properties. We then establish the strong

connections between those regions/contours and Tukey’s classical halfspace depth

regions/contours.

4.1. Quantile regions. The proposed quantile regions are obtained by taking, for

some fixed τ(= ‖τττ‖), the “upper envelope” of our τττ -quantile hyperplanes. More

precisely, for any τ ∈ (0, 1), we define our τ -quantile region R(τ) as

(4.1) R(τ) :=
⋂

u∈Sk−1

⋂

{H+
τu}

where
⋂ {H+

τu} stands for the intersection of the collection {H+
τu} of all (closed)

upper (τu)-quantile halfspaces (2.3); for τ = 0, we simply let R(τ) := R
k. The
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corresponding τ -quantile contour then is defined as the boundary ∂R(τ) of R(τ).

At this stage, it is already clear that those τ -quantile regions are closed and convex

(since they are obtained by intersecting closed halfspaces). As we will see below,

they are also nested : R(τ1) ⊂ R(τ2) if τ1 ≥ τ2.

Empirical quantile regions R(n)(τ) are obtained by replacing in (4.1) the popula-

tion quantile halfspaces H+
τu with their sample counterparts H

(n)+
τu , yielding, parallel

to (4.1),

(4.2) R(n)(τ) :=
⋂

u∈Sk−1

⋂

{H(n)+
τu },

for any τ ∈ (0, 1), with R(n)(0) := R
k. Since they result from intersecting finitely

many halfspaces, these empirical quantile regions are closed convex polyhedral sets,

the faces of which all are part of are quantile hyperplanes of order τ . Another

important property of our sample regions, which readily follows from Theorem 3.1,

is that, for any invertible k × k matrix M and any k-vector d,

R(n)(τ ;MZ1 + d, . . . , τ ;MZn + d) = MR(n)(τ ;Z1, . . . ,Zn) + d.

As the population regions, in view of (3.13), satisfy R(τ ;MZ+d) = MR(τ ;Z)+d for

any such MZ and d, the empirical regions (4.2) may be considered affine-equivariant.

4.2. Connection with halfspace depth regions. Recall that the halfspace or Tukey

depth ([33]) of z ∈ R
k with respect to the probability distribution P is defined

as HD(z,P) := inf{P[H] : H is a closed halfspace containing z}. The halfspace

depth region D(τ) of order τ ∈ [0, 1] associated with P then collects all points

of the k-dimensional Euclidean space with depth at least τ , that is,

(4.3) D(τ) = DP(τ) := {z ∈ R
k : HD(z,P) ≥ τ}.

Clearly, D(0) = R
k. Also, it can be shown (see, e.g., Proposition 6 in [29]) that, for

any τ > 0,

(4.4) D(τ) =
⋂

{H : H is a closed halfspace with P[Z ∈ H] > 1 − τ}.

The empirical version D(n)(τ) of D(τ), as usual, is obtained by replacing, in (4.3)

and (4.4), the probability measure P with the empirical measure associated with the

observed n-tuple Z1, . . . ,Zn at hand. As shown by the following results, the pop-

ulation halfspace depth regions, under Assumption (A), coincide with the quantile
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regions R(τ) defined in (4.1), and so do—almost surely under Assumption (An)—

their empirical counterparts D(n)(τ), whenever their interior is not empty, with the

empirical quantile regions R(n)(τ) (see the Appendix for the proofs).

Theorem 4.1. Under Assumption (A), R(τ) = D(τ) for all τ ∈ [0, 1).

Theorem 4.2. Assume that the n(≥ k + 1) data points are in general position.

Then, for any ℓ ∈ {1, 2, . . . , n − k} such that D(n)( ℓ
n) has a non-empty interior, we

have that R(n)(τ) = D(n)( ℓ
n ) for all positive τ in [ ℓ−1

n , ℓ
n).

Theorem 4.1 of course implies that, under Assumption (A), all results on halfspace

depth regions D(τ) also apply to the R(τ) regions. It follows that the R(τ)’s are

compact ; the supremum of all τ ’s such that R(τ) 6= ∅ belongs to [ 1
k+1 , 1

2 ], and takes

value 1
2 iff the distribution of Z is angularly symmetric in the sense that there exists

some k-vector θθθ such that Z−θθθ
‖Z−θθθ‖ and − Z−θθθ

‖Z−θθθ‖ share the same distribution (see [5],

[29], and [30]). This implies that, under Assumption (A), we also may restrict to

τ ∈ [0, 1/2]. As for Theorem 4.2, note that the restriction to halfspace depth regions

with non-empty interiors is not really restrictive, since it only applies to the deepest

regions.

