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Abstract

In the presence of outliers in a dataset, a least squares estimation may
not be the most adequate choice to get representative results. Indeed
estimations could have been excessively influenced even by a very lim-
ited number of atypical observations. In this article, we propose a new
Hausman-type test to check for this. The test is based on the trade-off
between robustness and efficiency and allows to conclude if a least squares
estimation is appropriate or if a robust method should be preferred. An
economic example is provided to illustrate the usefulness of the test.
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1 Introduction

In applied economics and econometrics, it has always been highlighted that

even if a small amount of data behaves differently from the vast majority of the

observations, classical estimations may be affected, leading to results that are

not representative of the population. In other words, the presence of outliers

might bias the results. Various techniques such as standardized residuals, stu-

dentized residuals, Cook distances, etc. have been proposed to identify these

non-standard data. Unfortunately, they all suffer from the fact that they are

based on residuals that are calculated on a non-robust regression line (or hyper-

plane). In the robust statistics literature, several authors developed methods

to estimate regression lines which are not sensitive to the presence of outliers

(Rousseeuw and Leroy, 1987; Maronna, et al., 2006) and created graphical tools

(based on plotting robust distances against residuals obtained with robust es-

timation methods) to recognize and distinguish between the different types of

outliers (Rousseeuw and van Zomeren, 1990). These methods have the advan-

tage of yielding estimators which are resistant to outliers but, unfortunately,

the price to pay is a loss of efficiency. An essential question that comes to mind

at this point is whether the gain in unbiasedness is more valuable than the

corresponding loss in efficiency. The answer to this question is not trivial.

The aim of this paper is to develop a test that will help applied econometri-

cians to detect if least squares estimations have been excessively influenced by

outlying observations. The general idea is simple: if the influence of the out-

liers is limited, the estimated regression parameters obtained by ordinary least
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squares (LS) and by a robust method should be similar (but LS will be preferred

as it is more efficient). On the contrary, if some outlying observations distort

the LS estimations, the estimated regression parameters obtained by the two

methods will be very different and LS results should be rejected (and a robust

method should be preferred, even if less efficient).

Durbin (1954) and Wu (1973), introduced the idea that if a model is correctly

specified, two consistent methods should produce estimates that are very close.

Hausman (1978), following a similar reasoning, developed a test that is based

on looking for a statistically significant difference between an estimator that is

consistent whether or not the null is true, and an estimator that is efficient (and

consistent) under the null hypothesis, but inconsistent otherwise. He proves that

asymptotically the test statistic has a chi-square distribution, with a number of

degrees of freedom equal to the number of unknown regression parameters when

no misspecification is present. This type of test is widely used in econometrics

to detect endogeneity or to determine if random effects are appropriate in a

panel data framework. In all these cases, the underlying idea is to test for

misspecification. What we want to bring forward here is different: imagine we

have a well-specified model but a bias appears because of the presence of outliers.

As far as we know, no clear test is available to see if, in this context, a classical

estimation is appropiate. We show here that a Hausman-type test can be used

to check for this.

The paper is divided into five sections. After this short introduction, in the

second section we introduce the type of test we propose. In the third section we
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present some simulations, in the fourth we apply the test to some real economic

data, and in the final section, we conclude.

2 A Hausman-type test

Assume we want to estimate a regression model of the type

yi = θ0 + xi1θ1 + ...+ xip−1θp−1 + εi for i = 1, ..., n (1)

where n is the sample size, xi1, ..., xip−1 are the explanatory variables, yi the

dependent variable and εi the error term. We suppose that the errors εi are

independent of the explanatory variables and i.i.d. according to an underlying

distribution F which is the normal distribution N(0, σ2), where σ is the resid-

ual scale parameter. The vector of regression parameters is θ = [θ0, ..., θp−1]′.

To estimate it, the classical ordinary least squares methodology is the most

commonly used; it minimizes the sum of the squared residuals. More precisely

θ̂LS = arg min
θ̂

n∑
i=1

r2
i where ri = yi − θ̂0 − xi1θ̂1 − ...− xip−1θ̂p−1; (2)

but LS estimators are notorious for their sensitivity to outliers. Results can be

strongly influenced by the presence of just one “bad” outlier. Several estimation

techniques have been developed to reduce the effects of “abnormal” points:

Least Median of Squares (LMS), Least Trimmed of Squares (LTS), S-estimators

(S), MM-estimators (MM), etc. (see Rousseeuw and Leroy, 1987 and Maronna,

et al., 2006, for a thorough review of the robust techniques literature). All these

estimation techniques have very high breakdown points (roughly speaking, the
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breakdown point represents the smallest fraction of contaminated data that

causes the estimator to take on values arbitrarily far from the “true” unknown

parameter) but are less efficient1. The class of MM-estimators (Yohai, 1987)

is very interesting since these estimators combine high breakdown points and

high efficiency. However, an estimator with high efficiency will be less robust,

more sensitive to outliers than an estimator with lower efficiency, even if its

breakdown point is 50%.

