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Abstract

The equatorial shallow water equations in a suitable limit are shown to
reduce to zonal jets as the Froude number tends to zero. This is a theorem
of a singular limit with a fast variable coefficient due to the vanishing of the
Coriolis force at the equator. Although it is not possible to get uniform
estimates in classical Sobolev spaces (other than L2) by differentiating
the system, a new method exploiting the particular structure of the fast
coefficient leads to uniform estimates in slightly different functional spaces.
The computation of resonances shows that fast waves may interact with
a strong external forcing, introduced to mimic the effects of moisture, to
create zonal jets.
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1 Introduction

Geophysical equatorial flows are a rich source of novel problems both for applied
mathematics and the theory of partial differential equations (see ref. [15] and
references therein). The special feature at the equator is that the tangential
projection of the Coriolis force from rotation vanishes identically there. Phys-
ically, this allows the tropics to behave as a waveguide with extremely warm
surface temperatures, which influences the climate on a planetary scale through
hurricanes, monsoons, El Niño, and global teleconnections with the mid-latitude
atmosphere. The detailed physical mechanisms involved are the object of in-
tensive studies in the atmosphere-ocean science community and also leads to
new mathematical phenomena and PDE’s [17, 19, 2, 18, 1, 9, 20]. Chapter 9 of
ref. [15] provides an introduction to these topics for mathematicians.

This is our second paper in a series about the rigorous derivation of reduced
dynamics for flows in the equatorial region. A simple model for such flows is
provided by the equatorial shallow water equations with dissipation and forcing

∂t~v + ~v · ∇~v +
1
ε
(y~v⊥ +∇h) = −d~v +

1
ε
(Su

ε , Sv
ε )

∂th + ~v · ∇h + h div~v +
1
ε

div~v = −d̃~h +
1
ε
Sh

ε ,

(1)
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where ~v = (u, v)(t, x, y) is the horizontal velocity, h = h(t, x, y) the height, x the
longitude, y the distance to the equator, ~v⊥ = (−v, u), and, in the right-hand
side, d, d̃ are non-negative constant coefficients. The strong forcing terms ε−1Su

ε ,
ε−1Sv

ε , ε−1Sh
ε are introduced to mimic the effects of convective heating. The

equation (1) are written in non-dimensional variables under the assumption that
both the Froude number (typical fluid velocity ratio to the gravity wave speed)
and the height fluctuations are of order ε, which we regard here as a positive
parameter tending to zero (its actual value is around 10−1). (See [9, 17].)

In our first paper [6] we studied the singular limit of the long-wave solutions
of (1). That is, we first rescaled the system in the x-direction by setting x′ = εx
and then showed that, under suitable assumptions, solutions converge as ε → 0
to solutions of the long-wave equations. In the present paper we go back to the
original system (1) without rescaling. Instead of the long-wave equations, zonal
jets constitute the slow limiting dynamics. Zonal jets are flows in the east-west
direction alone (v = 0) and independent of the longitude x. Indeed, ignoring
the forcing for the moment, we need

−yv + ∂xh = 0 (2)
yu + ∂yh = 0 (3)

∂xu + ∂yv = 0 (4)

if we want all terms of order ε−1 in (1) to vanish. Deriving (2) with respect
to y, (3) with respect to x and subtracting gives −v − y∂yv − y∂xu = 0, hence
v = 0 using (4). Then (2) gives ∂xh = 0, so h must be independent of x, and so
by (3) u must be independent of x too.

We do the fast averaging and obtain zonal jets as a singular limit (see Sec-
tion 3 for more precise statements) by using the very same method that was
introduced in [6] for the long-wave case. Our motivation is twofold.

From the mathematical point of view, as very few examples of singular
limit of a symmetric hyperbolic system with fast variable coefficients have
been treated previously (see Section 4 in [11] for an example different from
[6]), any new one probably deserves to be written in details. In mid-latitudes,
the fact that the rotational Coriolis terms are bounded away from zero leads
to a strict temporal frequency scale separation between slow potential vortic-
ity dynamics and fast gravity waves; theorems justifying the quasi-geostrophic
mid-latitude dynamics have been proved even with general unbalanced initial
data for both rapidly rotating shallow water equations and completely stratified
flows [3, 7, 8, 16, 15, 5]. However, the proofs require constant symmetric hyper-
bolic coefficients for the fast-wave dynamics in order to obtain higher derivative
estimates on the solution. The rescaling x′ = εx in the long-wave scale has
the technical advantage of removing the dependence on x in the fast coefficient
operator: the terms of order ε−1 in the rescaled system only involve multipli-
cation by y and derivation with respect to y. Still, even the dependence on y
alone causes the serious difficulty that energy estimates in the usual Sobolev
spaces blow up as ε → 0. Indeed, straightforwardly differentiating (SWε) with
respect to y leads to terms with magnitude O(ε−1) from the commutators. This
difficulty was overcome in [6] by exploiting the physical, particular structure of
the fast operator to get a uniform estimate in a modified Sobolev space W̃ 4,
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denoting by W̃m for any m ∈ N the space of functions f ∈ L2(T×R) such that∑
α+β+γ≤m

‖yα∂β
x∂γ

y f‖L2 < ∞.

With this estimate at hand, it is possible to follow the classical strategy for
singular limits [12, 13, 14, 27, 28]. We use the same method in the present
paper. We wanted to gain some confidence in a setting only sightly different
before attacking the fully stratified equations, which is our next goal and will
be a more significant test of our method’s generality. And we present here some
novelty in the method as well, for we are now able to get uniform estimates in
W̃m for all m ∈ N, in a way that would have also worked in the long-wave case
(the presence of ∂x in the operator happens to be harmless, simply because ∂x

commute with y and ∂y).
From the geophysical point of view, the original scaling is completely differ-

ent from the long-wave scaling and both have their own interest. Long waves
and zonal jets are instances of those simplified reduced models which, being
simpler and yet capturing qualitatively key physical phenomena, are so helpful
in our understanding of the many physically important geophysical flows that
involve complex nonlinear interactions over multiple scales, both in time and
in space [10, 22, 23, 15, 17]. In the equatorial context, the new multi-scale re-
duced dynamical PDE models are relatively recent in origin [17] and additional
PDE theory is needed for these disciplinary problems. Zonal jets are observed
in the atmosphere as well as in the ocean but what brings them into existence
is unclear. What we show here in our simple model is that although the inter-
action of fast waves between themselves has no influence on the mean flow (see
Proposition 6.1 in Section 6.2), fast waves interact with an external forcing with
fast oscillations to create slow waves (the zonal jets). Introducing that strong
forcing (see Section 3) is an attempt to simulate the nonlinear interactive heat-
ing involving the interaction of clouds, moisture, and convection which plays a
central role in equatorial dynamics [23, 29, 19, 2, 18, 1, 9, 20] (see ref. [9] for
the simplest physical equatorial models with moisture).