Beyond that, Theorems 4.1 and 4.2, by showing that the halfspace depth re-

gions coincide with the upper envelope of directional quantile halfspaces, and that

the faces of the polyhedral empirical depth contours are parts of empirical quantile

hyperplanes, provide depth contours with a straightforward quantile-based inter-

pretation. Above all, these two theorems bring to the halfspace depth context the

extremely efficient computational features of linear programming. This important

issue is briefly discussed in Section 5; we refer to [28] for details. See Figure 3 for

two- and three-dimensional illustrations.

Kong and Mizera in [22] establish somewhat similar results for the directional

upper quantile halfspace H+
KM;τu defined in (2.4). They show indeed that

(4.5) D(τ) = RKM(τ) :=
⋂

u∈Sk−1

{H+
KM;τu} for any τ

and that

(4.6) D(n)( ℓ
n) = R

(n)
KM(τ) for any τ ∈ [ ℓ−1

n , ℓ
n)

(see [22] and [27] for different proofs of this latter equality), where R
(n)
KM(τ) stands

for the empirical version of RKM(τ), obtained by replacing P with the empirical

measure of a sample of size n.
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These two results at first sight look completely equivalent to those of Theorems 4.1

and 4.2. They also establish a close connection between depth and directional

quantiles—here, the Kong and Mizera ones. That connection, however, is much less

exploitable than the former one. It does provide the faces of the polyhedral empiri-

cal depth regions D(n)(τ) with a neat and interesting quantile interpretation: each

face of D(n)(τ) indeed is part of the Kong and Mizera quantile hyperplane π
(n)
KM;τu0

,

where u0 stands for the unit vector orthogonal to that face and pointing to the

interior of D(n)(τ). Unless the depth region D(n)(τ) is available from some other

source, this is not really helpful, though. Contrary to the collection {π(n)
τu }, which is

strictly finite, the collection {π(n)
KM;τu}, for fixed τ , contains infinitely many hyper-

planes (one for each u ∈ Sk−1). And, since the definition of the upper envelopes of

halfspaces H
(n)+
KM;τu involves an infinite number of such H

(n)+
KM;τu’s, (4.6), contrary to

Theorem 4.2, does not readily provide a feasible computation of D(n)(τ). It is cru-

cial to understand, in that respect, that our quantile halfspaces H
(n)+
τu are piecewise

constant functions of u, in sharp contrast with their Kong and Mizera counter-

parts H
(n)+
KM;τu : since ∂H+

KM;τu is orthogonal to u for any direction u, there are

uncountably many such upper halfspaces in any neighborhood of any fixed direc-

tion u, even in the empirical case. To palliate this, Kong and Mizera ([22]) propose

to sample the unit sphere Sk−1, which leads to approximate envelopes, that only

approximately satisfy (4.6); the same strategy is adopted in [34].

5. Computational aspects. In this section, we briefly discuss various compu-

tational issues related to the proposed quantiles; the reader is referred to [28] for

details. We first restrict to the computation of (fixed-u) directional quantiles and

related quantities such as the corresponding Lagrange multipliers λ
(n)
τττ in (3.8b),

then consider the computation of (fixed-τ) quantile contours.

5.1. Computing directional quantiles. As we have seen in the previous sections,

the constrained formulation (2.5) of the definition of our directional quantiles is

richer than the unconstrained one (2.1), since it introduces Lagrange multipliers,

which bear highly relevant information (that can be exploited for statistical infer-

ence ; see Section 7). It is therefore natural to focus on the computation of the

sample quantiles (a
(n)
τττ , c

(n)′
τττ )′ in (2.7) first.

The problem of finding (a
(n)
τττ , c

(n)′
τττ )′ can be reformulated as the linear program (P)

min
(a,c′,r′+,r′

−
)′ ∈R×Rk×Rn×Rn

τ1′
nr+ + (1 − τ)1′

nr−
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subject to

(5.1) u′c = 1, Z
′
nc − a1n − r+ + r− = 0, r+ ≥ 0, r− ≥ 0,

where we set Zn := (Z1 . . . Zn) and wrote r± := ((r1)±, . . . , (rn)±)′, r+ := max(r, 0)

and r− := max(−r, 0). Associated with problem (P) is the dual problem (D)

max
(λD , µµµ′)′ ∈R×Rn

λD, subject to 1′
nµµµ = 0, λDu + Znµµµ = 0m, −τ1n ≤ µµµ ≤ (1 − τ)1n,

where λD and µµµ are Lagrange multipliers corresponding to the first and second

equality constraint in (5.1), respectively. Both (P) and (D) have at least one feasible

solution (and therefore also an optimal one). This dual formulation leads to a natural

multiple-output generalization of the powerful concept of regression rank scores

introduced in [13], allowing for a depth-related form of rank-based inference in this

context. This promising line of investigation is not considered here, and left for

future research.

