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Large congenital melanocytic nevi (CMNs) are said to have a higher propensity to malignant transformation
compared with acquired nevi. Thus, they represent a good model for studying initial steps of melanotumori-
genesis. We have performed genotypic (karyotype, fluorescence in situ hybridization, and mutational analyses)
and differential expression studies on a large cohort of medium (n¼ 3) and large (n¼ 24) CMN. Chromosomal
abnormalities were rare and single, a feature probably reflecting the benignity of these lesions. Mutational
screening showed a high frequency of NRAS mutations in our series (19/27 cases, 70%), whereas BRAF mutations
were less common (4/27 cases, 15%). Differential did not show significant alterations of cellular processes such
as cell proliferation, cell migration/invasion, angiogenesis, apoptosis, and immune/inflammatory responses.
However, significant downregulation of genes involved in pigmentation and upregulation of genes playing a
role in DNA protection were observed. Lastly, our microarrays displayed upregulation of genes mediating
chemoresistance in cancer. As alteration of pigmentation mechanisms can trigger oxidative damage, increased
expression of genes involved in maintenance of DNA integrity might reflect the ability of nevocytic cells to self-
protect against cellular stress. Furthermore, the observed alterations linked to chemoresistance might partially
account for the well-known inefficacy of chemotherapy in malignant melanoma.
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INTRODUCTION
Large congenital melanocytic nevi (CMNs), that is, larger
than 20 cm in diameter, are found in about 1 out of 20,000
newborns (Hale et al., 2005). Although there are still some

controversies regarding the increased risk of malignant
transformation in small (smaller than 1.5 cm in greatest
diameter) and medium (from 1.5 to 19.9 cm in greatest
diameter) CMNs, several studies have reported a 100- to
1,000-fold increased risk for the occurrence of melanoma in
patients with large CMNs (Hale et al., 2005). Although the
majority of malignant melanoma occurs de novo, 20–30%
arise from preexisting melanocytic nevi (Rivers, 2004).
In the latter situation, one may assume that a multistep
process involving sequential and cumulative genetic
aberrations allows malignant melanoma to arise from a
precursor melanocytic nevus. If genetic studies on metastatic
malignant melanoma are numerous and extensive, molecular
investigations on benign melanocytic lesions have been
restricted to mutational and loss-of-heterozygosity analyses
targeting the genes classically involved in tumorigenesis
(Papp et al., 2003; Pollock et al., 2003). This is mainly due to
the difficulty of performing large and diverse molecular
studies on benign acquired nevi specimens that are entirely
processed for morphological examination. Large CMNs
contain a great number of melanocytic cells, allowing
both histological examination and extensive genetic
investigations. Therefore, large CMNs represent an excellent
model to study and better understand the initial steps of
melanocytic proliferation that sometimes precedes malignant
transformation.
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RESULTS
Karyotype and FISH analyses

The karyotypes were normal in all but three CMNs. Two of
them showed a chromosomal translocation involving the
BRAF gene (chromosome 7q34), expected to drive activation
of this oncogene (Stanton and Cooper, 1987; Heidecker
et al., 1990). Those cases have been described in an earlier
paper (Dessars et al., 2007). The third positive case displayed
an add(6)(q21) chromosomal rearrangement that has not yet
been molecularly investigated, but results in deletion of the
whole 6q terminal region downstream to the 6q21 break
point. In all cases with normal karyotype, fluorescence in situ
hybridization (FISH) analysis did not demonstrate any BRAF
chromosomal rearrangement or amplification. Results are
detailed in Table 1.

Mutational screening of BRAF/NRAS

BRAF V600E mutations were found in 4/27 CMN (15%), and
NRAS mutations in 19/27 CMN (70%). Among the four
remaining cases negative for BRAF and NRAS mutations, two
of them harbored a chromosomal translocation involving the
BRAF oncogene. Results are detailed in Table 1.