2 Reformulation

We do the same changes of variables as for the long-wave equations. The first
one is

h̃ =
2h

1 +
√

1 + εh
; (5)

it transforms (1) into

∂tu + u∂xu + v∂yu +
1
2
h̃∂xh̃ +

1
ε
(−yv + ∂xh̃) = −du +

1
ε
Su

ε

∂tv + u∂xv + v∂yv +
1
2
h̃∂yh̃ +

1
ε
(yu + ∂yh̃) = −dv +

1
ε
Sv

ε

∂th̃ + u∂xh̃ + v∂yh̃ +
1
2
h̃∂xu +

1
2
h̃∂yv +

1
ε
(∂xu + ∂yv) = −d̃εh̃ +

1
ε
Sh̃

ε

(6)

with

d̃ε = d̃− εd̃h̃

4 + 2εh̃
(7)

3



and

Sh̃
ε =

Sh
ε

1 + 1
2εh̃

. (8)

The second one is

r =
1√
2
(u + h̃), l =

1√
2
(−u + h̃), (9)

which gives

∂t
~U + S1

1(~U)∂x
~U + S2(~U)∂y

~U +
1
ε
L~U = L1,ε

~U + ~Fε (10)

with the notation

~U =

r
l
v

 ,

S1
1 = S1

1(~U) =
1

2
√

2

3r − l 0 0
0 r − 3l 0
0 0 2r − 2l

 (11)

S2 = S2(~U) =
1
4

 4v 0 r + l
0 4v r + l

r + l r + l 4v

 , (12)

L = S0
1∂x + L (13)

where

S0
1 =

1 0 0
0 −1 0
0 0 0


and

L =
1√
2

 0 0 L−
0 0 L+

L+ L− 0

 , (14)

in which L+ and L− denote the lowering and raising operators

L± = ∂y ± y,

and finally

L1,ε = −1
2

 d + d̃ε −d + d̃ε 0
−d + d̃ε d + d̃ε 0

0 0 2d


and

F 1
ε =

1
ε
√

2
(Su

ε + Sh̃
ε ), F 2

ε =
1

ε
√

2
(−Su

ε + Sh̃
ε ), F 3

ε =
1
ε
Sv

ε .
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3 Initial value problems with non-resonant forc-
ing and dissipation

We will use the notation S = (S1
1 , S2) and write S · ∇ as a shorthand for

S1
1∂x + S2∂y.

We consider the initial value problems{
∂t

~Uε + S · ∇~Uε + 1
εL~Uε = ~Fε + L1,ε

~Uε

~U |t=0 = ~U0,ε

(15)

allowing the strong part of the forcing ~Fε to oscillate non-resonantly along the
eigenspaces of L. So we suppose that

~Fε(t) = ~F 0
ε (t) +

1
ε
e−

t
εL0 ~F 1

ε (t) (16)

where ~F 0
ε , ~F 1

ε are given, smooth, real-valued vector fields and where

L0 =
∑

k,n,α

ck,n
α Pk,n

α ,

Pk,n
α denoting the projector on the eigenspace of L corresponding to the eigen-

value λk,n
α (see Section 4). We assume all ck,n

α to be pure imaginary numbers,
like all λk,n

α are. We impose the condition

c−k,n
−α = ck,n

α = −ck,n
α (17)

to have ~Fε real-valued. The condition of non-resonance is

inf
k,n,α

|ck,n
α − λk,n

α | > 0. (18)

Finally, we define eτL0 and eτL for τ ∈ R by

eτL0 ~U =
∑

k,n,α

eck,n
α τPk,n

α
~U

and
eτL~U =

∑
k,n,α

eλk,n
α τPk,n

α
~U.

Theorem 3.1 (existence). Let m be an integer ≥ 3. If ~F 0
ε , ~F 1

ε and ∂t
~F 1

ε are
bounded in C(R+; W̃m), then for some T > 0 independent of ε, there is for each
ε a solution ~Uε to (15) in C0([0, T ]; W̃m) ∩ C1([0, T ]; W̃m−1).

Theorem 3.2 (fast averaging). If m ≥ 4 and if we assume in addition that the
forcing satisfies ∂t

~F 1
ε ∈ Lip(R+;L2) and ~F 0

ε → ~F 0
0 , ~F 1

ε → ~F 1
0 and ∂t

~F 1
ε → ∂t

~F 1
0

in L2, then
~Uε = (L − L0)−1e−

t
εL0 ~F 1

0 + e−
t
εL ~U + o(1)
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in C([0, T ]; W̃ s) for all s < m, where ~U ∈ C([0, T ]; W̃m) ∩ C1([0, T ]; W̃m−1)
satisfies

∂t
~U = P0

~F 0
0 (t) (19)

+
∑

λk,n
α =ck′,n′

α′

Pk,n
α

(
L1,0Pk′,n′

α′
~F 1
0 (t)

)
λk′,n′

α′ − ck′,n′

α′

(20)

−
∑

λk,n
α =ck′,n′

α′ +ck′′,n′′
α′′

Pk,n
α

(
S(Pk′,n′

α′
~F 1
0 (t)) · ∇(Pk′′,n′′

α′′
~F 1
0 (t))

)
(λk′,n′

α′ − ck′,n′

α′ )(λk′′,n′′

α′′ − ck′′,n′′

α′′ )
(21)

+
∑

λk,n
α =λk′,n′

α′

Pk,n
α

(
L1,0Pk′,n′

α′
~U(t)

)
(22)

−
∑

λk,n
α =λk′,n′

α′ +λk′′,n′′
α′′

Pk,n
α

(
S(Pk′,n′

α′
~U(t)) · ∇(Pk′′,n′′

α′′
~U(t))

)
(23)

−
∑

λk,n
α =λk′,n′

α′ +ck′′,n′′
α′′

Pk,n
α

(
S(Pk′,n′

α′
~U(t)) · ∇Pk′′,n′′

α′′
~F 1
0 (t)

)
λk′′,n′′

α′′ − ck′′,n′′

α′′

(24)

−
∑

λk,n
α =ck′,n′

α′ +λk′′,n′′
α′′

Pk,n
α

(
S(Pk′,n′

α′
~F 1
0 (t)) · ∇(Pk′′,n′′

α′′
~U(t))

)
λk′,n′

α′ − ck′,n′

α′

. (25)

The sums are to be taken over all indices present in the formulas such that
the condition under the sign of summation is satisfied. Moreover, only terms
corresponding to k = k′ + k′′ (corresponding to k = k′ in (20) and (22)) are
non-zero.

The term (19) is the simple contribution of the slow part of the forcing,
while (20) is a contribution of the fast part which may be non-zero only because
L1,0 is not the identity. The term (22) is similar: it means that fast waves
may influence each other because of the dissipation. The other terms regroup
resonances: between different modes of the forcing in (21), between different
waves in (23), between forcing and waves in (24) and (25).