We need not worry about the possible non-unicity of the optimal solutions of (P)

since, as we have seen in Section 3.3, any sequence of such solutions converges

(under Assumption (An)) to the unique population coefficient vector (aτττ , c′τττ )′ almost

surely as n → ∞. In practice, one could compute (a
(n)
τττ , c

(n)′
τττ )′ by means of standard

quantile regression of 0n on (1n|Z′
n) with an extra pseudo-observation consisting

of response C and corresponding design row (0, Cu′) for some sufficiently large

constant C, which, in the limit, guarantees that the boundary constraint u′c
(n)
τττ = 1

is satisfied; see [2] for another application of the same trick.

Now, since λD and λ
(n)
τττ are Lagrange multipliers associated with the same con-

straint, the optimal value λD of (D) satisfies

λD = nλ
(n)
τττ

where, in view of (3.8b), λ
(n)
τττ has a clear meaning. Besides, due to the Strong Duality

Theorem, the optimal values of the objective functions in (P) and (D) coincide.

Therefore, λ
(n)
τττ is always unique and one has, with Ψ

c(n)
τττ defined in (2.7),

(5.2) λ
(n)
τττ = Ψ

c(n)
τττ (a

(n)
τττ , c

(n)
τττ ) > 0

(except for the rare case of exact fit where λ
(n)
τττ = 0), which holds for all optimal

solutions to (P) and (D). In other words, λ
(n)
τττ can be obtained from solving (P) as

a by-product.
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Most importantly, (5.2) allows us to focus on computing our τττ -quantiles through

the unconstrained problem (2.6) without any loss of generality because we may

simply set λ
(n)
τττ = Ψ

(n)
τττ (a

(n)
τττ ,b

(n)
τττ ). This approach is of course advantageous because

it falls directly into the realm of quantile regression, as the problem of finding the

sample τττ -quantiles in (2.6) can be viewed as looking for standard—that is, single-

output—regression quantiles in the regression of Zu on the marginals of Z⊥
u and a

constant (in the notation of Section 2).

Needless to say, this interpretation has a large number of implications. Above

all, it offers fast, powerful and sophisticated tools for computing sample τττ -quantiles

(along with the corresponding Lagrange multiplier λ
(n)
τττ ) in any fixed direction u and

possibly for all τ ’s at once, with τττ = τu = ‖τττ‖u as usual. In particular, there is an

excellent package for advanced quantile regression analysis in R (see [19]) and the key

function for computing quantile regression estimates is also freely available for Mat-

lab, for example from Roger Koenker’s homepage at http://www.econ.uiuc.edu/∼rog

er/research/rq/rq.html.

5.2. Computing quantile contours. As the previous subsection shows that the

computation of H
(n)+
tu is pretty straightforward, we now turn to the problem of

how to aggregate efficiently, for fixed τ , the information associated with the vari-

ous directional quantile halfspaces in order to compute the regions R(n)(τ) defined

in (4.2). The issue of course lies in the proper identification of the finite set of up-

per quantile halfspaces which are relevant for the computation of R(n)(τ). Solving

this problem, by finding efficiently solutions to (P) for all directions u ∈ Sk−1 and

for any given τ 6= ℓ
n , ℓ ∈ {0, 1, . . . , n} (in view of Theorem 4.2, we can restrict to

such τ ’s without any loss of generality) can be achieved by turning to parametric

programming.

For any fixed τ as above and under Assumption (An), parametric programming

indeed reveals that R
k can be almost surely segmented into a finite number of non-

degenerate cones Ci(τ), i = 1, 2, . . . , NC , such that

(a
(n)
τu , c

(n)′
τu ) = (ai, c

′
i)/t

′
iu

λ
(n)
τu = λi/t

′
iu

µ
(n)
j,τu =















v′
iju/t′iu ∈ [−τ, 1 − τ ] if rj = 0

−τ if rj > 0

1 − τ if rj < 0,



MULTIVARIATE QUANTILES AND MULTIPLE-OUTPUT REGRESSION 21

with rj := c′jZj−aj , for any u ∈ Ci(τ)∩Sk−1, i = 1, 2, . . . , NC and j = 1, . . . , n. Each

cone Ci(τ) then corresponds to one optimal basis Bi = Bi,u that uniquely determines

constant scalars and vectors λi, ai, ci, vij , and ti and guarantees that t′iu > 0 for

any u ∈ Ci(τ) ∩ Sk−1. Consequently, each cone Ci(τ) corresponds to exactly one

quantile hyperplane, and any statistic Su of the form

Su = g1(λu, au, cu)/g2(λu, au, cu)

is piecewise constant on the unit sphere whenever g1(λ, a, c) and g2(λ, a, c) are ho-

mogenous functions of the same order. Figure 4 provides such cones for a bivariate

dataset.

It remains to note that we may investigate all the cones Ci(τ)’s by passing through

them counter-clockwise when k = 2. In general, we can use the breadth-first search

algorithm and always consider all such Ci(τ)’s that are adjacent to a cone treated

in the previous step and have not been considered yet. If Cj(τ) and Ci(τ) are adja-

cent cones with point uf inside their common facet, then Bj,uf
(and consequently

also Bj,u) may be found from the primal feasible basis Bi,uf
by only a few iterations

of the primal simplex algorithm at most.

