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Abstract 
 
This paper analyses several issues that arise when measuring technological specialisation with patent 
data. Three starting choices are required regarding the data source, the statistical measure and the 
sectoral aggregation level. We show that the measure is highly sensitive to the data source and to the 
level of sectoral aggregation. The statistical analysis further suggests that the most stable and reliable 
measures of technological specialization are obtained with patents applied at the EPO, with Gini or C20 
as statistical measure and the 4-digits aggregation level of the IPC classification system. 
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1. Introduction 
 

Patents and patent statistics have been intensely used by scholars attempting to measure technological 
change and the sources of economic growth. Patent data appeared as an important input to scholars 
attempting to measure technological specialisation, change or innovation performances. Easily and 
widely available over long time periods and in many countries, they contain detailed information (IPC 
classes, inventors, etc.) and are by definition related to inventiveness (see Griliches (1990) for an in-
depth analysis of patent data as indicator of innovation performances).1 

The technological specialisation of a country can be measured through the distribution of its patents 
over various technological areas. The more concentrated the patents are in certain technological areas, 
the more the country is said to be “technologically specialised”. To the best of our knowledge, the first 
uses of patent data to measure technological change have been performed by Comanor and Scherer 
(1969) and by Schmookler (1972). Since then, patent data has been used by an increasing number of 
authors and institutions to measure technological change and specialization, such as Archibugi and 
Pianta (1992), Braun et al. (1995), the OECD (1994) and the European Commission (1997 and 2003).2 

This paper focuses on the most important choices that must be made when using patent data to measure 
the technological specialisation. In this respect, three dimensions have to be taken into account: the 
source of patent data, the statistical index used to measure the degree of technological specialisation 
and the patent classification. 

In section 2 we present the theoretical background and the three dimensions of the measure. In section 
3 we describe our data sets and our methodology to compare the measures of technological 
specialisation obtained from different choices along the dimensions. Section 4 presents the statistical 
results of our comparisons and in Section 5 we conclude with some recommendations on what appears 
to be the most optimal choices, if any. 
 
 
2. Three starting choices 
 
A first methodological choice concerns the data source. There are many different sources of patent data 
available around the world: the United States Patent and Trademark Office (USPTO), the Japanese 
Patent Office, the European Patent Office (EPO), Triadic Patent Families and the World Intellectual 
Property Office (WIPO), not to mention all the national patent offices. 

The present paper relies on patent data from three different sources: USPTO data containing all 
national and foreign patents granted in the US, EPO data containing all patents filed at the European 
Patent Office and Triadic Patent Families gathered by the OECD. As mentioned in EC’ Second Report 
on S&T Indicators (1997), Triad Patent Families, which consider the patents that have been applied 
simultaneously at the USPTO, the EPO and the Japanese Patent Office (JPO), derive from the 
geographical limitation of the protection granted from a domestic patent, and hence from the possible 
necessity to duplicate applications at overseas patent offices in order to obtain protection in foreign 
markets. “The selection of patent data from only one patent office, therefore, does not always yield an 
indicator that is representative of the world output of inventions.”3 It is worth noticing that EPO patents 
                                                 
1 There are, however, several drawbacks to using patent data in order to build economic indicators: they differ greatly in 
their technical and economic significance; not all inventions are patented, nor all are patentable; other existing methods in 
appropriating an innovation such as industrial secrecy may be preferred; the propensity to patent may change substantially 
over time and across countries not to mention among technological sectors. 
2 For different reviews of the literature, see Basberg (1987), Griliches (1990) and Archibugi (1992). 
3 European Commission, Second European Report on Science & Technology Indicators, 1997, EUR 17639, p.93. 
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present an intrinsic international nature while Triadic patent families are made of high value patents 
(e.g. Guellec and van Pottelsberghe (2004) and Sapsalis and van Pottelsberghe (2005)). In addition, the 
Triadic Patent Families suffer less from home advantage effects than USPTO or EPO patent data 
(Criscuolo (2005)). 
 