Corollary 3.3 (zonal jets dynamics). In particular, if P0
~U denotes the projec-
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tion on the zonal jets in (2), (3), (4), then

∂tP0
~U = P0

~F 0
0 (26)

+
∑

c0,n′
α′ =0

P0,n
0

(
L1,0P0,n′

α′
~F 1
0

)
λ0,n′

α′ − c0,n′

α′

(27)

+
∑

ck′,n′
α′ =ck′,n′′

α′′

P0,n
0

(
S(Pk′,n′

α′
~F 1
0 ) · ∇(P−k′,n′′

−α′′
~F 1
0 )

)
(λk′,n′

α′ − ck′,n′

α′ )(λk′,n′′

α′′ − ck′,n′′

α′′ )
(28)

+
∑

P0,n
0

(
L1,0P0,n′

0
~U
)

(29)

+
∑

λk′,n′
α′ =ck′,n′′

α′′

P0,n
0

(
S(Pk′,n′

α′
~U) · ∇(P−k′,n′′

−α′′
~F 1
0 )

)
λk′,n′′

α′′ − λk′,n′

α′

(30)

+
∑

λk′,n′
α′ =ck′,n′′

α′′

P0,n
0

(
S(P−k′,n′′

−α′′
~F 1
0 ) · ∇(Pk′,n′

α′
~U)

)
λk′,n′′

α′′ − λk′,n′

α′

. (31)

The physical interpretation of (30) and (31) is that fast waves may interact
with an external forcing to create zonal jets. We check that the sum of (30)
and (31) is not always zero on an example of forcing having a single mode in
Section 7.

4 Eigenvalues and eigenfunctions of L
The content of this section is essentially a rephrasing of Ripa’s discussion about
the eigenvalues and eigenfunctions of L (see his series of papers [24, 25, 26]).

Suppose that x ∈ lT and y ∈ R (we keep the size of the periodic domain in
x as a parameter as it has an influence on the resonances).

Let us recall the definition of the parabolic cylinder functions φn: for n ∈ N,

φn(y) = (2nn!
√

π)−1/2Hn(y)e−
y2

2

where
Hn(y) = (−1)ney2 dn

dyn
e−y2

is the Hermite polynomial of degree n.
The functions e

2π
l ikxφn(y) with k ∈ Z and n ∈ N form a orthonormal basis

of L2(lT× R). Hence

(L2(lT× R))3 = Ek,−2
⊕

Ek,−1
⊕
k∈Z
n∈N

Ek,n (32)
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if we note for each k ∈ Z

Ek,−2 = 〉 e 2π
l ikx

φ0

0
0

〈
Ek,−1 = 〉 e 2π

l ikx

φ1

0
0

 , e
2π
l ikx

 0
0
φ0

〈
and

Ek,n = 〉 e 2π
l ikx

φn+2

0
0

 , e
2π
l ikx

 0
φn

0

 , e
2π
l ikx

 0
0

φn+1

〈
for n ≥ 0.

We will see, using the raising and lowering properties of L±

1√
2
L−φn = −

√
n + 1 φn+1 for n ≥ 0, (33)

1√
2
L+φn =

√
n φn−1 for n ≥ 1, (34)

L+φ0 = 0, (35)

that the operator L has a disjoint action in these subspaces (see Sections 4.2
and 4.3); since iL is self-adjoint in (L2(lR×T))3 equipped with the usual scalar
(hermitian) product, iL|Ek,n is self-adjoint for all k ∈ Z and all n ≥ −2. This
has two consequences. First, L has mutually orthogonal eigenvectors forming a
basis of Ek,n. Since the decomposition (32) is orthogonal, there is actually an
orthonormal basis of (L2(lR × T))3 formed by the eigenvectors of L. Second,
the eigenvalues of iL|Ek,n are real. It also turns out that there are all simple
(see (38), (40) and Proposition 4.2 below), so there are always three of them for
each (k, n) ∈ Z× N.

4.1 Action of L in Ek,−2

We have

Le
2π
l ikx

φ0

0
0

 = 2π
l ik e

2π
l ikx

φ0

0
0

 . (36)

We note

~f k,−2
0 = e

2π
l ikx

φ0

0
0

 (37)

for each k. In view of (36), ~f k,−2
0 is an eigenvector of L corresponding to the

eigenvalue
λk,−2

0 = 2π
l ik. (38)
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4.2 Action of L in Ek,−1

We have

Le
2π
l ikx

φ1

0
0

 = 2π
l ik e

2π
l ikx

φ1

0
0

 + e
2π
l ikx

 0
0
φ0


and

Le
2π
l ikx

 0
0
φ0

 = −e
2π
l ikx

φ1

0
0

 .

An easy computation on the matrix(
2π
l ik −1
1 0

)
shows that L has the eigenvectors

~f k,−1
±1 =

(
π
l ik ± i

√
π2

l2 k2 + 1
)

e
2π
l ikx

φ1

0
0

 + e
2π
l ikx

 0
0
φ0

 (39)

corresponding to the eigenvalues

λk,−1
±1 = π

l ik ± i
√

π2

l2 k2 + 1. (40)

4.3 Action of L in Ek,n for n ≥ 0

We have

Le
2π
l ikx

φn+2

0
0

 = 2π
l ik e

2π
l ikx

φn+2

0
0

 +
√

n + 2 e
2π
l ikx

 0
0

φn+1


Le

2π
l ikx

 0
φn

0

 = − 2π
l ik e

2π
l ikx

 0
φn

0

−
√

n + 1 e
2π
l ikx

 0
0

φn+1


and

Le
2π
l ikx

 0
0

φn+1

 = −
√

n + 2 e
2π
l ikx

φn+2

0
0

 +
√

n + 1 e
2π
l ikx

 0
0
φn

 .

The equation for the eigenvalues of the matrix 2π
l ik 0 −

√
n + 2

0 − 2π
l ik

√
n + 1√

n + 2 −
√

n + 1 0

 (41)

is
−λ3 − ( 4π2

l2 k2 + 2n + 3)λ− 2π
l ik = 0. (42)

If we set λ = iµ, this equation is equivalent to

−µ3 + ( 4π2

l2 k2 + 2n + 3)µ + 2π
l k = 0. (43)
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Remark 4.1. Since i times matrix (41) is hermitian, the solutions of (42) are
pure imaginary numbers (in other words, the solutions of (43) are real).

Proposition 4.2. For each (l, k, n) ∈ R+
0 × Z × N, the solutions of (42) are

distinct.

Proof. Let β = 2πk/l and γ = β2 + 2n + 3. Then (42) is just f(λ) = 0 with
f(λ) def= −λ3−γλ− iβ. As f ′(λ) = −3λ2−γ, a multiple root of f has to satisfy

γ = −3λ2 (44)

and therefore, plugging this in f(λ) = 0,

2λ3 − iβ = 0. (45)

But (44) and (45) imply (γ/3)3 = β2/4, which is not possible because γ/3 =
β2/3 + (2n + 3)/3 ≥ β2/4 + 1.

Notation 4.3. We denote the eigenvalues of L|Ek,n by λk,n
α (= iµk,n

α ), with
α = −1, 0, 1, following the convention

µk,n
−1 < µk,n

0 < µk,n
1 . (46)

Corollary 4.4. For any (k, n) ∈ Z × N, three eigenvectors of L in Ek
n corre-

sponding to three different eigenvalues always form an orthogonal basis of Ek
n.

Proposition 4.5. If n ≥ 0 and either

k 6= 0

or
k = 0 and α 6= 0,

then

λk,n
α 6=

{
2π
l ik

− 2π
l ik

.

Proof. In the first case, with β, γ and f as in the proof of Proposition 4.2, we
have to check that f(±iβ) 6= 0. But f(±iβ) = ±iβ3∓iβγ−iβ = −iβ(∓β2+γ+
1); now β = 2πk/l 6= 0 as k 6= 0 by assumption, and ∓β2 + γ + 1 ≥ 2n + 4 > 0.