Moreover, a careful reading of the proof of Theorem 4.2 reveals (see the remark

right after the proof) that a single fixed-τ collection of quantile hyperplanes {π(n)
τu :

u ∈ Sk−1} typically contains all hyperplanes relevant for the computation of k

consecutive Tukey depth contours. Technical details are provided in [28]. A Matlab

implementation of the procedure is available from the authors. That implementation

was used to generate all the illustrations in this paper.

6. Multiple-output quantile regression. Our approach to multivariate quan-

tiles also allow to define multiple-output regression quantiles enjoying all nice prop-

erties of their classical single-output counterparts.

Consider the multiple-output regression problem in which the m-variate response

Y := (Y1, . . . , Ym)′ is to be regressed on the vector of regressors X := (X1, . . . ,Xp)
′,

where X1 = 1 a.s. and the other Xj ’s are random. In the sequel, we let X =: (1,W′)′,

so that {(w′,y′)′ : w ∈ R
p−1,y ∈ R

m} = R
p−1×R

m is the natural space for consider-

ing fitted regression “objects”. Multiple-output regression quantiles, in that context,

can be obtained by applying Definition 2.1 to the k-dimensional random vector Z :=

(W′,Y′)′, k = p + m − 1, with the important restriction that the direction u should

be taken in the response space only, that is, u ∈ Sm−1
p−1 := {0p−1} × Sm−1 ⊂ Sk−1.

This directly yields the following definition.
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Definition 6.1. For any τττ = τu, with τ ∈ (0, 1) and u = (0′
p−1,u

′
y)′ ∈ Sm−1

p−1 ,

the regression τττ -quantile of Y with respect to X = (1,W′)′ is defined as any el-

ement of the collection Πτττ of hyperplanes πτττ := {(w′,y′)′ ∈ R
p+m−1 : u′

yy =

b′
τττΓΓΓ

′
u(w′,y′)′ + aτττ} such that

(6.1) (aτττ ,b′
τττ )

′ ∈ argmin
(a,b′)′∈Rp+m−1

Ψτττ (a,b),

where, denoting by ΓΓΓu an arbitrary (p+m−1)×(p+m−2) matrix such that (u
...ΓΓΓu)

is orthogonal, we let Ψτττ (a,b) := E[ρτ (u
′
yY − b′ΓΓΓ′

u(W′,Y′)′ − a)].

Although—similarly as in Definition 2.1—the choice of ΓΓΓu has no impact on the

directional regression quantile πτττ , it is here natural to take ΓΓΓu of the form

ΓΓΓu =

(

Ip−1 0

0 ΓΓΓuy

)

,

where Ip−1 denotes the (p − 1)-dimensional identity matrix and the m × (m − 1)

matrix ΓΓΓuy is such that (uy

...ΓΓΓuy) is orthogonal. The directional regression quantiles

in Definition 6.1 then take the form

πτττ := {(w′,y′)′ ∈ R
p+m−1 : u′

yy = b′
τττyΓΓΓ

′
uy

y + b′
τττww + aτττ},

with bτττ = (b′
τττw,b′

τττy)′. Clearly, an equivalent definition of multiple-output regression

quantiles can be obtained by extending Definition 2.2 in the same fashion.

Now, as in the location case, each quantile hyperplane πτττ characterizes a lower

(open) and upper (closed) regression quantile halfspaces defined as

(6.2) H−
τττ := {(w′,y′)′ ∈ R

p+m−1 : u′
yy < b′

τττyΓΓΓ
′
uy

y + b′
τττww + aτττ}

and

(6.3) H+
τττ := {(w′,y′)′ ∈ R

p+m−1 : u′
yy ≥ b′

τττyΓΓΓ
′
uy

y + b′
τττww + aτττ},

respectively. Most importantly, for fixed τ(= ‖τττ‖) ∈ (0, 1), (multiple-output) τ -

quantile regression regions are obtained by taking the “upper envelope” of our re-

gression τττ -quantile hyperplanes. More precisely, for any τ ∈ (0, 1), we define regres-

sion τ -quantile regions Rregr(τ) as

(6.4) Rregr(τ) :=
⋂

u∈Sm−1
p−1

⋂

{H+
τu}
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(with corresponding regression contours ∂Rregr(τ)), where H+
τu denotes the (closed)

upper regression (τu)-quantile halfspace in (6.3). Unlike the location case (p = 1),

these regression regions may be non-nested—an m-dimensional form of the familiar

regression quantile crossing phenomenon.

Finite-sample versions of all regression concepts above are obtained, similarly as

in the location case (Section 2), as the natural sample analogs of the corresponding

population concepts; see Figures 5 and 6 for an illustration. From a numerical point

of view, Section 5.2, with obvious minor changes, still describes how to compute

the resulting regression quantile regions R
(n)
regr(τ), with m and uy substituded for k

and u.