The second methodological choice concerns the aggregation level. Technological classifications allow 
to link patents to one or more economic areas. There is no natural or perfect correspondence between 
technological classifications and economic areas. This problem of classification refers primarily to the 
difficulties in allocating patent data, organised by technological classes, into economically relevant 
industries or product groupings.4 
 
European patents are classified according to the International Patent Classification (IPC) published by 
the World Intellectual Property Organisation (WIPO), a hierarchical classification with several levels 
of breakdown primarily concerned with the technological characteristics of the invention. Another 
classification, known as the OST-INPI/FhG-ISI technology nomenclature (or “OST” in short) and 
having two levels of industrial breakdown, is provided by the “Office des Sciences et Techniques”, the 
French Patent Office (INPI) and the Fraunhofer ISI Institute. 
 
Each classification is organised in a hierarchical way, from generic and very large categories, to more 
detailed subcategories, and so forth. This means that besides the choice of a classification system, a 
choice has to be done regarding the level of aggregation. This is achieved by taking in account the 
appropriate number of digits in the patent’s classification code. For instance, if we consider only the 
first digit of the IPC classification system, we are at the uppermost level.5 
 
In this paper, five different levels of classifications are considered: 

− Level 1 of IPC (IPC1): 8 classes 
− Level 3 of IPC (IPC3): 117 classes 
− Level 4 of IPC (IPC4): 850+ classes 
− Level 1 of OST (OST1): 6 classes 
− Level 2 of OST (OST2): 30 classes 

 
The third methodological choice concerns the statistical formula used to measure the technological 
specialisation of each country. In what follows, we focus on absolute concentration ratios, measuring 
the degree of specialisation of each country compared to the degree of specialisation of the others. Five 
different statistical measures are available: 
 

− The concentration ratios with the 4, 8 or 20 biggest classes (C4, C8, C20) compute easily the 
share of the X biggest classes while neglecting the distribution between the X largest classes 
and the remaining classes. 

                                                 
4 See Griliches (1990) on the classification problem and Schmoch, Laville, Patel and Frietsch (2003). 
5 As IPC codes are structured as “XNNY…” (for example, A16K…), one can consider only the first character of the code 
(A here), and classify patents according to the 8 generic classes, referring to the “IPC1” classification. If we take into 
account the two digits following the letter (A16), we can get up to 117 subclasses associated with “IPC3”. Finally, one can 
add up the fourth character and take into account a narrower level of classification, the “IPC4”, with more than 850 classes. 



- 4 - 

The C(X) ratio is given by ( )
( )

∑

∑

=

== n

i
ij

X

k
jk

j

p

p
XC

1

1  where X is the number of the largest classes to 
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largest number of patents per technological class. The concentration ratios with the X largest 
classes requires therefore having more than X classes in total in the classification, which 
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− The concentration index of Gini measures the deviation compared to a uniform distribution and 

is more sensitive to the presence of a large number of small classes. 
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of class i, ijp  being the number of patents (or applications) of country j in the ith technological 
class with ni ,...,1=  where n is the total number of classes. 

 
− The concentration measure of Herfindahl takes into account the whole distribution but the share 

of each class is weighted and the measure is less influenced by the presence of a big number of 
small classes. If ijs  is the share of the ith technological class (with ni ,...,1=  where n = total 
number of classes) in the total number of patents (or applications) of country j, the Herfindahl 
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3. The methodology 
 
The degree of technological specialisation has been computed for each country, based on each data 
source, at every level of classification and with each statistical index for the two periods considered 
(1987-1989 and 1993-1995). This provides us the basis for the “static” analysis. The growth rate of 
each concentration measure between the two periods generates the “dynamic” analysis. This represents 
a total of 75 measures for each analysis (“static” and “dynamic”). 
 
Based on these specialisation levels and growth rates, country rankings are established for each pair of 
aggregation level and statistical index, and for each data set, both in static and dynamic dimensions. In 
static terms, the most specialised countries according to a particular aggregation level, given a 
statistical index, and computed with one source of data, get the lowest (or best) rank. From a dynamic 
point of view, the countries with the highest growth rate in terms of specialisation between the two 
periods get the lowest rank. This method provides two specific country rankings (static and dynamic) 
for each of the 75 technological specialisation measures. 
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Table 1 provides several measures of technological specialisation using the C4 concentration index and 
USPTO patents for different aggregation levels during the period 1993-1995 and in terms of growth 
rates between 1987-89 and 1993-95. 
 