For k = 0, the eigenvalues and eigenfunctions of L are simply those of L. In
particular [6], λ0,n

α = αi
√

2n + 3 6= 0 and so λ0,n
α 6= 0 if α 6= 0.

Hence

~f k,n
α =

√
n + 2

2π
l ik − λk,n

α

e
2π
l ikx

φn+2

0
0

 +
√

n + 1
2π
l ik + λk,n

α

e
2π
l ikx

 0
φn

0


+ e

2π
l ikx

 0
0

φn+1

 (47)

are eigenvectors corresponding to λk,n
α for n ≥ 0 if k and α are not simultane-

ously zero.
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It is easy to check [6] that

~f 0,n
0 =

√
n + 1

φn+2

0
0

 +
√

n + 2

 0
φn

0

 (48)

are eigenvectors corresponding to λ0,n
0 for n ≥ 0.

4.4 Synthesis

4.4.1 The orthonormal basis

Definition 4.6. Let ~g k,n
α = ~f k,n

α /‖~f k,n
α ‖(L2(lT×R))3 , with ~f k,n

α defined by

(37) for n = −2, α = 0 and k ∈ Z
(39) for n = −1, α = ±1 and k ∈ Z
(48) for n ≥ 0 and α = k = 0
(47) for all other values of k, n and α.

Proposition 4.7. For each (k, n) ∈ Z×N, {~g k,n
−1 , ~g k,n

−0 , ~g k,n
1 } is an orthonormal

basis of Ek,n.

Corollary 4.8. The vectors ~g k,−2
0 , ~g k,−1

−1 , ~g k,−1
1 and ~g k,n

α for k ∈ Z, n ∈ N
and α ∈ {−1, 0, 1} form an orthonormal basis of (L2(lT× R))3.

Corollary 4.9. For any m ∈ N, the norm of ~U ∈ (W̃m(lT×R))3 is equivalent
to

‖∂m
x

~U‖L2 +

 ∑
k,n,α

(n + 3)m |〈~U,~g k,n
α 〉|2

1/2

.

(For a proof of the last corollary, see Proposition 2.2 in [6].)

4.4.2 Symmetry properties

Proposition 4.10. For all k, n and α, λ−k,n
−α = −λk,n

α .

Proof. The property is immediate to check for n = −2 and n = −1 from the
explicit expressions (38) and (40).

For n ≥ 0, using Notation 4.3, µ−k,n
−1 < µ−k,n

0 < µ−k,n
1 are the solutions of

−µ3 + ( 4π2

l2 k2 + 2n + 3)µ− 2π
l k = 0.

But so are −µk,n
−1 < −µk,n

0 < −µk,n
−1 , for (43) is equivalent to

−(−µ)3 + ( 4π2

l2 k2 + 2n + 3)(−µ)− 2π
l k = 0.

Hence we must have µ−k,n
−1 = −µk,n

1 , µ−k,n
0 = −µk,n

0 and µ−k,n
1 = −µk,n

−1 .

Proposition 4.11. For all k, n and α, ~g −k,n
−α = ~g k,n

α .

Proof. It is sufficient to check the property on the ~f k,n
α . And indeed the

property is obvious in (37), (39) and (48), while it is true in (47) by Propo-
sition 4.10.
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4.4.3 Projectors

Definition 4.12. Let Pk,n
α denote the projector on 〉~g k,n

α 〈.

Remark 4.13. Note that λk,n
α = 0 if and only if k = α = 0.

Proposition 4.14. For each n and α, the projection on 〉~g 0,n
α 〈 is equal to the

mean on lT of the projection on 〉~e n
α 〈.

See Sections 2.4 and 2.5 in [6] for the precise definitions of ~e n
α (normed

eigenvectors of L) and P
(n)
α (corresponding projectors).

Proof. If k = 0, ~f k,n
α = ~e n

α (or i ~e n
α ) is actually a function of y alone. Therefore

P0,n
α

~U = (P0,n
α

~U)(y) =
1
l

∫∫
lT×R

~U(x′, y′)~g 0,n
α (x′, y′) dx′ dy′ ~g 0,n

α (x, y)

=
1
l

∫
lT

(∫
R

~U(x′, y′)~e n
α (y′) dy′

)
~e n

α (y) dx′ =
1
l

∫
lT

(P (n)
α

~U)(x′, y) dx′.

Corollary 4.15. The projector on the kernel of L is related to the projector on
the kernel of L by

P0
~U =

1
l

∫
lT

(P0
~U)(x′, y) dx′. (49)

Proof.

P0
~U =

∞∑
n=−1

Pn,0
0

~U

=
1
l

∞∑
n=−1

∫
lT

P
(n)
0

~U(x′, y) dx′ =
1
l

∫
lT

(P0
~U)(x′, y) dx′.

Note that with (49) as the zonal average, P0
~U is precisely the projection on

(2), (3), (4) defining the zonal jets.

5 A priori estimates

Let ~U be a smooth, real-valued solution of

∂t
~U + S · ∇~U +

1
ε
L~U = ~F , (50)

where S = (S1
1 , S2) is a couple of symmetric, real-valued matrices and ~F is an

unspecified forcing, all of them continuous in time with values in W̃m for some
m ∈ N.

In Section 5.2 we prove the following estimate.
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Proposition 5.1. The solutions of (50) satisfy

‖~U(t)‖W̃ m

≤ C‖~U(0)‖W̃ m + C

∫ t

0

‖F (t′)‖W̃ m dt′

+ C

∫ t

0

(‖S(t′)‖L∞ + ‖∇S(t′)‖L∞)‖~U(t′)‖W̃ m dt′

+ C

∫ t

0

‖∇~U(t′)‖L∞‖S(t′)‖W̃ m dt′. (51)

This actually also provides uniform a priori estimates for the solutions of

∂t
~U + S(~V ) · ∇~U +

1
ε
L~U = ~Fε + L1,ε

~U, (52)

where ~V is given and ~Fε is defined by (16). Indeed, if

~Gε = (L − L0)−1e−
t
εL0 ~F 1

ε , (53)

~̃U = ~U − ~Gε,

~̃V = ~V − ~Gε,

then

∂t
~̃U +

1
ε
L ~̃U = ∂t

~U +
1
ε
L~U

+
1
ε
(L − L0)−1L0e

− t
εL0 ~F 1

ε − (L − L0)−1e−
t
εL0∂t

~F 1
ε

− 1
ε
L(L − L0)−1e−

t
εL0 ~F 1

ε

= ∂t
~U +

1
ε
L~U − (L − L0)−1e−

t
εL0∂t

~F 1
ε

− 1
ε
e−

t
εL0 ~F 1

ε

and so (52) is equivalent to

∂t
~̃U + S( ~̃V + ~Gε) · ∇ ~̃U +

1
ε
L ~̃U = ~̃Fε + L1,ε

~̃U − S( ~̃V ) · ∇~Gε (54)

with
~̃Fε = ~F 0

ε + L1,ε
~Gε − S(~Gε) · ∇~Gε − (L − L0)−1e−

t
εL0∂t

~F 1
ε .