7. Final comments. This work defines a new concept of multivariate quantile

based on L1 optimization ideas and clarifies the quantile nature of halfspace depth

contours, while providing an extremely efficient way to compute the latter. The same

concept readily allows for an extension of quantile regression to the multiple-output

context, thus paving the way to a multiple-output generalization of the many tools

and techniques that have been based on the standard (single-output) Koenker and

Bassett concept of quantile regression. This final section quickly discusses several

open problems, of high practical relevance, that could now be considered.

First of all, Section 6 only very briefly indicates how our multivariate quantiles

extend to the context of multiple-output regression; that extension clearly calls for

a more detailed study, covering standard asymptotic issues (limiting distributions,

Bahadur representations) as well as robustness aspects (breakdown points and in-

fluence functions) and nonlinear quantile regression.

The regression rank score perspectives (associated with linear programming du-

ality) sketched in Section 5.1 also look extremely promising, possibly leading to the

development of a full body of multivariate, depth-related, methods of rank-based

inference.

Finally, as mentioned in the Introduction and in Section 3.1, various concepts

introduced in this paper can be quite useful for inference. As an example, note

that the symmetry (central, elliptical, or spherical) structure of P is reflected in the

mappings

u 7→ λτuu/λ(∞)
τ and u 7→ ‖cτu‖u/c(∞)

τ ,

with λ
(∞)
τ := supu∈Sk−1 λτu and c

(∞)
τ := supu∈Sk−1 ‖cτu‖, as illustrated (with the

corresponding empirical quantities, of course) in Figure 7. A test of the hypothesis
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that the density of Z is, e.g., spherically symmetric thus could be based on (the

empirical version T (n) := T (Pn) of) a functional of the form

T (P) :=

∫ 1

0

∫

Sk−1
δ

(

λτu

λ
(∞)
τ

, 1

)

dσ(u)W (τ) dτ,

where δ(·, ·) denotes some distance (such as Cramér-von Mises), W some positive

weight function over (0, 1), and σ the uniform measure over Sk−1.

APPENDIX A

Proof of Theorem 3.2. The quantity ηηηi,τττ (a,b) := J′
uξξξi,τττ (a,b) is a subgradient

for (a,b) 7→ ρτ (Ziu − b′Z⊥
iu − a) since, for all (a,b′)′, (a0,b

′
0)

′ ∈ R
k, we have that

ρτ (Ziu − b′Z⊥
iu − a) − ρτ (Ziu − b′

0Z
⊥
iu − a0) − (a − a0,b

′ − b′
0)ηηηi,τττ (a0,b0)

= (I[u′Zi−b′

0ΓΓΓ
′

iuZi−a0<0] − I[u′Zi−b′ΓΓΓ′

iuZi−a<0])(u
′Zi − b′ΓΓΓ′

iuZi − a) ≥ 0,

irrespective of the value of Zi. Hence, interchanging differentiation and expectation

(which is justified in a standard way) shows that (a,b′)′ 7→ Ψτττ (a,b) (see Defi-

nition 2.1) satisfies grad Ψτττ (a,b) = grad E[ρτ (Ziu − b′Z⊥
iu − a)] = E[ηηηi,τττ (a,b)];

see (3.2a)-(3.2b). Therefore,

grad Ψτττ (aτττ + ∆a,bτττ + ∆∆∆b) − grad Ψτττ (aτττ ,bτττ ) − Hτττ (∆a,∆∆∆
′
b)′

=

∫

Rk−1

∫ (aτττ +∆a)+(bτττ +∆∆∆b)′x

aτττ +b′
τττx

(f(zu + ΓΓΓux) − f((aτττ + b′
τττx)u + ΓΓΓux)) (1,x′)′ dz dx,

and Assumption (A′
n) yields that

‖grad Ψτττ (aτττ + ∆a,bτττ + ∆∆∆b) − grad Ψτττ (aτττ ,bτττ ) − Hτττ (∆a,∆∆∆
′
b)′‖

≤ C

∫

Rk−1

∣

∣

∣

∣

∣

∫ (aτττ +∆a)+(bτττ +∆∆∆b)′x

aτττ +b′
τττx

|z − (aτττ + b′
τττx)|s ‖(1,x′)′‖

(1 + ‖1
2 (z + aτττ + b′

τττx)u + ΓΓΓux‖2)(3+r+s)/2
dz

∣

∣

∣

∣

∣

dx

≤ C

∫

Rk−1
|∆a + ∆∆∆′

bx|
|∆a + ∆∆∆′

bx|s ‖(1,x′)′‖
‖(1,x′)′‖3+r+s

dx

≤ C ‖(∆a,∆∆∆
′
b)′‖1+s

∫

Rk−1
‖(1,x′)′‖−(r+1) dx = o(‖(∆a,∆∆∆

′
b)′‖),

as ‖(∆a,∆∆∆
′
b)′‖ → 0. This shows that (a,b′)′ 7→ Ψτττ (a,b) is twice differentiable at