*** Insert Table 1 about here *** 
 
A sensitivity analysis can then be performed in three steps, to assess the influence of each of the three 
dimensions: 
 

− In order to evaluate the impact of the aggregation level chosen, we compare the rankings 
obtained from each classification with different concentration indexes, with each data source 
independently, which can then also be pair wised compared. 

− In order to evaluate the impact of the concentration index used, we compare the rankings 
obtained with each index using different aggregation levels and data sources. 

− For the evaluation of the impact of the source of patent data, rankings based on the 3 different 
sources are compared for every possible aggregation level – concentration index combination 
(for example, Gini and IPC1, Gini and IPC3, etc.) 

 
For two country rankings to be considered equivalent, the similarity measure must satisfy two 
conditions:  
 

− The Spearman rank correlation ratio between two rankings needs to be significant at the one 
percent probability threshold. The Spearman rank correlation coefficient is defined by 
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61  where N is the number of countries in the ranking and jd  is the 

difference in rank of country j between the two rankings. 
− The biggest rank difference among countries (or jump of each country) between two rankings 

must be no bigger than a particular threshold (T), or NjTd j ,...,1=∀< . Since a threshold of 4 
would not have the same effect on rankings of 15 or 10 countries, it has to be determined in 
relative terms, as a particular percentage of N, the number of countries in the rankings. A 
threshold of 25% for example would become 4 with 16 countries in the rankings and 3 with 11 
countries in the rankings.6 

 
*** Insert Table 2 about here *** 

 
An example of pair wise similarity test results is presented in Table 2. Ultimately, for each possible 
choice along every dimension, we add-up the number of equivalent ranking pairs, computed with every 
possible combination of choices along the two other dimensions. For instance, in Table 2, only one pair 
of rankings (in static terms, IPC3/OST1) would be considered similar out of 10 with a threshold of 
33%. A high number of similar ranking pairs would denote a low sensitivity of the measure to the 
choice of an aggregation level. For instance, if most of the rankings computed from EPO data with the 

                                                 
6 In relative terms, our results are not strongly affected by a change in the relative thresholds, but it appears that the number 
of pairs of similar specialisation rankings following the similarity test is the largest with a threshold of 50% and is not 
significantly improved with higher values of the threshold. This means that most pairs of rankings satisfying the Spearman 
correlation test condition present maximum rank differences that do not exceed 50% of the number of countries. However, 
50% represents an important jump in the rankings, and 25% or 33% seem more appropriate and relevant values to consider 
the rankings as similar. 
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IPC3 classification but using 5 different concentration indexes were similar, it would mean that the 
concentration index has little impact on the measure and is therefore not determinant or critical in the 
measurement of technological specialisation. 
 
 
4. The data and statistical results 
 
For each of the data sources (patents granted by the USPTO, patent applications at the EPO, Triadic 
patent families), we consider two periods, 1987-1989 and 1993-1995, for different countries (16 
countries with USPTO and EPO data and 11 with Triadic patent families). Data from the period 1993-
1995 is used for the static analysis, while the growth rates in specialisation between the two periods is 
used for the dynamic analysis. 
 
In each data set, we count the number of patents of each country by technological class for the covered 
period, according to the country of residence of the inventor(s) and to the main IPC class of the patent 
or application. 
 
The main results of this study can be presented in terms of the impact of each dimension of the measure 
on the country rankings. This impact is assessed in a summary table showing the number of pairs of 
similar specialisation rankings for each set of measurement options at a threshold of 25%. 
 

*** Insert Table 3 about here *** 
 
Regarding the impact of the technological classification, Table 3 shows an extremely low level of 
similarity between the pairs of rankings with different aggregation levels. With a maximum rank 
difference of 25%, there are virtually no equivalent pairs of rankings. The impact is stronger with 
USPTO and Triadic data. These results show that the choice of a technological aggregation level has a 
strong impact on country rankings. Rankings computed with the C20 or Gini based on EPO data seem 
slightly less affected. 
 
The impact of the concentration index is presented in Table 4. This choice is less significant than the 
choice of an aggregation level. Even at a threshold of 25%, more than half of the pairs compared pass 
our similarity test on static rankings, and one third on dynamic comparisons. For instance, taking the 
index computed with USPTO data and an aggregation level of IPC-3, table 4 shows that 90% of the 
country ranking pairs across the various statistical measures are similar. The similarities are even close 
to perfect if we tolerate a maximum rank difference of 50%, meaning that almost every pair passes the 
Spearman correlation test and show a maximum jump of less than 50% of the number of countries in 
the ranking. 
 