This is the reason why we concentrate for the test on the very robust S-

estimator introduced by Rousseeuw and Yohai (1984). S-estimators form a class

of high-breakdown affine equivariant estimators. They are defined as minimizing

a scale M-estimator of the residuals. Let {r1, . . . , rn} be a sample of residuals.

The M-scale estimate s(r1, . . . , rn) is defined as the solution of

1
n

n∑
i=1

ρ(
ri
s

) = b (3)

where b is a constant, chosen as EΦ[ρ] (Φ is the standard Normal cumulative

function) to ensure consistent estimation of σ (if the distribution is normal).

Function ρ is assumed to be even and continuously differentiable, with ρ(0) = 0

and such that there exists some strictly positive value c for which ρ is strictly

increasing on [0, c] and constant on [c,∞).

The regression S-estimator is then defined as

θ̂S = arg min
θ̂

s(r1(θ̂), ..., rn(θ̂)) (4)

1For example, LMS has the disadvantage of converging at a rate of n−1/3, or the 50%

breakdown LTS estimator has a Gaussian efficiency of only 7.1%.
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and the final scale estimator is

σ̂S = s(r1(θ̂S), . . . , rn(θ̂S)). (5)

Taking ρ as Tukey’s Biweight Function

ρ(x) =


1

6c4x
6 − 1

2c2x
4 + 1

2x
2 if |x| ≤ c

c2

6 if |x| > c

(6)

it can be shown that at a breakdown point of 50% (c = 1.547), the Gaussian

efficiency of S is 28.7%. Rousseeuw and Yohai (1984) also proved the consistency

and the asymptotic normality of the S-estimator, using the fact that it satisfies

the first-order necessary conditions of M-estimators defined in Huber (1981).

We have just put forward the key issue underlying the question we want to

address in this paper: LS is efficient (in the gaussian case) but not robust while

S is robust but inefficient. It is sometimes extremely difficult to determine if the

gain in consistency attained using the robust estimator is more valuable than

the loss of efficiency due to not using LS. A rule of thumb is that, if the values

obtained by the robust and classical estimators are similar, it is better to use

the classical one and if they are very different, it is better to use the robust

one. This is unfortunately not necessarily pertinent. What we show is that a

Hausman-type test may be used to determine if the gain in consistency coming

from the use of a robust estimator overrules the corresponding loss of efficiency

(obviously, only if the model is well specified). Stated differently, we show that

a Hausman-type test can be used to check if some outliers have a too big an

influence on least squares estimations.
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The original Hausman test (1978) is based on comparing an estimator which

is efficient under H0 of no endogeneity with an estimator that is consistent under

the alternative that endogeneity is present. It is important to note here that

the null hypothesis that we consider is that the points were generated by a

Gaussian distribution and thus the classical estimators were not biased. We

assume under alternative that the gaussian distribution has been contaminated

by any arbitrary distribution. Then, the contaminated neighborhood of the

gaussian law is given by the following family of distributions

F̃ = {Fε = (1− ε)F + εK, where K is an arbitrary distribution.}

Then we compare the classical efficient LS estimator θ̂LS under H0 of no incon-

sistency due to outliers to the robust S-estimator θ̂S that is consistent under

the null and quasi-consistent2 over F̃ if ε is less than 50%. Indeed, if more

than 50% percent of the data are contaminated, the robust S-estimator will also

break (breakdown point of 50%) but then, can they still really be considered

as outliers? Since we are interested in a specific test aimed at understanding if

the influence of outliers is excessive, we assume that the model is well-specified

and that all the Gauss-Markov hypotheses are respected (linear functional form,

zero mean of disturbance, homoscedasticity, no serial correlation, normality of

errors and exogeneity).

From the results of Rousseeuw and Yohai given above3, it is clear that θ̂LS
2The uniform strong consistency of some robust estimators of location over the all set of

possible contamination neighborhoods is provided in Berrendero (2003).