(aτττ ,b′
τττ )

′ with Hessian matrix Hτττ . Since, moreover, Assumption (A′
n) clearly ensures

that E[‖ηηηi,τττ (a,b)‖2] < ∞ for all (a,b′)′ ∈ R
k, Theorem 4 of [26] applies, which

establishes (3.16). Of course, (3.17) results from (3.16) by the multivariate CLT.
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Recall that, under Assumption (A), the unique solution of (2.1) can be written

as (aτττ ,b
′
τττ )′ := (aτττ , (−ΓΓΓ′

ucτττ )′)′, where (aτττ , c′τττ )′ denotes the unique solution of (2.5).

Similarly, any solution (a
(n)
τττ ,b

(n)′
τττ )′ of (2.6) is related to some solution (a

(n)
τττ , c

(n)′
τττ )′

of (2.7) via the relation (a
(n)
τττ ,b

(n)′
τττ )′ = (a

(n)
τττ , (−ΓΓΓ′

uc
(n)
τττ )′)′. This allows for rewrit-

ing (3.16) as

(A.1)
√

nPkJ
′
u

(

a
(n)
τττ − aτττ

c
(n)
τττ − cτττ

)

= − 1√
n

H−1
τττ J′

u

n
∑

i=1

ξξξc
i,τττ (aτττ , cτττ ) + oP(1),

as n → ∞. By first premultiplying both sides of (A.1) with PkJu, then using ΓΓΓuΓΓΓ′
u =

Ik − uu′ (which follows from the orthogonality of (u
...ΓΓΓu)) and u′c

(n)
τττ = 1 = u′cτττ ,

we obtain

√
n

(

a
(n)
τττ − aτττ

c
(n)
τττ − cτττ

)

= − 1√
n

PkJuH
−1
τττ J′

u

n
∑

i=1

ξξξc
i,τττ (aτττ , cτττ ) + oP(1),

as n → ∞. Lemma A.1 below therefore establishes (3.18). Again, the multivariate

CLT then trivially yields (3.19).

Finally, applying Theorem 6 in [26] (more precisely, applying the version (a) of

Statement (3.8) in that theorem) with L = Ik and c = (aτττ ,b
′
τττ )′ yields

(A.2)

nΨ
(n)
τττ (aτττ ,bτττ )−nΨ

(n)
τττ (a

(n)
τττ ,b

(n)
τττ )− 1

2n

n
∑

i,j=1

ξξξ′i,τττ (aτττ ,bτττ )JuH
−1
τττ J′

uξξξj,τττ (aτττ ,bτττ ) = oP(1),

as n → ∞. Note that the third term is clearly OP(1) as n → ∞. The result then

follows by dividing both sides of (A.2) by
√

n, and by using the identities λ
(n)
τττ =

Ψ
(n)
τττ (a

(n)
τττ ,b

(n)
τττ ) (see the end of Section 5.1) and u′z − b′

τττΓΓΓ
′
uz − aτττ = c′τττz − aτττ for

all z ∈ R
k. Since (3.7) entails λτττ = E[ρτ (c

′
τττZi − aτττ )], the CLT yields (3.21). �

In order to complete the proof of Theorem 3.2, it is sufficient to establish the

following lemma.

Lemma A.1. The matrix Gτττ := Ju(J′
uH

c
τττJu)−1J′

u is the Moore-Penrose pseu-

doinverse of Hc
τττ , that is, Gτττ is such that (i) GτττH

c
τττGτττ = Gτττ , (ii) Hc

τττGτττH
c
τττ = Hc

τττ ,

(iii) (GτττH
c
τττ )

′ = GτττH
c
τττ , and (iv) (Hc

τττGτττ )′ = Hc
τττGτττ .

Proof of Lemma A.1. (i) This directly follows from trivial computations. (ii)

Let Ku be the invertible matrix (Ju

...u̇), where u̇ := (0,u′)′. Clearly, (Hc
τττGτττH

c
τττ −

Hc
τττ )Ju = 0, and the definition of Hc

τττ implies that u̇ belongs to the null space of Hc
τττ .
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Hence, (Hc
τττGτττH

c
τττ −Hc

τττ )Ku = 0, which establishes the result. (iii)-(iv) Since J′
uJu =

Ik, (GτττH
c
τττ −Hc

τττGτττ )Ju = Ju−Hc
τττJu(J′

uH
c
τττJu)−1 = 0; the last equality follows, as in

the proof of Part (ii), by showing that (Ju−Hc
τττJu(J′

uH
c
τττJu)−1)′Ku = 0. Now, as we

also have that (GτττH
c
τττ − Hc

τττGτττ )u̇ = 0, we conclude that (GτττH
c
τττ − Hc

τττGτττ )Ku = 0,

hence that GτττH
c
τττ = Hc

τττGτττ . This establishes (iii)-(iv) since both Hc
τττ and Gτττ are

symmetric. �

Proof of Theorem 4.1. Under Assumption (A), it directly follows from (4.4)