Microarray experiments

Differential expression study of all 27 CMN cases using the
‘‘in-house made’’ slides. At first, we searched for common
gene dysregulations among the whole CMN collection. Using
a double selection (‘‘significance analysis of microarray (SAM)
one class’’ method (Tusher et al., 2001), followed by further
more stringent selection using a cutoff value of absolute
normalized fold change 41.5 in any direction in 475% of

Table 1. Karyotype, FISH BRAF, and mutational profile of the 27 studied CMN

Sample’s
reference

Large or
Medium CMNs Karyotype FISH BRAF

Mutational screening
BRAF

Mutational screening
NRAS

NCG1 Large N NA WT Q61K

NCG2 Large N NA WT Q61K

NCG3 Large N NA WT Q61R

NCG4 Large N NA WT Q61R

NCG5 Large N NA WT Q61K

NCG6 Large N NA WT Q61K

NCG7 Large N NA WT Q61R

NCG8 Large N NA WT Q61K

NCG9 Large N NA WT Q61K

NCG10 Medium N NA WT WT

NCG11 Large N NA WT Q61K

NCG12 Large N NA WT Q61R

NCG13 Large N NA WT Q61K

NCG14 Large N NA WT Q61K

NCG15 Large N NA WT G13R

NCG16 Large 46,XY,add (6)(q21)

[25]/46,XY [40]

NA WT Q61K

NCG17 Large N NA WT Q61K

NCG18 Medium N NA WT Q61K

NCG19 Large N NA WT Q61K

NCG20 Large N NA WT Q61K

NCG21 Large N NA V600E WT

NCG22 Large N NA V600E WT

NCG23 Medium N NA V600E WT

NCG24 Large 46,XY,t(2;7)

(q24q33;q33q36) [40]

BRAF translocation WT WT

NCG25 Large N NA WT WT

NCG26 Large N NA V600E WT

NCG27 Large 46,XX,t(5;7)(q31;q34) [50] BRAF translocation WT WT

CMN, congenital melanocytic nevi; FISH, fluorescence in situ hybridization; N, normal; NA, not amplified; WT, wild type.
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the samples, a list of 57 genes dysregulated in at least 21 out
of the 27 CMNs investigated was consequently isolated,
showing either up- (20) or downregulation (37) (Table S1c).

Secondly, we searched for CMN subgroups according to
their respective gene expression profiles. The relationship
between the CMN expression profiles was visualized by
multidimensional scaling applied on all the genes. Multi-
dimensional scaling reduces the high-dimensional gene
space to a three-dimensional space while preserving
between-samples distances (Figure 1a).

The multidimensional scaling revealed a close expression
pattern for the six BRAF-activated (BRAFþ ) CMN group
(hence, four BRAF-mutated and 2 BRAF-translocated CMNs)
(Figure 1a). A hierarchical clustering confirmed this close
expression pattern (Figure 1b). Analyses (multidimensional
scaling and hierarchical clustering) also revealed two CMN
cases clustering either with the BRAFþ group (NCG25) or
with the NRASþ group (NCG10), whereas sequencing of

BRAF and NRAS exonic regions did not reveal any mutation
in both cases (Table 1). BRAF and NRAS intronic regions
were not sequenced due to their large length (around 190 kb
in total). Moreover, no mutation was found in sequencing
those two cases for all known H- and K-RAS mutations,
including hot-spots codons 12, 13, and 61. A resampling ana-
lysis using all genes, by a bootstrapping approach, revealed
that the node assembling the 6 BRAFþ and NCG25 samples
was supported in 83% over the resampling trials, thus
confirming the close pattern obtained with the multidimen-
sional scaling and hierarchical clustering analyses (Saaed
et al., 2003—data not shown).

Significant changes in expression between the six BRAFþ /
NCG25 CMNs and the remaining cases were identified with
SAM analysis, resulting in a list of 326 genes with a false
discovery rate of less than 0.01% (Table S1e). The output
table generated by ‘‘SAM two unpaired classes’’ analysis was
compared with the leave-one-out cross-validation output
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Figure 1. Multidimensional scaling analysis and hierarchical clustering of the 27 CMN studied. (a, b) Multidimensional scaling analysis and hierarchical

dendrogram performed from the whole of genes and showing a close expression pattern for the six BRAF-activated (BRAFþ ) CMN group (four BRAF-mutated

and two BRAF-translocated CMN). Analysis also revealed two other CMN cases clustering either with the BRAFþ group (NCG25) or with the NRASþ group

(NCG10). (c, d) Multidimensional scaling analysis and hierarchical clustering performed from the subset of genes selected by ‘‘SAM 2 classes’’ analysis

and isolating more clearly the group composed of the six BRAFþ and NCG25 CMN from the remaining samples. The 4 BRAF-mutated CMN are represented

by red-filled circles, the 2 BRAF-translocated CMN by green-filled circles, the 19 NRASþ CMN by gray-filled circles, NCG25 by an orange-filled circle,

and NCG10 by a blue-filled circle. Each filled circle represents an experiment derived from the mean of the triplicate log 2 ratios of the ‘‘in-house made’’

microarrays. The distance between filled circles is proportional to the dissimilarity of expression profiles represented by those filled circles.
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table, which contains a list of significant genes at Po0.0001
that are able to discriminate between the two classes (see
Materials and Methods). It shows that all the SAM-selected
genes were represented in leave-one-out cross-validation
output file (data not shown).