3Asymptotic normality with a convergence rate of n−1/2 just as LS.
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and θ̂S are both asymptotically normal under H0. Let q̂ denote the difference

between the two estimators i.e. q̂ = θ̂S − θ̂LS . The probability limit of the

difference between the two estimators is zero if and only if no outlier is present.

Hausman (1978) proved that, when two estimators (one which is always con-

sistent but inefficient, the other efficient but not necessarily consistent) are

correlated, the asymptotic variance of their difference is given by the difference

of their respective variances.

It is well known that for the classical estimator

θ̂LS
a
˜N(θ, σ2(X ′X)−1) (7)

where X is the design matrix i.e. X = (xij) for i = 1, ..., n and j = 1, ..., p− 1.

Similarly, for the robust S-estimator, we have

θ̂S
a
˜N(θ,

σ2(X ′X)−1

e
) (8)

where e is the gaussian efficiency of the S-estimator. Using Tukey’s Biweight

Function with a 50% breakdown point, the efficiency is e = 28.7%. Denoting

the asymptotic variance of q̂ by V (q̂), we get under the null

V (q̂) = V (θ̂S)− V (θ̂LS) =
σ2(X ′X)−1

e
− σ2(X ′X)−1 (9)

where the nuisance parameter σ must be estimated4. It is obvious that the

estimator of the standard error should be robust itself, otherwise the test might

lead to incorrect results under the alternative hypothesis. A first natural choice

is the scale estimator obtained by the optimization problem of the S-estimator

4The estimated variance will be denoted by V̂ (q̂).
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i.e. σ̂s. Its efficiency at Gaussian distributions is equal to 50.59%. We also tried

other candidates such as the Median Absolute Deviation estimator (MAD), but

it has low efficiency for normal distributions (36.75%), thereby leading to rather

unsatisfactory results. Rousseeuw and Croux (1993) introduced an alternative

statistic which is more efficient than the MAD5 . They propose to use σ̂RC =

1.1926 med
i

(med
j
|xi − xj |) where the outer median (taken over i) is the median

of the n medians of |xi − xj | , j = 1, 2, ..., n. The efficiency of σ̂RC at Gaussian

distributions is 58% which is better than the natural scale estimator obtained

when using the S-procedure. We decided to try both to determine which is the

best in the variance formula.

The Hausman test statistic is defined as

H = q̂′
[
V̂ (q̂)

]−1

q̂ (10)

where V̂ (q̂) is a consistent estimator of V (q̂). Hausman (1978) shows that

under the null, H is distributed asymptotically as a central χ2
p where p is

the number of unknown parameters. If the latter statistic is higher than the

tabulated value of a χ2
p at a given level of confidence, we reject the hypothesis

that the difference between the estimators is not systematic and thus reject the

LS estimator. Otherwise, we conclude that the efficiency loss resulting from the

use of the S-estimator is more costly than the bias produced by the use of LS.

Note that in (10), V̂ (q̂) is assumed to be non singular, but, as stated by

Chmelarova and Hill (2004) this will almost never hold in practice due to linear

restrictions between the elements of q̂. To solve this problem, in case of singu-
5Which the authors call Sn.
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larity, Hausman and Taylor (1981) and Holly (1982) suggest replacing
[
V̂ (q̂)

]−1

by some generalized inverse6
[
V̂ (q̂)

]−
.

3 Simulations

We will consider two aspects in this section using simulations. First, we look

at the finite-sample behavior of the simulated statistics under the null, to check

if the approximation of the χ2 distribution for a small sample is good enough.

Second, we study the empirical power of the test when different types of outliers

are introduced. We use simulations to study the power because the alternative

being a bias on classical estimator due to a contamination of the gaussian by

any distribution, it is not possible to derive theoretical power of the test.

The experimental design for the first part of this section is the following: a

total of m = 2000 samples for each of the sizes n = 100, 200, 500 and 700 were

generated using the following linear regression

yi = θ0 + xi1 + . . .+ xip−1 + εi i ∈ {1, . . . , 2000} (11)

where each explanatory variable is standard normal, ε ∼ N(0, 1) and θ0 = 1.

For each sample, the test statistic is calculated using the two candidates for

the estimation of σ introduced in Section 2. Then, the empirical quantiles of a

χ2
p,0.95 are computed. The results of the simulations are given in Table 1.