that, for any τ ∈ (0, 1) (note that Theorem 4.1 trivially holds for τ = 0), D(τ) =
⋂ {H : H is a closed halfspace with P [Z ∈ H] ≥ 1 − τ}. Consequently, by noting

that any H+
KM;τu, u ∈ Sk−1 (see (2.4)) satisfies P[Z ∈ H+

KM;τu] = 1 − τ under

Assumption (A), it follows from (4.5) that

D(τ) ⊂
⋂

{H : H is a closed halfspace with P [Z ∈ H] = 1 − τ}

⊂
⋂

u∈Sk−1

{H+
KM;τu} = D(τ),

which entails that, still under Assumption (A),

(A.3) D(τ) =
⋂

{H : H is a closed halfspace with P[Z ∈ H] = 1 − τ}.

Now, since (3.2a) (equivalently, (3.5a)) implies that any closed quantile halfs-

pace H+
τu, u ∈ Sk−1, satisfies P[Z ∈ H+

τu] = 1−τ , (A.3) yields that D(τ) ⊂ R(τ). To

show D(τ) ⊃ R(τ), consider an arbitrary closed halfspace H with P[Z ∈ H] = 1−τ .

Then H = H+
τu, with

u :=
1

1−τ E[Z I[Z∈H]] − 1
τ E[Z I[Z∈Rk\H]]

‖ 1
1−τ E[Z I[Z∈H]] − 1

τ E[Z I[Z∈Rk\H]]‖
,

so that R(τ) ⊂ D(τ); see (3.6) and (A.3) again. �

Proof of Theorem 4.2. We start with some remarks on sample halfspace depth

regions. By (4.4), D(n)( ℓ
n), for any ℓ ∈ {1, 2, . . . , n− k}, coincides with the intersec-

tion of all closed halfspaces containing at least n− ℓ + 1 observations. Actually, one

can restrict to closed halfspaces containing exactly n − ℓ + 1 observations (see [10],

page 1805). Also, it can be shown (see [12]) that D(n)( ℓ
n)—provided that its interior

is not the empty set—is bounded by hyperplanes containing at least k points that

span a (k − 1)-dimensional subspace of R
k.



MULTIVARIATE QUANTILES AND MULTIPLE-OUTPUT REGRESSION 27

Now, fix ℓ ∈ {1, 2, . . . , n− k} such that D(n)( ℓ
n) has indeed a non-empty interior.

Consider an arbitrary closed halfspace H containing exactly n − ℓ + 1 data points,

among which exactly k (Zi, i ∈ h = {i1, . . . , ik}, say) sit in ∂H—and actually

span ∂H, since the data points are assumed to be in general position. It follows from

the results stated in the previous paragraph that D(n)( ℓ
n ), under the assumptions

of Theorem 4.2, coincides with the intersection of all such halfspaces.

Letting sτ (n, k, ℓ) := (n − k − ℓ + 1)τ + (ℓ − 1)(τ − 1), define then

(A.4) u =
TD − sτ (n, k, ℓ)Ton

‖TD − sτ (n, k, ℓ)Ton‖
,

where

TD := τ
∑

Zi∈H\∂H

Zi + (τ − 1)
∑

Zi /∈H

Zi and Ton :=
1

k

∑

Zi∈∂H

Zi.

Taking ΓΓΓu as in Definition 2.1, one of course has ΓΓΓ′
uTD = sτ (n, k, ℓ)ΓΓΓ′

uTon. Hence,

writing (ah,b′
h)′ for the unique solution of

u′Zi − b′ΓΓΓ′
uZi − a = 0, i ∈ h,

we obtain

∑

i∈{1,...,n}\h

(

τ − I[u′Zi−b′

h
ΓΓΓ′

uZi−ah<0]

)

(

1

ΓΓΓ′
uZi

)

= τ
∑

Zi∈H\∂H

(

1

ΓΓΓ′
uZi

)

+ (τ − 1)
∑

Zi 6∈H

(

1

ΓΓΓ′
uZi

)

=

(

sτ (n, k, ℓ)

ΓΓΓ′
uTD

)

= sτ (n, k, ℓ)

(

1

ΓΓΓ′
uTon

)

.

Since (see (3.10))

1

k
X
′
u(h)1k =

(

1

ΓΓΓ′
uTon

)

,

this implies that, with the same notation as in the end of Section 3.1, we have

ξτu(h) =
sτ (n, k, ℓ)

k
1k,
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hence that the subgradient conditions (3.11) are satisfied for any τ ∈ [ ℓ−1
n , ℓ+k−1

n ].