A multidimensional scaling relative to this list of ‘‘SAM-
selected genes’’ illustrated the existence of two subgroups
of CMNs (Figure 1c). The subset of 326 genes was visua-
lized among all the samples by hierarchical clustering
using centered correlation and average linkage method
(Figure 1d).

Results obtained from ‘‘in-house made’’ slides are
provided in Table S1a–e.

Differential expression study using HEEBO slides of the four
BRAF-mutated CMN cases. We have extended our genomic
expression study to the four BRAF-mutated CMN cases by
using human exonic evidence-based oligonucleotide (HEE-
BO) slides containing the whole genome.

Although a close expression pattern was observed for the
six BRAF-activated CMN cases, chromosomal translocations
involving BRAF have not been described as a genetic
mechanism involved in the development of malignant
melanoma. Furthermore, it cannot be excluded that the
partner genes of BRAF involved in both translocations have
any impact (even slight) on gene expression driven by BRAF
activation itself. Thus, we have decided to limit this further
study to the four cases harboring a single BRAF mutation.
Those can be reasonably considered as being the most
reliable benign counterpart of BRAF-mutated malignant
melanoma.

Using the double selection described in the Materials and
Methods section, 560 known genes commonly dysregulated
were found (Table S2b). No obvious trend toward activa-
tion or inhibition of biological processes, such as cell
proliferation, cell migration and invasion, angiogenesis,
apoptosis, and immune and inflammatory responses, was
observed. On the other hand, microarray analysis dis-
closed an expression profile associated with activation of
cellular metabolism, activation of DNA repair mechanisms,
reduction of melanin synthesis/distribution, as well as
increased expression of genes leading to chemoresistance
(Table S3). Results obtained from HEEBO slides are given in
Table S2a, b.

Quantitative Real-Time RT-PCR

Quantitative real-time RT-PCR (QRT-PCR) was performed to
validate microarray results from the HEEBO slides and was
limited to 8 genes showing significant up- (TIMP3, GAPDH,
TFRC, and CCND1) or downregulation (ARL4C, ETS1,
PMP22, and TACC1) in the four BRAF-mutated samples. To
validate our microarrays data by QRT-PCR, two control
genes, SDHA and TTC1, were selected using geNorm
program (http://medgen.ugent.be/genorm/; Vandesompele
et al., 2002). In seven out of eight tested genes (ARL4C,
ETS1, PMP22, TACC1, TFRC, TIMP3, and GAPDH), statistic
analysis of QRT-PCR results confirmed, in all samples, the
significant gene dysregulations obtained by microarray

analysis. For the remaining gene (CCND1), statistical
significance was not reached in the four samples. In our
series, we obtain a global concordance of 490%, comparable
with other studies (Pavey et al., 2004). The data of the
QRT-PCR are shown in comparison with the array data in
Table S4.

Immunohistochemical studies targeting TYRP-1 protein

Among several antibodies tested (TYRP1, DCT, osteopontin,
ALDH1A1, HSP90), TYRP-1 was the only one giving reliable
results on positive tissue controls. Immunohistochemical
study limited to this antibody demonstrated no or weak
expression of the TYRP-1 protein in our BRAF-mutated CMNs
compared with the intense positivity in the normal melano-
cytic counterpart (Figure 2 and Figure S1). Those results thus
confirmed our microarray results for this protein.

DISCUSSION
Our study provides broad karyotypic, mutational, and
differential expression data on a large series of medium and
large CMN.

Rarity of karyotypic abnormalities in CMN

Karyotypic abnormalities were rare and single, including a
chromosomal translocation involving the BRAF gene in two
cases already published (Dessars et al., 2007) and an
add(6)(q21) resulting in deletion of a great part of chromo-
some 6q in a third case. In the context of multistep
melanotumorigenesis, these karyotypes, either normal or

Figure 2. TYRP-1 immunohistochemical expression. NCG23 showing

absence or very weak TYRP-1 expression of the intradermal nevic cells

contrasting with strong positivity of normal epidermal melanocytes. TYRP-1

immunohistochemical features of the three other BRAF-mutated cases as well

as of foreskin normal melanocytes are illustrated in the Figure S1.
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displaying single chromosomal aberrations, are in contrast
with complex karyotypes seen in melanomas and probably
reflect the benign character of these lesions. Few cytogenetic
investigations on CMNs have been reported in the literature
(Padilla et al., 1988; Mancianti et al., 1990; Heimann et al.,
1993). An earlier study used comparative genomic hybridiza-
tion to analyze chromosomal aberrations in different types
of large CMNs (Bastian et al., 2002) and found neither
chromosomal amplification nor deletion among their CMN
cases without foci of cellular atypia.