6If A is an m × n matrix, a generalized inverse of A is an n × m matrix A− such that

AA−A = A (see Rao and Rao (1998), for example). To ensure uniqueness, Krämer and

Sonnberger (1986) propose using the Moore-Penrose pseudo-inverse.
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Table 1: Comparisons between empirical and theoretical quantiles at level α =

5% using σ̂S and σ̂RC as scale estimators.

n=100 n=200 n=500 n=700 χ2
p;0.95

p=2 σ̂S 6.48 6.58 6.07 5.79

σ̂RC 6.25 6.39 5.95 5.73 5.99

p=3 σ̂S 9.88 9.10 8.29 7.75

σ̂RC 9.30 8.69 8.05 7.65 7.81

p=4 σ̂S 13.57 11.72 10.49 9.85

σ̂RC 12.62 10.60 9.92 10.18 9.49

p=5 σ̂S 16.77 13.46 12.04 11.51

σ̂RC 14.79 12.50 11.63 11.25 11.07

Especially for small sample sizes (n = 100, 200), it appears that the approx-

imations using the σ̂RC scale estimator are better than those using σ̂s provided

by the S-estimator. These results also show that the test is more appropriate if

the sample size n is large enough relatively to p the number of parameters. For

example, with p = 5 and n = 100 the difference between the theoretical and the

simulated quantiles is quite substantial.

To compare the empirical and theoretical distributions more thoroughly, we

use a classical graphical tool: the Quantile Quantile Plot (QQ-Plot). It allows

to compare simulated quantiles with the quantiles of the χ2 distribution with

p degrees of freedom. The order of the quantiles chosen are 0.05 × i where i ∈

{1, . . . , 19}. For the graphs of Figure 1, the number of regression parameters is
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3 (p = 3) and σ̂RC was used as the scale estimator (with σ̂s the correspondences

are not as good). As can be seen in Figure 1, the empirical quantiles are rather

larger than the theoretical ones for n = 100. Therefore, with small sample sizes,

the use of theoretical quantiles leads to rejecting the null more often than the

chosen level α. For n = 200, the situation is better and from n = 500 on, the

match between the two sets of quantiles is rather good.
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Figure 1: Quantile Quantile Plot when the dimension is p = 3 and using σ̂RC

as the scale estimator

The second part of the simulations is devoted to the study of the behavior of

the test under contamination (H1). In linear regressions, outliers are classified
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into three categories: bad leverage points, good leverage points and vertical out-

liers (see Figure 2 (a)). We will study the power of the test under these three

types of contamination. Using σ̂s or σ̂RC for the estimation of the nuisance

parameter yields very similar results. We report only those obtained with σ̂RC .

For the simulations, observations were generated according to the model

yi = θ0 + xi + εi (12)

where x ∼ N(0, 1), ε ∼ N(0, 1) and θ0 = 1. The sample sizes are again 100,

200, 500 and 700. For all simulations under the alternative, we introduce a very

small percentage of contamination: 1%. Clearly, if the percentage increases, the

test will become more powerful.

In a first experiment we replace 1% of the x-values by a constant value

C in every data set, hereby creating leverage points. Constant C is assigned

each integer value between 0 (corresponding to the null hypothesis) and 9. To

calculate the empirical size and power of the test, we generated 400 samples

according to the model and computed the percentage of times that the critical

value was exceeded. In Table 2, we report the frequency of rejection of the null

hypothesis for the simulated data sets and for each value of C. In parentheses,

we give the absolute value of the bias of the LS estimator for parameter θ1.

Since the independent variable is computed as x ∼ N(0, 1), the C values

0 and 1 are not considered as outliers and, consequently, the percentage of

rejection is close to 5% (the confidence level of the test). From values 2 to

9, the percentage of rejection progressively increases (as does the bias of the
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Table 2: Power of the test under 1% bad leverage point contamination.

n\C 0 1 2 3 4 5 6 7 8 9

100 3.75 4.75 7.25 13.25 23.00 40.00 51.50 69.25 82.50 90.00

(0.01) (0.02) (0.06) (0.13) (0.19) (0.27) (0.35) (0.42) (0.49) (0.55)

200 7.75 5.25 8.00 16.75 30.75 54.75 73.00 92.50 97.50 99.25

(0.00) (0.01) (0.06) (0.11) (0.17) (0.24) (0.30) (0.37) (0.44) (0.49)