Thanks to the assumption of non-resonance (18),

(L − L0)−1 =
∑

k,n,α

1

λk,n
α − ck,n

α

Pk,n
α

is bounded on W̃m for all m. Hence we get a uniform estimate on ~̃U (and

therefore also on ~U) by substituting ~̃Fε +L1,ε
~̃U − S( ~̃V ) · ∇~Gε to ~F and ~̃V + ~Gε

to S in (51).
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5.1 Multiplication in W̃m

Proposition 5.2. Let f ∈ W̃m∩L∞(lT×R) and g ∈ Wm∩L∞(lT×R). Then

‖fg‖W̃ m ≤ C(‖f‖L∞‖g‖W m + ‖g‖L∞‖f‖W̃ m). (55)

Proof. We reproduce the proof of the estimate of fg in the classical Sobolev
space Wm as given in [12] (where it is in turn credited to Moser [21]); the only
twist is that a variant of the Gagliardo-Nirenberg inequalities will be needed.

We have to estimate yα∂β
x∂γ

y (fg) in L2 for all α, β and γ such that

N = α + β + γ ≤ m.

By Leibnitz’s formula,

∂β
x∂γ

y (fg) =
∑

β′+β′′=β
γ′+γ′′=γ

cβ′γ′ ∂
β′

x ∂γ′

y f ∂β′′

x ∂γ′′

y g

for some constants cβ′γ′ . So, by Hölder’s inequality,

‖yα∂β
x∂γ

y (fg)‖L2

≤ C
∑

β′+β′′=β
γ′+γ′′=γ

‖yα∂β′

x ∂γ′

y f‖
L

2N
α+β′+γ′

‖∂β′′

x ∂γ′′

y g‖
L

2N
β′′+γ′′

. (56)

Lemma 5.3.

‖yα∂β′

x ∂γ′

y f‖
L

2N
α+β′+γ′

≤ C‖f‖1−α+β′+γ′
N

L∞ ‖f‖
α+β′+γ′

N

W̃ N
, (57)

‖∂β′′

x ∂γ′′

y g‖
L

2N
β′′+γ′′

≤ C‖g‖1− β′′+γ′′
N

L∞ ‖g‖
β′′+γ′′

N

W N . (58)

The lemma is proved just below. When we plug (57) and (58) into (56), we
get

‖yα∂β
x∂γ

y (fg)‖L2

≤ C
∑

β′+β′′=β
γ′+γ′′=γ

(‖f‖L∞‖g‖W N )1−
α+β′+γ′

N (‖g‖L∞‖f‖W̃ N )
α+β′+γ′

N .

Then (55) follows by Young’s inequalities.

Proof of Lemma 5.3. The inequalities (58) are nothing but the classical, well-
known Gagliardo-Nirenberg inequalities. To prove (57), let us set F = ∂β′

x ∂γ′

y f
and δ = β′ + γ′. The left-hand side of (57) is

‖yαF‖
L

2N
α+δ

=
(∫

|y|
2Nα
α+δ |F |

2N
α+δ

)α+δ
2N

=
(∫

|y|
2Nα
α+δ |F |

2Nα
(α+δ)(N−δ) |F |

2N(N−α−δ)
(α+δ)(N−δ)

)α+δ
2N

≤
(∫

|y|2(N−δ)|F |2
) α

2(N−δ)
(∫

|F | 2N
δ

) δ
2N (1− α

N−δ )
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by the Hölder inequality with conjugate exponents (α + δ)(N − δ)/Nα and
(α + δ)(N − δ)/(δ(N − α− δ)). So

‖yαF‖
L

2N
α+δ

≤ ‖F‖1− α
N−δ

L
2N
δ

‖yN−δF‖
α

N−δ

L2 ,

that is,

‖yα∂β′

x ∂γ′

y f‖
L

2N
α+β′+γ′

≤ ‖∂β′

x ∂γ′

y f‖
1− α

N−β′−γ′

L
2N

β′+γ′
‖yN−β′−γ′∂β′

x ∂γ′

y f‖
α

N−β′−γ′

L2 .

Now
‖∂β′

x ∂γ′

y f‖
L

2N
β′+γ′

≤ ‖f‖1− β′+γ′
N

L∞ ‖f‖
β′+γ′

N

W N

by (58). As both ‖yN−β′−γ′∂β′

x ∂γ′

y f‖L2 and ‖f‖W N are bounded by ‖f‖W̃ N , we
have

‖yα∂β′

x ∂γ′

y f‖
L

2N
α+β′+γ′

≤ ‖f‖
(1− β′+γ′

N )(1− α
N−β′−γ′ )

L∞ ‖f‖
α

N−β′−γ′+
β′+γ′

N (1− α
N−β′−γ′ )

W̃ N
,

which is exactly (57).

5.2 Estimate in W̃m for m ≥ 1

We focus on the estimate of ∑
k,n,α

(n + 3)m |〈~U,~g k,n
α 〉|2

1/2

since differentiating the system with respect to x yields an estimate on ∂m
x

~U in
L2 without any special difficulty (see Corollary 4.9).

Let us apply Pk,n
α to (50). This gives

∂tPk,n
α

~U + Pk,n
α (S · ∇~U) +

1
ε
λk,n

α Pk,n
α

~U = Pk,n
α

~F ,

for all k, n and α. Then we take the scalar product of both sides with (n +
3)mPk,n

α
~U , sum over k, n and α, add and subtract 1

2m 〈Lm
−

~U,Lm
− (S · ∇~U)〉 and

retain only the real part. This gives

1
2
∂t

 ∑
k,n,α

(n + 3)m‖Pk,n
α

~U‖2
L2

 +
1

2m
〈Lm
−

~U,Lm
− (S · ∇~U)〉

= <e

 1
2m

〈Lm
−

~U,Lm
− (S · ∇~U)〉 −

∑
k,n,α

(n + 3)m〈Pk,n
α

~U,Pk,n
α (S · ∇~U〉


+ <e

 ∑
k,n,α

(n + 3)m〈Pk,n
α

~U,Pk,n
α

~F 〉


(59)

because the real part of λk,n
α is always zero.
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Lemma 5.4. Let S, ~U ∈ W̃m ∩ Lip(lT× R). Then

|〈Lm
−

~U,Lm
− (S · ∇~U)〉|

≤ C‖~U‖W̃ m

(
(‖S‖L∞ + ‖∇S‖L∞)‖~U‖W̃ m + ‖∇~U‖L∞‖S‖W m

)
.

(60)

Proof. We write

Lm
− (S · ∇~U) = S · ∇Lm

−
~U + [Lm

− , S · ∇]~U.

The scalar product 〈Lm
−

~U, S · ∇Lm
−

~U〉 is estimated by integration by parts,
exploiting the symmetry of S:∫∫

Lm
−

~U · (S · ∇Lm
−

~U) dx dy

=
3∑

i,j=1

(∫∫
Lm
−U i(S1

1)ij∂x(Lm
−U j) dx dy

+
∫∫

Lm
−U i(S2)ij∂y(Lm

−U j) dx dy

)
=

1
2

3∑
i,j=1

(∫∫
(S1

1)ij∂x(Lm
−U iLm

−U j) dx dy

+
∫∫

(S2)ij∂y(Lm
−U iLm

−U j) dx dy

)
= −1

2

3∑
i,j=1

∫∫
(∂x(S1

1)ij + ∂y(S2)ij)Lm
−U iLm

−U j dx dy.