Deletion of the long arm of chromosome 6 is observed in
several types of malignant tumors, including malignant
melanoma (http://atlasgeneticsoncology.org/), where it repre-
sents one of the most frequent karyotypic aberrations (Ozisik
et al., 1994; Bastian et al., 1998). However, it has never been
described in benign acquired as well as congenital nevi
(Healy et al., 1996; Bastian et al., 2002; Casorzo et al., 2005)
apart from a single loss-of-heterozygosity study performed on
paraffin-embedded benign nevi (Maitra et al., 2002). The 6q
chromosome is supposed to contain putative tumor suppres-
sor genes not identified yet, although the AIM1 (absent in
melanoma 1) gene has been proposed as candidate (Ray
et al., 1996). Of note, this case also harbors an NRAS
oncogene mutation (Table 1), which would be thus asso-
ciated with a putative tumor suppressor gene deletion. Up till
now and after a follow-up of 6 years, the patient has not
developed any melanoma. Nevertheless, this patient could be
at higher risk of malignant transformation.

NRAS mutations are more frequent than BRAF mutations in
large CMN

A high incidence of NRAS mutations was observed among
our large CMN cases (18/24), unlike small congenital and
acquired nevi where BRAF mutations are more frequent
(Pollock et al., 2003; Papp et al., 2005; Ichii-Nakato et al.,
2006). This observation could support the Ichii–Nakato’s
hypothesis (Ichii-Nakato et al., 2006), suggesting that NRAS
mutations exert stronger growth signals, resulting in larger
nevi than those linked to BRAF mutations.

Among the four cases negative for BRAF or NRAS
mutation, two of them presented a chromosomal transloca-
tion involving BRAF. Of note, Bauer et al. also described
6 out of 32 studied cases without any mutation (Bauer et al.,
2007). It might be interesting to perform karyotyping or BRAF
FISH analyses on their negative cases to detect putative
chromosomal translocation involving BRAF.

The link between BRAF mutation and UV exposure is
complex. Indeed, this mutation is frequently found in
melanomas arising on sites subject to intermittent acute sun
exposure, but its occurrence is surprisingly rare in melanomas
developing on chronically sun-exposed skin areas, being
similar to the one observed in completely sun-protected
mucosa (Maldonado et al., 2003). However, this link could
be supported by the low frequency of BRAF mutation
obtained among our CMN series. Regarding NRAS mutations,
which are more frequently found in melanomas on sun-
exposed skin (Jiveskog et al., 1998), the high frequency of
such mutation in our CMN series demonstrates that UV

exposure is not necessarily required to generate NRAS
mutations in melanocytes.

Comparison of CMN with normal melanocyte transcriptome
revealed an upregulation of osteopontin in tumoral nevocytic
cells

We have performed microarray investigation to compare
mRNA expression profiles between CMN and normal
melanocytes. To the best of our knowledge, there is only
one differential expression study performed on three large
CMN (Dasu et al., 2004), where the authors compared CMN
transcriptome with normal control represented by fresh
peritumoral skin tissue. We believe that their results are
biased, as the skin is mainly composed of keratinocytes and
contains few melanocytes. To study specific gene expression
alterations encountered in melanocytic tumorigenesis, we
thus aimed to compare pure nevocytic cells with their normal
cellular counterpart, hence antisense amplified RNA (aRNA)
obtained from 13 pooled human foreskins RNA. We are
aware that the use of a pool of normal melanocytic aRNA
makes assessment of intersample variation impossible, and
that the subsequent data obtained become acutely suscep-
tible to outlier samples. Furthermore, using a single pool for
‘‘normal’’ sample class makes it impossible to estimate
variances between ‘‘normal’’ and ‘‘nevocytic’’ samples
classes. These caveats could be obviously avoided by
comparing separately each CMN with each normal melano-
cytic aRNA, but this approach would represent a huge
financial and technical task.