500 4.50 9.00 16.25 34.25 71.75 92.00 98.00 99.75 100 100

(0.00) (0.02) (0.06) (0.12) (0.19) (0.26) (0.33) (0.40) (0.46) (0.52)

700 3.25 8.00 8.00 29.75 63.50 90.50 99.50 99.75 100 100

(0.00) (0.00) (0.04) (0.09) (0.14) (0.21) (0.27) (0.34) (0.40) (0.45)

LS-estimator) to reach 100% rejection. Quite naturally, the power of test also

increases with the sample size due to the variance precision. Figure 2 (b) shows

how rapidly the percentage of rejection increases as the bad leverage points get

further away from the majority of the observations.

The second type of contamination involves replacing 1% of the x-values in

the same way as for the first contamination (C values between 0 and 9). But

in order to create good leverage points, we simulate the y values using the

contaminated x values. Just as in the case of bad leverage points, we compute

the empirical size and power of the test with 400 samples according to the

model. In Table 3, we report the frequency of rejection of the null hypothesis

for the simulated data sets and for each value of C. In parentheses, we give the

absolute value of the bias of the LS estimator for parameter θ1.
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(a) Type of contamination

!! !" # " ! $ % &# &"

!!

!"

#

"

!

$

%

&#

&"
'()*+,-.,/-012340214-0

56*20,7212
8--7,6*9*:2;*,)-401+
<27,6*9*:2;*,)-401+
=*:14/26,->164*:+

(c) Good leverage points

0 1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

x!coordinate of outliers

Pe
rc

en
ta

ge
 o

f r
ej

ec
tio

n

Sample contaminated with 1% of good leverage points

n=100
n=200
n=500
n=700

(b) Bad leverage points

0 1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

x!coordinate of outliers

Pe
rc

en
ta

ge
 o

f r
ej

ec
tio

n

Sample contaminated with 1% of bad leverage points

n=100
n=200
n=500
n=700

(d) Vertical outliers

! " # $ % & ' ( ) *

!

!+#

!+%

!+'

!+)

"

,!-../0123456.76.84915/:

;5
/-
52
43
<5
6.
76/
5=
5-
41.
2

>3?@956-.243?1234506A14B6"C6.76D5/41-396.84915/:

2E"!!
2E#!!
2E&!!
2E(!!

Figure 2: Power of the test under three types of contamination with p=2.

As predicted, the percentage of rejection for good leverage points is small

compared to that of bad leverage points (Figures 2 (b) and 2 (c)). The former

type of points generally increase the stability of regression lines implying that

the variances of the regression estimators decrease. But as mentioned in Croux

et al. (2003) good leverage points can still influence the classical estimator and

attract the regression line towards them even if they are not so distant from

the “true” regression line. It is therefore not surprising to see that the null

hypothesis is sometimes rejected (percentage of rejection close to 15% when
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Table 3: Power of the test under 1% good leverage points contamination.

n\C 0 1 2 3 4 5 6 7 8 9

100 4.25 3.50 6.75 7.25 7.00 8.50 10.00 10.00 17.25 16.50

(0.01) (0.00) (0.00) (0.01) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)

200 7.00 4.50 4.00 7.50 5.25 8.00 11.50 8.75 14.25 14.00

(0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

500 4.50 6.50 6.25 4.50 6.25 7.00 12.25 12.50 9.00 17.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

700 3.25 6.00 4.50 6.25 4.25 8.25 8.75 13.50 10.25 13.75

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

C = 9).

The last configuration for outliers we look into is the case of vertical outliers

(Figure 2 (d)). In fact this kind of contamination is not as “dangerous” as that

of bad leverage points. It is well-known for example, that the Least Absolute

estimator (L1) is robust with respect to vertical points, but not robust with

respect to bad leverage outliers. Nevertheless, if we use LS and a vertical outlier

is far enough, the estimator might be attracted by it implying erroneous results.

In this situation, the bias is often more important for the intercept. For the

simulations, we contaminated 1% of the y data by replacing them with constant

value D = 3C for each integer value of C between 0 and 9. The results are given

in Table 4 (in parentheses, the absolute value of the bias of the LS estimator

for parameter θ1, even if the large bias is generally on the intercept in these

16



situations).