*** Insert Table 4 about here *** 
 
These results witness a very weak impact of the concentration indexes on the specialisation rankings, 
although slightly stronger on dynamic rankings than on static rankings. Additionally, more stable and 
coherent results in both static and dynamic specialisation rankings seem to be obtained with highest 
aggregation levels (levels with more classes, i.e. IPC3 and IPC4) and with EPO data. 
 
Table 5 shows that the choice of the data source seems to have a serious impact on technological 
specialisation rankings. It is however interesting to notice that the impact is much stronger on static 
specialisation rankings than on dynamic specialisation rankings. Indeed, there is virtually no pair of 
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rankings passing the similarity test with a threshold of 25%. These observations are not altered by the 
use of higher thresholds. 
 

*** Insert Table 5 about here *** 
 
These results suggest that the choice of a data source has a very strong impact on specialisation 
rankings, although this impact can be significantly reduced on dynamic rankings when using specific 
concentration indexes and specific classifications. This is particularly the case of the IPC3 and IPC4 
classifications and of the C8, C20 and Gini concentration ratios, which confirms our previous 
observations. 
 
Table 6 summarises the overall sensitivity of each option in one dimension to the other dimensions. 
This table shows first that technological specialisation measures are much more sensitive to data 
sources and aggregation levels than to statistical indexes. It confirms also that contrarily to data 
sources, concentration indexes and aggregation levels have more impact on dynamic than on static 
measures. One can finally observe that measures based on IPC3 and IPC4 are relatively less sensitive 
to choices along the other dimensions, as are measures using the coefficient of Gini or a concentration 
index with the 20 biggest classes and computations with EPO applications data. 
 

*** Insert Table 6 about here *** 
 
5. Concluding remarks 
 
When measuring technological specialisation with patent data, researchers must be extremely careful 
when choosing their options along the three dimensions of the measure. Though the effect of the choice 
of a concentration measure is moderated, the Gini and C20 indexes are probably the most reliable 
choices. Of utmost importance, the aggregation level of the classification must be chosen so as to have 
a large number of classes, meaning at least the third level of IPC. However, given the difficulty to 
match IPC3 classes to economic sectors, IPC4 is certainly more appropriate.7 
 
Finally, if the choice of a data source critically determines the degree of specialisation of countries, it 
might not always capture the same specialisation due mainly to the home advantage bias.8 When 
measuring the degree of specialisation of a country using USPTO grants, researchers should be aware 
that such a measure would provide the overall degree of specialisation of the United States, but 
probably a more restrictive degree of specialisation of European or Japanese patents, since only 
European and Japanese patents of higher value are also filed at USPTO. This could explain why 
measures based on EPO data are on average more stable than those using USPTO data. 
 
Triadic Patent Families could therefore provide the most neutral data source, but since they only take 
into account patents of sufficient value as to be filed simultaneously in EPO, JPO and USPTO, 
measures based on such patent families would again provide a truncated view of a country’s degree of 
technological specialisation and appear empirically less stable. 
 

                                                 
7 See Schmoch, Laville, Patel & Frietsch (2003). 
8 See van Leuven (1996) and Criscuolo (2005). 
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Tables 
 
 
 