It follows that, for any such τ , H coincides with the upper quantile halfspace H
(n)+
τu

associated with some π
(n)
τu ∈ Π

(n)
τu , where u is as in (A.4), so that

(A.5) R(n)(τ) :=
⋂

u∈Sk−1

⋂

{H(n)+
τu } ⊂ D(n)( ℓ

n),

for any positive τ ∈ [ ℓ−1
n , ℓ

n); one should indeed avoid the value τ = 0 for which R(n)(τ)

is not defined as the upper envelope of quantile halfspaces.

Now, fix τ ∈ (0, ℓ
n). Then, according to (3.9), all upper sample quantile halfs-

paces H
(n)+
τu generating R(n)(τ) contain P + Z ≥ ⌈n(1− τ)⌉ = n− ⌊nτ⌋ ≥ n− ℓ + 1

observations. Hence, D(n)( ℓ
n) ⊂ R(n)(τ) for any such τ . This, jointly with (A.5),

establishes the result. �

Most interestingly, the proof of Theorem 4.2 actually shows that, for any τ ∈
(0, 1), the set {π(n)

τu : u ∈ Sk−1, π
(n)
τu contains k data points} coincides with the col-

lection of all hyperplanes passing through k observations and cutting off at most ⌊nτ⌋
and at least ⌈nτ⌉− k data points. Consequently, as stated at the end of Section 5.2,

the set of τ -quantile hyperplanes in all directions provides enough material to com-

pute not only one, but min(k + ηnτ , ⌊nτ⌋ + 1) Tukey depth contours at a time,

where ηx is one if x is an integer and zero otherwise.
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[28] Paindaveine, D., and Šiman, M. (2008b). Computing multidimensional regression quantile



30 M. HALLIN, D. PAINDAVEINE, AND M. ŠIMAN
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Figure 1: The left plot contains n = 9 (red) points drawn from U([−.5, .5]2) and pro-

vides all τ -quantile hyperplanes for τ = .2 in magenta (in black for the four semiaxial

directions); these hyperplanes define a central region (green contour), which, in Sec-

tion 4, is shown to coincide with a Tukey depth region. The right plot provides the

same information for n = 499 (invisible) points drawn from the same population

distribution.

Figure 2: This plot provides the six semiaxial τ -quantile hyperplanes (in black)

for τ = .1, computed from n = 49 (red) points drawn from U([0, 1]3), along with

the corresponding central region (in green).
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Figure 3: Tukey contours D(n)(τ) (in green) obtained from U([0, 1]k) (top),

N(0, 1)k (center), and tk1 (bottom) for k = 2 (left), with n = 49, 999 and

τ ∈ {.01, .05, .10, .15, .20, . . . , .45}, and for k = 3 (right), with n = 399 and

τ ∈ {.05, .10, .15, .20, . . . , .40}. Only the contours in the plotting range are displayed.
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Figure 4: The twenty cones Ci(τ) (in blue) obtained for τ = .1 via parametric

programming from n = 19 points drawn from U([−.5, .5]2), indicating that twenty

distinct τ -quantile hyperplanes have been found in that case.
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Figure 5: Two different views on the regression τ -quantile contours (in green) from

9, 999 data points for τ ∈ {.01, .05, .15, .30, .45} in a homoscedastic ((Y1, Y2)
′ =

4(X2,X2)
′ + ε; left) and a heteroscedastic ((Y1, Y2)

′ = 4(X2,X2)
′ +

√
X2ε; right)

bivariate-output regression setting, respectively, where X2 ∼ U([0, 1]) and ε ∼
N(0, 1)2.
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Figure 6: Various cuts of the regression τ -quantile “hypertube” regions from

the same two models (left and right, respectively) as in Figure 5 with n =

9, 999 observations. The top plots provide regression τ -quantile cuts, τ ∈
{.05, .10, .15, .20, . . . , .45}, through 10% (magenta), 30% (blue), 50% (green), 70%

(cyan) and 90% (yellow) empirical quantiles of X2; the bottom ones show regres-

sion τ -quantile cuts for the same τ values, and through 25% (blue), 50% (green)

and 75% (yellow) empirical quantiles of Y1. Their centers provide information about

trend and their shapes and sizes shed light on variability.
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Figure 7: Plots (polar coordinates) of the mappings u 7→ λ
(n)
τu u/(supv∈S1 λ

(n)
τv ) (left)

and u 7→ ‖c(n)
τu ‖u/(supv∈S1 ‖c(n)

τv ‖) (right), for τ = 0.1 and n = 49, 999 points drawn

from N(0, 1)2 (green), U([−.5, .5]2) (blue), and (Exp(1) − 1)2 (red) populations,

respectively; see Section 7. The resulting shapes clearly reflect the axes of symmetry

of the underlying distributions.
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