Table 4: Power of the test under 1% vertical outliers contamination.

n\3C 0 3*1 3*2 3*3 3*4 3*5 3*6 3*7 3*8 3*9

100 4.50 3.50 7.25 9.25 12.00 17.25 18.75 23.50 34.00 41.75

(0.01) (0.02) (0.04) (0.06) (0.07) (0.10) (0.12) (0.13) (0.16) (0.18)

200 6.00 5.50 8.50 15.50 22.25 33.75 44.50 62.25 76.75 83.75

(0.00) (0.03) (0.06) (0.09) (0.11) (0.14) (0.17) (0.20) (0.22) (0.25)

500 3.25 10.75 19.75 37.00 61.50 76.25 89.25 97.25 99.75 100

(0.02) (0.05) (0.08) (0.11) (0.14) (0.17) (0.20) (0.22) (0.25) (0.29)

700 4.25 5.50 11.25 24.25 47.25 72.25 89.00 96.00 98.75 99.75

(0.02) (0.00) (0.02) (0.04) (0.06) (0.07) (0.09) (0.11) (0.14) (0.16)

When comparing Tables 2 and 4, we see that the percentage of rejection of

the null is smaller in the case of vertical outliers than in that of bad leverage

points. More precisely, the results for C = 9 in Table 2 show 100% of rejects

(bad leverage points) while those obtained for D = 9 or 3∗3 in Table 4 (vertical

outliers), correspond to a percentage of rejection between 10% and 37%. This

is logical since the LS estimator is less sensitive to this type of contamination.

The bias increases as the vertical outliers move further away but becomes strong

only for rather big distances.
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4 Economic application

To illustrate the usefulness of the test we presented above7, we use a dataset

on an interesting economic topic: DeLong and Summers (1993) present striking

results showing that there is a strong relationship between equipment invest-

ment and growth. Similarly to what Zaman, Rousseeuw and Orhan (2001) did,

we check if the results of DeLong and Summers are robust to the presence of

outliers. To find out if there is a strong relation between growth and equipment

investments, the authors propose to run a regression of the type

GDPi = θ0 + θ1LFGi + θ2GAPi + θ3EQPi + θ4NEQi + εi (13)

where GDP represents GDP growth per worker over the period 1960-1985, LFG

is the labor force growth during the same period, GAP is the relative GDP

gap with respect to the United States, EQP and NEQ represent respectively

the share of GDP devoted to equipment and non equipment investment over

the period 1960-1985. The authors estimated the equation by ordinary least

squares. The first thing we want to check is if this technique is appropriate

here, or if the eventual presence of outliers might bias the estimation. To do

so, we estimate the same equation, but instead of estimating it with ordinary

least squares, we use the S-estimator that we described above. We present the

results of the regressions by LS and S, and the differences between the estimated

parameters in Table 5.

7The Matlab code is available from the authors upon request.
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Table 5: Estimated coefficients on real data.

LS S Difference

Constant −0.0180 −0.0210 0.0030

EQP 0.3052 0.2073 0.0979

NEQ 0.0916 0.1577 −0.0661

GAP −0.0066 −0.0067 0.0001

LFG 0.0849 −0.0385 0.1234

It is hard to tell if the differences between the estimated parameters are

significant. To decide if the influence of outliers is excessive, we run the test

described above. We obtain test statistic H = 4.26 associated to a p− value of

0.5124. It is thus clear that the LS estimator is appropriate.

Now imagine that for some unexplained reason, a mistake has been made in

the GAP variable for Canada, for example a −16 value has been coded instead

of the correct value of −0.169. Rerunning the LS and the S estimations, we

obtain the results given in Table 6.

The differences between the estimated parameters, are of similar magnitude

to those in the case presented before. It is thus extremely difficult to decide

whether least squares is appropriate, so it may be of interest to run our test. The

test statistic here is H = 38.83 associated to a p−value of 0.0000. Consequently,

our test strongly suggests to reject the use of LS since the influence of outliers
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Table 6: Estimated coefficients on artificially contaminated data.

LS S Difference

Constant −0.0013 −0.0195 0.0182

EQP 0.2396 0.2140 0.0256

NEQ 0.0635 0.1461 −0.0826

GAP −0.0001 −0.0062 0.0061

LFG 0.1580 0.0179 0.1401

was excessive and biased the generality of the results8. Consequently, even if

a gross mistake is made, such as the one presented here, we might still find

estimated parameters similar to those obtained in the case where no outliers are

present.