Table 1: Degree of Specialization by country (and rank of the country) calculated with C4 and USPTO data 
 1993-1995 Growth rate (1993-1995 v/s 1987-1989) 
  IPC1 IPC3 IPC4 OST1 OST2 IPC1 IPC3 IPC4 OST1 OST2
Germany .71 (15) .26 (13) .11 (16) .82 (08) .27 (16) -2% (15) 3% (12) -3% (14) 0% (10) 2% (09)
Australia .74 (10) .25 (14) .13 (12) .74 (15) .29 (14) 3% (05) -6% (16) 1% (11) -2% (14) -2% (12)
Austria .71 (13) .22 (16) .13 (13) .78 (12) .31 (09) -1% (14) -1% (14) -2% (12) 1% (06) 4% (06)
Belgium .81 (04) .35 (06) .22 (03) .84 (03) .37 (04) 3% (04) 3% (10) 27% (04) 0% (12) -2% (11)
Canada .71 (16) .24 (15) .12 (15) .71 (16) .28 (15) -1% (13) 18% (04) 31% (03) -4% (16) -13% (16)
South Korea .86 (01) .49 (01) .33 (01) .87 (01) .49 (01) 1% (08) 3% (11) 6% (09) 1% (05) -4% (13)
Denmark .83 (03) .41 (02) .24 (02) .84 (04) .36 (05) 5% (03) 7% (08) 1% (10) 1% (09) 7% (05)
United States .76 (06) .30 (12) .16 (08) .76 (14) .29 (11) 6% (02) 19% (03) 46% (01) 4% (01) 3% (07)
Finland .72 (11) .38 (03) .20 (04) .83 (05) .45 (02) 10% (01) 33% (01) 37% (02) 2% (04) 13% (02)
France .71 (14) .32 (09) .17 (07) .80 (10) .29 (11) 2% (07) 9% (07) 24% (06) 1% (07) 9% (04)
Italy .76 (07) .31 (10) .15 (10) .80 (10) .31 (08) 1% (09) -3% (15) -6% (16) 0% (11) -6% (14)
Japan .85 (02) .35 (05) .20 (05) .87 (02) .39 (03) 2% (06) 17% (05) 12% (08) 2% (02) 12% (03)
Netherlands .76 (05) .32 (08) .13 (14) .82 (07) .31 (10) -3% (16) 12% (06) -5% (15) -2% (15) -1% (10)
United Kingdom .72 (12) .31 (11) .18 (06) .77 (13) .29 (13) -1% (12) 4% (09) 15% (07) 1% (08) 3% (08)
Sweden .75 (09) .36 (04) .14 (11) .81 (09) .34 (06) 0% (11) 25% (02) 25% (05) 2% (03) 18% (01)
Switzerland .75 (08) .32 (07) .15 (09) .82 (06) .31 (07) 0% (10) 2% (13) -2% (13) -2% (13) -11% (15)

 
 
 
 
 
 

Table 2: Maximum rank differences and Spearman independance for  
country rankings with different classifications calculated with C4 and with USPTO data 

 1993-1995 Growth rate (1993-1995 v/s 1987-1989) 
  IPC1 IPC3 IPC4 OST1 OST2 IPC1 IPC3 IPC4 OST1 OST2
IPC-1 0 - - - - 0 - - - -
IPC-3 8 (*) 0 - - - 11 0 - - -
IPC-4 9 7 (*) 0 - - 10 9 (*) 0 - -
OST-1 8 (*) 5 (*) 8 (*) 0 - 9 12 13 0 -
OST-2 9 (*) 7 (*) 7 (*) 8 (*) 0 10 12 13 8 (*) 0

(*) = Pair of technological specialization rankings showing 
a significant correlation (Spearman) at the level of 1% 

 
 

Table 3: Number of pairs (and percentages) of similar specialization rankings according to different 
classifications. Pairs added from measures of each data source with a threshold (T) of 25% 
  USPTO EPO TRIAD Total 
  93-95 Growth 93-95 Growth 93-95 Growth 93-95 Growth 

Number
of pairs

C4 0 (00%) 0 (00%) 0 (00%) 0 (00%) 1 (10%) 0 (00%) 1 (03%) 0 (00%) 10
C8 0 (00%) 0 (00%) 0 (00%) 0 (00%) 0 (00%) 0 (00%) 0 (00%) 0 (00%) 3
C20 0 (00%) 0 (00%) 1 (33%) 1 (33%) 0 (00%) 0 (00%) 1 (11%) 1 (11%) 3
Herfindahl 0 (00%) 0 (00%) 1 (10%) 2 (20%) 0 (00%) 2 (20%) 1 (03%) 4 (13%) 10
Gini 1 (10%) 1 (10%) 1 (10%) 1 (10%) 1 (10%) 0 (00%) 3 (10%) 2 (07%) 10

Total 1 (03%) 1 (03%) 3 (08%) 4 (11%) 2 (06%) 2 (06%) 6 (06%) 7 (06%) 36
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Table 4: Number of pairs (and percentages) of similar specialization rankings according to  
different ratios. Pairs added from measures of each data source with a threshold (T) of 25% 