Thus
〈Lm
−

~U, S · ∇Lm
−

~U〉 ≤ C‖∇S‖L∞‖Lm
−

~U‖2
L2 ,

which is bounded by the term C‖∇S‖L∞‖~U‖2
W̃ m in the right-hand side of (60).

The commutator [Lm
− , S · ∇]~U is treated as follows. Remark that

Lm
− = (∂y − y)m = ∂m

y + (−1)mym + Rm−1

where
Rm−1 =

∑
k+l≤m−1

ckl y
k∂l

y

for some constants ckl.

• Since Rm−1 is order m−1, we can estimate S ·∇Rm−1
~U and Rm−1(S ·∇~U)

in L2 separately:

‖S · ∇Rm−1
~U‖L2 ≤ ‖S‖L∞‖~U‖W̃ m ,

and

‖Rm−1(S · ∇~U)‖L2

≤ C‖S · ∇~U‖W̃ m−1

≤ C(‖S‖L∞‖~U‖W̃ m + ‖∇~U‖L∞‖S‖W̃ m−1)

thanks to Proposition 5.2.
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• The multiplication by ym commutes with S and ∂x, so

‖[ym, S · ∇]~U‖L2 = ‖S2[ym, ∂y]~U‖L2

= m‖S2y
m−1~U‖L2

≤ C‖S2‖L∞‖~U‖W̃ m−1 .

• Finally, the estimate

‖[∂m
y , S · ∇~U‖L2 ≤ C(‖∇S‖L∞‖~U‖W m + ‖∇~U‖L∞‖S‖W m)

is classical [12].

Thus
|〈Lm

−
~U, [Lm

− , S · ∇]~U〉| ≤ ‖Lm
−

~U‖L2‖[Lm
− , S · ∇]~U‖L2

is also bounded by the right-hand side of (60).

Lemma 5.5. Let ~U1, ~U2 ∈ (W̃m(lT× R))3. Then∣∣∣∣∣∣ 1
2m

〈Lm
−

~U1, L
m
−

~U2〉 −
∑

k,n,α

(n + 3)m〈Pk,n
α

~U1,Pk,n
α

~U2〉

∣∣∣∣∣∣
≤ C‖~U1‖W̃ m‖~U2‖W̃ m−2 .

(61)

Proof. For n ≥ 0, since

~g k,n
α (x, y) = e

2π
l ikx

aφn+2(y)
b φn(y)

c φn+1(y)

 (62)

for constants a = ak,n
α , b = bk,n

α , c = ck,n
α , we have

(
1√
2
L−)m~g k,n

α

= e
2π
l ikx

a (
1√
2
L−)m

φn+2

0
0

 + b (
1√
2
L−)m

 0
φn

0


+c (

1√
2
L−)m

 0
0

φn+1


= (−1)me

2π
l ikx

a

√
(n + 2 + m)!√

(n + 2)!

φn+2+m

0
0

 + b

√
(n + m)!√

n!

 0
φn+m

0


+c

√
(n + 1 + m)!√

(n + 1)!

 0
0

φn+1+m

 .

(63)
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If we set by convention φ−2 = φ−1 = 0, the formulas (62) and (63) are also valid
for n = −2 and n = −1 (with bk,−2

0 = ck,−2
0 = 0 and bk,−1

0 = 0). So

1
2m

〈Lm
−

~U1, L
m
−

~U2〉

=
∑

k,n,α

∑
k′,n′,α′

〈( 1√
2
L−)mPk,n

α
~U1, (

1√
2
L−)mPk′,n′

α′
~U2〉

=
∑

k,n,α,α′

〈~U1, ~g
k,n

α 〉〈~U2, ~g
k,n

α′ 〉
(

ak,n
α ak,n

α′
(n + 2 + m)!

(n + 2)!

+bk,n
α bk,n

α′
(n + m)!

n!
+ ck,n

α ck,n
α′

(n + 1 + m)!
(n + 1)!

)
.

We have also∑
k,n,α

(n + 3)m〈Pk,n
α

~U1,Pk,n
α

~U2〉

= (n + 3)m
∑

k,n,α

〈~U1, ~g
k,n

α 〉〈~U2, ~g
k,n

α 〉

=
∑

k,n,α,α′

〈~U1, ~g
k,n

α 〉〈~U2, ~g
k,n

α′ 〉
(
ak,n

α ak,n
α′ + bk,n

α bk,n
α′ + ck,n

α ck,n
α′

)
(n + 3)m

because 〈~g k,n
α , ~g k,n

α′ 〉 = ak,n
α ak,n

α′ + bk,n
α bk,n

α′ + ck,n
α ck,n

α′ = δαα′ . Since the polyno-
mials (n + 2 + m)!/(n + 2)!, (n + m)!/n! and (n + 1 + m)!/(n + 1)! have nm as
leading-order term, the difference of each of them with (n+3)m is only of order
m− 1. Therefore∣∣∣∣∣∣ 1

2m
〈Lm
−

~U1, L
m
−

~U2〉 −
∑

k,n,α

(n + 3)m〈Pk,n
α

~U1,Pk,n
α

~U2〉

∣∣∣∣∣∣
≤ C

∑
k,n,α,α′

(n + 3)m−1|〈~U1, ~g
k,n

α 〉〈~U2, ~g
k,n

α′ 〉|

≤ C
∑
α,α′

∑
k,n

(n + 3)m/2|〈~U1, ~g
k,n

α 〉|(n + 3)m/2−1|〈~U2, ~g
k,n

α′ 〉|

≤ C
∑
α,α′

∑
k,n

(n + 3)m|〈~U1, ~g
k,n

α 〉|2
1/2

∑
k,n

(n + 3)m−2|〈~U2, ~g
k,n

α′ 〉|2
1/2

≤ 3C‖~U1‖W̃ m‖~U2‖W̃ m−2 .

Applying Lemma 5.4, Lemma 5.5 with ~U1 = ~U and ~U2 = S · ∇~U , and the
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Cauchy-Schwarz inequality, we get from (59)

1
2
∂t

 ∑
k,n,α

(n + 3)m‖Pk,n
α

~U‖2
L2


≤ C‖~U‖W̃ m

(
(‖S‖L∞ + ‖∇S‖L∞)‖~U‖W̃ m + ‖∇~U‖L∞‖S‖W̃ m

)
+ C‖~U‖W̃ m‖S · ∇~U‖W̃ m−2

+

 ∑
k,n,α

(n + 3)m‖Pk,n
α

~U‖2
L2

1/2  ∑
k,n,α

(n + 3)m‖Pk,n
α

~F‖2
L2

1/2

.

As
‖S · ∇~U‖W̃ m−2 ≤ C(‖S‖L∞‖~U‖W̃ m−1 + ‖∇~U‖L∞‖S‖W̃ m−2

by Proposition 5.2 and ∑
k,n,α

(n + 3)m‖Pk,n
α

~U‖2
L2

1/2

≤ C‖~U‖W̃ m

 ∑
k,n,α

(n + 3)m‖Pk,n
α

~F‖2
L2

1/2

≤ C‖~F‖W̃ m

by Corollary 4.9, we conclude that

∂t

 ∑
k,n,α

(n + 3)m‖Pk,n
α

~U‖2
L2

1/2

≤ C(‖S‖L∞ + ‖∇S‖L∞)‖~U‖W̃ m

+ C‖∇~U‖L∞‖S‖W̃ m + C‖~F‖W̃ m .