In both ‘‘in-house made’’ and HEEBO slides, the
differences in expression between tumoral and normal cells
were generally weak. These weak dysregulations could
reflect the benign nature of the tumors tested in which some
autoregulation would be maintained. On the other hand, by
upregulating growth regulatory cascades in melanocytes, the
use of serum and growth factors required for cell cultures
could partially mask the gene dysregulation caused by the
oncogenic mutations. However, it was not possible to avoid
this potential bias, as cellular culture from foreskin samples was
an absolute prerequisite to get pure melanocytic samples.
Indeed, it has been demonstrated that more than 10% of
contaminating nontarget cells in a sample can lead to spurious
identification of dysregulated genes (de Ridder et al., 2005).

Our microarray analysis performed on ‘‘in-house made’’
slides showed 57 genes commonly dysregulated (Table S1c)
in at least 21 of 27 CMN, a number surprisingly small,
considering that most samples had an activating mutation or
rearrangement involving BRAF or NRAS, two key genes in the
sensitive MAPK pathway. Among the 20 upregulated genes,
we pointed the osteopontin (secreted phosphoprotein 1).
Osteopontin is a secreted extracellular matrix glycopho-
sphoprotein involved in malignant cell attachment and
invasion. In epithelial cancers such as breast cancer, high
osteopontin expression is associated with early metastasis
(El-Tanani et al., 2006). In vitro studies showed that activated
RAS oncogene leads to constitutive activation of the Raf/MEK/
ERK signal transduction pathway, which in turn induces
increased transcription of osteopontin (El-Tanani et al., 2006).

www.jidonline.org 143

B Dessars et al.
Genetic Study and Congenital Melanocytic Nevi

http://atlasgeneticsoncology.org/
http://www.jidonline.org


Osteopontin upregulation is thus not surprising in our cases
where NRAS and BRAF mutations are very frequent.

Expression profiles obtained with ‘‘in-house made’’ slides reveal
two different CMN groups

A common expression profile (composed of 326 transcripts)
among the six BRAFþ and the NCG25 samples was
observed, discriminating them from the other 20 samples
(19 NRASþ and NCG10 samples) (Table S1e). Although the
molecular alteration involving the BRAF gene is not the same
(point mutation versus chromosomal translocation) among
our six BRAFþ samples, their close expression pattern is not
intriguing, as these gene abnormalities both lead to BRAF
activation. It has been well demonstrated that the loss of the
BRAF auto-inhibitory regulatory domain, as observed in our
two BRAF-translocated CMN, induces a BRAF constitutive
activation as with BRAF point mutations (Stanton and
Cooper, 1987; Heidecker et al., 1990). Nevertheless, as no
evidence of BRAF involvement was documented in NCG25,
it cannot be stated that BRAF activation is the driver of its
transcription profile.

The different profile observed between the six BRAFþ and
NRASþ samples is a rather surprising result, as these two
genes are components of the same pathway. A recent
microarray study of 61 melanoma cell lines has also revealed
a profile specific to BRAF mutant samples, isolating them
from NRAS mutant cases (Pavey et al., 2004). As all cell lines
used were grown in the presence of serum, the authors
suggested that the genes discriminating BRAF and NRAS
mutant cells are those that are independent of MAPK pathway
activation, a cellular pathway that is supposed to be
constitutively activated in every cell line cultured with
serum. This notion should imply that some of the genes
involved in the BRAF mutant expression profile may not be
necessarily direct targets of transcription factor that are
ultimately activated by the MAPK pathway (Pavey et al.,
2004). We suggest that the culture conditions may not be
sufficient to cause activation of the MAPK pathway at the
same level as that triggered by BRAF-activating mutation. On
the other hand, NRAS activates also the PI3K pathway, which
could either amplify or reduce the activating effects of the
MAPK pathway, depending on cell environment and gene
involved.

Whole genomic expression profile (HEEBO slides) of the four
BRAF-mutated cases revealed dysregulation in pigmentation,
DNA damage repair, and chemoresistance mechanisms

Although we are aware of the small size of our BRAF-mutated
series (four cases), we wanted to focus on the complete
genomic expression linked to a mutation harbored by the
majority of benign acquired nevi and malignant melanoma
cases. The expression profile observed in these benign BRAF-
mutated cases is supposed to be directly linked to the
mutation itself, and not yet modulated by additional genetic
abnormalities arising in the course of malignant melanoma.