It may be argued that, instead of using our test, we could have used outlier

diagnosis tools. A very interesting one is the display of robust standardized

regression residuals versus robust distances. Robust distances on explanatory

variables allow to identify leverage points, but do not discriminate between good

and bad ones (in our case we calculate robust distances using the Minimum Co-

variance Determinant estimator with a breakdown point of 25%). On the other

hand, the robust standardized residuals allow to identify large residuals. All

points corresponding to distances higher than the quantile
√
χ2
p−1,0.975 (as taken

8Given the relatively small size of the sample, it is more appropriate to compare the

calculated statistic H with the empirical quantile provided in Table 1 for n = 100 and p = 5,

i.e. 14.79. The conclusion of the test is the same.
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(a) Real data
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(b) Artificially contaminated data

Figure 3: Robust distances versus robust standardized regression residuals

by Rousseeuw and van Zomeren, 1990) will be considered as leverage points. For

the standardized residuals, we consider, as do the above-mentioned authors, all

the robust standardized residuals that lie outside the tolerance band [−2.5, 2.5]

as regression outliers. The graphic representation will allow to discriminate

between bad leverage points (to the right of the cutoff point and outside the

confidence band) from good leverage points (to the right of the cutoff point but

within the confidence band), vertical outliers (to the left of the cutoff point but

outside the confidence band) and regular observations (to the left of the cutoff

point and within the confidence band). In our example, if we use the original
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data, we obtain the graph of Figure 3 (a). In this case, Cameroon appears to

be a mild vertical outlier, while Zambia is a bad leverage point. Looking only at

this graph we might conclude that these outliers might have an excessive influ-

ence and that least squares results should be rejected. But as stated previously,

the gain in robustness is clearly overruled by a loss in efficiency and LS turns

out to be perfectly appropriate. This is a result that could not be deduced by

only observing the graph. Now, when we use the artificially contaminated data,

the graph (Figure 3 (b)) clearly shows that there is one very bad leverage point

i.e. Canada and, in accordance with the results of our test, we find that a least

squares estimation is not well suited. To conclude, using these graphs to identify

outliers is an interesting diagnosis tool, but can by no means solve the problem

of the robustness-efficiency trade-off which is tackled by the test we propose.

5 Conclusion

In this article, we propose using a Hausman-type test to determine whether an

ordinary least squares estimation is appropriate, in a multiple linear regression

framework, in the presence of outliers. The test considers the trade-off between

robustness and efficiency. We show, with a simple economic example, that

without the test, it is not trivial to decide whether a least squares estimation is

the most appropriate. The Hausman-type test we propose can be considered as

a powerful complementary tool to existing methods allowing to judge if a model

is well specified. An interesting extension to this paper might be the use of this
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robust-to-outliers test to detect other problems that the standard Hausman test

already tackles.
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[9] Krämer, W. and H. Sonnberger, 1986, The linear regression model under

test, Heidelberg : Physica-Verlag.

[10] Maronna R.A, R.D. Martin and V.J. Yohai , 2006, Robust Statistics: The-

ory and Methods, John Wiley and Sons, New York.

[11] Rao C.R. and M.B. Rao, 1998, Matrix Algebra and Its Applications to

Statistics and Econometrics, World Scientific, Singapore.

[12] Rousseeuw, P.J. and C. Croux, 1993, Alternatives to the Median Absolute

Deviation. Journal of the American Statistical Association 88, 1273-1283.

[13] Rousseeuw P.J. and A.M. Leroy, 1987, Robust Regression and Outlier De-

tection, John Wiley and Sons, New York.

[14] Rousseeuw, P.J. and V.J. Yohai, 1984, Robust regression by means of S-

estimators. In: Franke, J., Härdle W., Martin, R.D. (Eds.), Robust and

Nonlinear Time Series Analysis, Lecture Notes in Statistics 26, New York:

Springer Verlag.

[15] Rousseeuw, P.J. and B.C. van Zomeren, 1990, Unmasking multivariate out-

liers and leverage points. Journal of the American Statistical Association

85, 633-651.

[16] Yohai, V.J., 1987, High breakdown-point and high efficiency robust esti-

mates. The Annals of Statistics 15, 642-656.

[17] Wu, D.-M., 1973, Alternative Tests of Independence Between Stochastic

Regressors and Disturbances”, Econometrica 41, 733-750.

24



[18] Zaman, A., P.J. Rousseeuw and M. Orhan, 2001, Econometric applications

of high-breakdown robust regression techniques. Econometrics Letters 71,

1-8.

25