(64)

6 Proofs of the theorems

6.1 Existence of solutions

Since our a priori estimates are uniform in ε, the classical proof of existence
for symmetric hyperbolic system [14] gives for all m ≥ 3 solutions ~Uε to (15)
in C0([0, T ]; W̃m) ∩ C1([0, T ]; W̃m−1) for some T > 0 independent of ε with a
bound ‖~Uε(t)‖W̃ m ≤ C uniform in ε and t ∈ [0, T ].

6.2 Fast averaging

We have ‖eτL~U‖W̃ m−1 ≤ C‖~U‖W̃ m−1 for some constant C independent of τ and
~U . Let ~̃Uε = ~Uε − ~Gε, with ~Gε defined by (53). Making ~̃U = ~̃V = ~̃Uε in (54)
gives

∂t
~̃Uε + S( ~̃Uε + ~Gε) · ∇ ~̃Uε +

1
ε
L ~̃Uε = ~̃Fε + L1,ε

~̃Uε − S( ~̃Uε) · ∇~Gε,
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so

∂t(e
t
εL ~̃Uε) = e

t
εL

(
~̃Fε + L1,ε

~̃Uε − S( ~̃Uε) · ∇~Gε − S( ~̃Uε + ~Gε) · ∇ ~̃Uε

)
is bounded in C([0, T ]; W̃m−1).

By the Lions-Aubin compactness lemma, e
t
εL ~̃Uε → ~U in C([0, T ]; W̃m−1)

where ~U ∈ Lip([0, T ]; W̃m−1) satisfies, following Schochet’s theory [27],

∂t
~U = lim

T1→∞

1
T1

∫ T0+T1

T0

h(t, τ) dτ (65)

with

h(t, τ) = eτL
(

~F 0
0 (t)

+ L1,0(L − L0)−1e−τL0 ~F 1
0

− S
(
(L − L0)−1e−τL0 ~F 1

0

)
· ∇

(
(L − L0)−1e−τL0 ~F 1

0

)
− (L − L0)−1e−τL0∂t

~F 1
0

+ L1,0e
−τL ~U(t)

− S(e−τL ~U(t)) · ∇
(
(L − L0)−1e−τL0 ~F 1

0 (t)
)

− S(e−τL ~U(t)) · ∇(e−τL ~U(t))

−S
(
(L − L0)−1e−τL0 ~F 1

0 (t)
)
· ∇(e−τL ~U(t))

)
,

if the limit in (65) exists in L2, uniformly in T0 (in [6] we give, using a lemma
also due to Schochet [28], a self-contained justification of a similar assertion and
it can easily be adapted here). And indeed we have the following convergences:

•
1
T1

∫ T0+T1

T0

eτL ~F 0
0 (t) dτ → P0

~F 0
0 (t)

•

1
T1

∫ T0+T1

T0

eτL
(
L1,0(L − L0)−1e−τL0 ~F 1

0

)
dτ

→
∑

λk,n
α =ck′,n′

α′

Pk,n
α

(
L1,0Pk′,n′

α′
~F 1
0 (t)

)
λk′,n′

α′ − ck′,n′

α′

•

1
T1

∫ T0+T1

T0

eτL
(
S

(
(L − L0)−1e−τL0 ~F 1

0

)
·∇

(
(L − L0)−1e−τL0 ~F 1

0

))
dτ

→
∑

λk,n
α =ck′,n′

α′ +ck′′,n′′
α′′

Pk,n
α

(
S(Pk′,n′

α′
~F 1
0 (t)) · ∇(Pk′′,n′′

α′′
~F 1
0 (t))

)
(λk′,n′

α′ − ck′,n′

α′ )(λk′′,n′′

α′′ − ck′′,n′′

α′′ )
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•

1
T1

∫ T0+T1

T0

eτL
(
(L − L0)−1e−τL0∂t

~F 1
0

)
dτ

→
∑

λk,n
α =ck′,n′

α′

Pk,n
α

(
Pk′,n′

α′ ∂t
~F 1
0 (t)

)
λk′,n′

α′ − ck′,n′

α′

= 0

(due to the orthogonality of the eigenspaces and the non-resonance as-
sumption)

•

1
T1

∫ T0+T1

T0

eτL
(
L1,0e

−τL ~U(t)
)

dτ →
∑

λk,n
α =λk′,n′

α′

Pk,n
α

(
L1,0Pk′,n′

α′
~U(t)

)

•

1
T1

∫ T0+T1

T0

eτL
(
S(e−τL ~U(t)) · ∇

(
(L − L0)−1e−τL0 ~F 1

0 (t)
))

dτ

→
∑

λk,n
α =λk′,n′

α′ +ck′′,n′′
α′′

Pk,n
α

(
S(Pk′,n′

α′
~U(t)) · ∇Pk′′,n′′

α′′
~F 1
0 (t)

)
λk′′,n′′

α′′ − ck′′,n′′

α′′

•

1
T1

∫ T0+T1

T0

eτL
(
S(e−τL ~U(t)) · ∇(e−τL ~U(t))

)
dτ

→
∑

λk,n
α =λk′,n′

α′ +λk′′,n′′
α′′

Pk,n
α

(
S(Pk′,n′

α′
~U(t)) · ∇(Pk′′,n′′

α′′
~U(t))

)

•

1
T1

∫ T0+T1

T0

eτL
(
S

(
(L − L0)−1e−τL0 ~F 1

0 (t)
)
· ∇(e−τL ~U(t))

)
dτ

→
∑

λk,n
α =ck′,n′

α′ +λk′′,n′′
α′′

Pk,n
α

(
S(Pk′,n′

α′
~F 1
0 (t)) · ∇(Pk′′,n′′

α′′
~U(t))

)
λk′,n′

α′ − ck′,n′

α′

.

This proves Theorem 3.2. We get Corollary 3.3 by imposing the restriction
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k = α = 0 in the summations:

∂tP0
~U = P0

~F 0
0

+
∑

c0,n′
α′ =0

P0,n
0

(
L1,0P0,n′

α′
~F 1
0

)
λ0,n′

α′ − c0,n′

α′

−
∑

ck′,n′
α′ +c−k′,n′′

α′′ =0

P0,n
0

(
S(Pk′,n′

α′
~F 1
0 ) · ∇(P−k′,n′′

α′′
~F 1
0 )

)
(λk′,n′

α′ − ck′,n′

α′ )(λ−k′,n′′

α′′ − c−k′,n′′

α′′ )
(66)

+
∑

P0,n
0

(
L1,0P0,n′

0
~U
)

−
∑

λk′,n′
α′ +c−k′,n′′

α′′ =0

P0,n
0

(
S(Pk′,n′

α′
~U) · ∇(P−k′,n′′

α′′
~F 1
0 )

)
λ−k′,n′′

α′′ − c−k′,n′′

α′′

(67)

−
∑

ck′,n′
α′ +λ−k′,n′′

α′′ =0

P0,n
0

(
S(Pk′,n′

α′
~F 1
0 ) · ∇(P−k′,n′′

α′′
~U)

)
λk′,n′

α′ − ck′,n′

α′

(68)

−
∑

λk′,n′
α′ +λk′′,n′′

α′′ =0

P0

(
S(Pk′,n′

α′
~U) · ∇(Pk′′,n′′

α′′
~U)

)
. (69)

We get (28) from (66) replacing α′′ by −α′′, thanks to the conditions (17)
and Proposition 4.10. We get (30) from (67) in the very same way. We get (31)
from (68) interchanging (n′, α′) and (n′′, α′′), substituting −k′ to k′, and then
again replacing α′′ by −α′′. Corollary 3.3 finally follows because the interaction
of fast waves has no influence on the slow dynamics:

Proposition 6.1. The sum (69) is zero.