  USPTO EPO TRIAD Total 
  93-95 Growth 93-95 Growth 93-95 Growth 93-95 Growth 

Number
of pairs

IPC1 2 (67%) 1 (33%) 2 (67%) 1 (33%) 3 (100%) 0 (00%) 7 (78%) 2 (22%) 3
IPC3 9 (90%) 2 (20%) 4 (40%) 6 (60%) 1 (10%) 3 (30%) 14 (47%) 11 (37%) 10
IPC4 5 (50%) 1 (10%) 10 (100%) 6 (60%) 4 (40%) 6 (60%) 19 (63%) 13 (43%) 10
OST1 3 (100%) 1 (33%) 1 (33%) 1 (33%) 1 (33%) 0 (00%) 5 (56%) 2 (22%) 3
OST2 6 (60%) 0 (00%) 5 (50%) 3 (30%) 6 (60%) 1 (10%) 17 (57%) 4 (13%) 10
Total 25 (69%) 5 (14%) 22 (61%) 17 (47%) 15 (42%) 10 (28%) 62 (57%) 32 (30%) 36

 
 
 
 
 

Table 5: Number of pairs (and percentages) of similar specialization rankings of 25% 
according to different data sources with a threshold (T)  
  IPC1 IPC3 IPC4 OST1 OST2 Total 
  93-95 Growth 93-95 Growth 93-95 Growth 93-95 Growth 93-95 Growth 93-95 Growth

Nb of
pairs

C4 0 (00%) 0 (00%) 0 (00%) 0 (00%) 0 (00%) 0 (00%) 0 (00%) 0 (00%) 0 (00%) 0 (00%) 0 (00%) 0 (00%) 3
C8 - - 0 (00%) 1 (33%) 0 (00%) 1 (33%) - - 0 (00%) 0 (00%) 0 (00%) 2 (13%) 3
C20 - - 0 (00%) 2 (67%) 0 (00%) 1 (33%) - - 0 (00%) 0 (00%) 0 (00%) 3 (20%) 3
Herfindahl 0 (00%) 0 (00%) 0 (00%) 0 (00%) 0 (00%) 0 (00%) 0 (00%) 0 (00%) 0 (00%) 1 (33%) 0 (00%) 1 (07%) 3
Gini 0 (00%) 0 (00%) 0 (00%) 1 (33%) 0 (00%) 3 (100%) 0 (00%) 0 (00%) 0 (00%) 0 (00%) 0 (00%) 4 (27%) 3

Total 0 (00%) 0 (00%) 0 (00%) 4 (27%) 0 (00%) 5 (33%) 0 (00%) 0 (00%) 0 (00%) 1 (07%) 0 (00%) 10 (13%) 15
 
 
 

Table 6: Overall sensitivity of each choice along each dimension to the other dimensions 

Classification level Concentration index Data source  
Static Dynamic Static Dynamic Static Dynamic 

Overall 
Sensitivity 

IPC1 - - LOW MEDIUM HIGHEST HIGHEST HIGH 
IPC3 - - LOW LOW HIGHEST MEDIUM MEDIUM 
IPC4 - - LOW LOW HIGHEST MEDIUM MEDIUM 
OST1 - - LOW MEDIUM HIGHEST HIGHEST HIGH 
OST2 - - LOW MEDIUM HIGHEST HIGHEST HIGH 
C4 HIGHEST HIGHEST - - HIGHEST HIGHEST HIGHEST 
C8 HIGHEST HIGH - - HIGHEST HIGH HIGHEST 
C20 HIGH HIGH - - HIGHEST HIGH HIGH 
Herfindahl HIGH HIGHEST - - HIGHEST HIGH HIGHEST 
Gini HIGH HIGHEST - - HIGHEST MEDIUM HIGH 
USPTO MEDIUM HIGHEST LOWEST MEDIUM - - MEDIUM 
EPO HIGH HIGH LOWEST LOW - - MEDIUM 
Triadic HIGHEST HIGHEST MEDIUM MEDIUM - - HIGH 

HIGH HIGHEST LOW MEDIUM HIGHEST HIGH - Overall 
Impact HIGH LOW HIGHEST - 

 