Proof. That sum must be taken over all n′, k′, α′, n′′, k′′ and α′′ such that

k′ + k′′ = 0 (70)

and
λk′,n′

α′ + λk′′,n′′

α′′ = 0. (71)

If (70) and (71) are satisfied, then λ = λk′,n′

α′ is solution of both

λ3 + λ(
4π2

l2
k′2 + 2n′ + 3) +

2π

l
ik′ = 0

and

−λ3 − λ(
4π2

l2
k′2 + 2n′′ + 3)− 2π

l
ik′ = 0.

By addition, either λ = 0—which implies k′ = k′′ = α′ = α′′ = 0 (see Re-
mark 4.13)—or n′ = n′′, and so the sum can be split in two:

• a sum over all n′ and n′′ with k′ = k′′ = α′ = α′′ = 0

• a sum over all n′, k′ and α′ with n′′ = n′, k′′ = −k′, α′′ = −α′ (see
Proposition 4.10) and either k′ 6= 0 or α′ 6= 0.
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The first sum is zero because each term is zero:

P0

(
S(Pn′,0

0
~U(t)) · ∇(Pn′′,0

0
~U(t))

)
= P0

(
S2(

1
l

∫
lT

P
(n′)
0

~U(t, x) dx)∂y(
1
l

∫
lT

P
(n′′)
0

~U(t, x) dx)
)

= 0

for all n′ and n′′ (see the end of Section 3 in [6]). The second sum is zero because
the terms corresponding to (k′, α′) and (−k′,−α′) cancel each other for all n′.
Indeed,

P0

(
S(Pk′,n′

α′
~U(t)) · ∇(P−k′,n′

−α′
~U(t))

)
= P0

(
S

(
〈~U , ~g k′,n′

α′ 〉~g k′,n′

α′

)
·∇

(
〈~U , ~g −k′,n′

−α′ 〉~g −k′,n′

−α′

))
= 〈~U , ~g k′,n′

α′ 〉〈~U , ~g −k′,n′

−α′ 〉P0

(
S(~g k′,n′

α′ ) · ∇~g −k′,n′

−α′

)
,

so

P0

(
S(Pk′,n′

α′
~U(t)) · ∇(P−k′,n′

−α′
~U(t))

)
+ P0

(
S(P−k′,n′

−α′
~U(t)) · ∇(Pk′,n′

α′
~U(t))

)
= 〈~U , ~g k′,n′

α′ 〉〈~U , ~g −k′,n′

−α′ 〉P0

(
S(~g k′,n′

α′ ) · ∇~g −k′,n′

−α′

+S(~g −k′,n′

−α′ ) · ∇~g k′,n′

α′

)
;

but since ~g −k′,n′

−α′ = ~g k′,n′

α′ (see Proposition 4.11),

P0

(
S(~g k′,n′

α′ ) · ∇~g −k′,n′

−α′ + S(~g −k′,n′

−α′ ) · ∇~g k′,n′

α′

)
= P0

(
2<e

(
S(~g k′,n′

α′ ) · ∇~g −k′,n′

−α′

))
,

which is zero in view of (11), (12), (37), (39) and (47).

7 Example

For any a ∈ C, let

~F 1
0 (t) = a~f k0,−2

0 + a~f −k0,−2
0 = a e

2π
l ik0x

φ0(y)
0
0

 + c.c.

and
ck0,−2
0 = λk0,−1

1 .

Then the sum of (30) and (31) reduces to

+∞∑
n=−2

P0,n
0

(
S(Pk0,−1

1
~U) · ∇(P−k0,−2

0
~F 1
0 )

)
λk0,−2

0 − λk0,−1
1

+ c.c.

+
+∞∑

n=−2

P0,n
0

(
S(P−k0,−2

0
~F 1
0 ) · ∇(Pk0,−1

1
~U)

)
λk0,−2

0 − λk0,−1
1

+ c.c.

(72)
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As

Pk0,−1
1

~U = u e
2π
l ik0x

λk0,−1
1 φ1

0
φ0

 ,

for some scalar function u = u(t), we have

S1
1(Pk0,−1

1
~U) =

u

2
√

2
e

2π
l ik0xλk0,−1

1 φ1

3 0 0
0 1 0
0 0 2


and

S2(Pk0,−1
1

~U) =
u

4
e

2π
l ik0x

 4φ0 0 λk0,−1
1 φ1

0 4φ0 λk0,−1
1 φ1

λk0,−1
1 φ1 λk0,−1

1 φ1 4φ0

 ,

while

P−k0,−2
0

~F 1
0 = a e−

2π
l ik0xφ0

1
0
0


and so

S1
1(P−k0,−2

0
~F 1
0 ) =

a

2
√

2
e−

2π
l ik0xφ0

3 0 0
0 1 0
0 0 2


and

S2(P−k0,−2
0

~F 1
0 ) =

a

4
e−

2π
l ik0xφ0

0 0 1
0 0 1
1 1 0

 .

The explicit expressions of λk0,−2
0 (38) and λk0,−1

1 (40) yield

λk0,−2
0 − λk0,−1

1 = 2π
l ik0 −

(
π
l ik0 + i

√
π2

l2 k2
0 + 1

)
= λk0,−1

−1 .

From (33) and (35), it follows that

∂yφ0 =
1
2
(L+ + L−)φ0 = − 1√

2
φ1.

Hence

(72)

=
1

λk0,−1
−1

+∞∑
n=−2

P0,n
0

− u

2
√

2
λk0,−1

1 φ1a
2π

l
ik0φ0

3
0
0

− uφ0
a√
2
φ1

1
0
∗


+

a

2
√

2
φ0u

2π

l
ik0

3λk0,−1
1 φ1

0
∗

− a

4
φ0

u√
2
φ1

1
1
∗


+ c.c.

= − au

4
√

2 λk0,−1
−1

+∞∑
n=−2

P0,n
0

φ0φ1

5
4
∗

 + c.c.
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By (48), the nth term is non-zero for general a and u if

5
√

n + 1 〈φ0φ1, φn+2〉+ 4
√

n + 2 〈φ0φ1, φn〉 6= 0. (73)

The scalar products 〈φ0φ1, φn+2〉 and 〈φ0φ1, φn〉 are zero if n is even, but

〈φ0φ1, φn〉 = −4
√

2 π3/4

l
√

3
(−3)−(n+1)/2 n!!√

n!

if n is odd [4, 24]. So
√

n + 1 〈φ0φ1, φn+2〉√
n + 2 〈φ0φ1, φn〉

= −1
3
6= −4

5

and (73) is satisfied if and only if n is odd.
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