No clear direction toward activation or inhibition of
cellular processes such as cell proliferation, cell migration
and invasion, angiogenesis, apoptosis, and immune and

inflammatory responses was obtained (Table S3). However, a
significant decreased expression of genes involved in melanin
synthesis (TYRP-1, DCT, and ATP7A) as well as in melanosome
maturation/trafficking and pigment distribution (BBS5, HPS1,
MYO5A, OSTM1, and RAB32) was observed (Tables S2b and
S3). Among those genes, TYRP-1 and DCT are well-known
upregulated targets of the MITF gene, one of the
key actors in melanocytic proliferation, survival, and differen-
tiation (Vance and Goding, 2004; Levy et al., 2006). Their
downregulation might imply reduced MITF activity, although
a significant decrease in MITF mRNA expression was not
observed in all cases (see Table S2a). Nevertheless, reduced
MITF activity could occur through post-transcriptional
regulation. In melanogenesis, two types of melanins are
synthesized from dopaquinone: eumelanin and pheomelanin.
TYRP-1 and DCT are two key enzymes in the eumelanin
pathway. A downregulation of both genes will lead to
decreased eumelanin production, with subsequent increase
in the proportion of intracellular pheomelanin. Pheomelanin
has the tendency to generate, as by-products, hydrogen
peroxides, superoxides, and hydroxyl radicals, all known
triggers of oxidative stress, which in turn can induce DNA
damage and subsequent genomic instability (Lin and Fisher,
2007). Of note, and with respect to DNA damage, our
microarray study revealed upregulation of several genes
involved in DNA protection (MGST1, DDIT4, MT1A, MT1F,
MT1G, MT1X, MT2A, PLK3, RND3, SMG1, STC1) (Tables
S2b and S3). Among these genes, the different metallothio-
neins cited, RND3 as well as MGST1 genes, are implicated in
cellular protection from oxidative stress. STC1 and RND3
genes are upregulated by BRCA1 and p53, respectively, two
genes with pivotal roles in genomic stability, as either
caretaker or gatekeeper (Kinzler and Vogelstein, 1997).

The downregulation of genes favoring melanin synthesis is
rather surprising in the context of heavily pigmented lesions
such as CMN. However, this tumoral pigmentation could be
the consequence of reduced melanosome intracellular
trafficking and extracellular melanin distribution due to
downregulation of genes involved in such processes
(see above), resulting in subsequent cytoplasmic pigment
retention.

Interestingly, our microarray study demonstrated HSP90
upregulation in mutated BRAF CMN (Tables S2b and S3). Of
note, HSP90 chaperone is required for stability of the
BRAFV600E mutant, which is degraded in response to
HSP90 inhibitors (Grbovic et al., 2006). This supports the
potential utility of HSP90 inhibitors (17-demethoxygeldana-
mycin), or immunotherapy targeting HSP90, in the treatment
of melanoma with mutated BRAF (Neckers and Neckers,
2002; Becker et al., 2004; Sharp and Workman, 2006).

Finally, a last interesting trend in our BRAFþ CMN cases
is the upregulation of several genes mediating chemoresis-
tance in many cancers (ALDH1A1, BIRC7, CLU, GBP,
MGST1, and TNFRSF12A) (Tables S2b and S3). Although
these features are more likely to have no impact on benign
melanocytic lesions, they could partially account for
the well-known inefficacy of chemotherapy in malignant
melanoma.
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In summary, we have performed genotypic and differential
gene expression studies on the largest series of large and
medium CMNs published to date. Unlike malignant melanoma,
CMNs disclose rare and single chromosomal abnormalities,
probably reflecting the benign nature of these lesions in the
context of melanocytic neoplasia. Additional karyotypic
aberrations are most likely needed for malignant transforma-
tion. According to the literature, the frequency of NRAS
mutations is higher in medium CMNs than in small CMNs and
acquired nevi (Pollock et al., 2003; Papp et al., 2005; Ichii-
Nakato et al., 2006). We observed that this frequency is even
higher in our series of large CMNs. The medium and large
CMNs could thus be considered as molecularly distinguish-
able from the small congenital and acquired nevi where
BRAF mutations are predominant. Lastly, our differential
expression study did not show significant alterations of the
most common cellular processes such as cell proliferation,
cell migration and invasion, angiogenesis, apoptosis, and
immune and inflammatory responses. This point may reflect
the benign stage of the lesions studied where activation of
cellular behavior such as proliferation is still counterbalanced
by inverse regulations, preventing therefore significant
alterations that could compromise cellular steady
state. Nevertheless, gene dysregulations emerged, particularly
in pigmentation and DNA damage repair mechanisms,
for which the biological significance still needs to be
clarified.

MATERIALS AND METHODS
Patients

Materials from 3 medium and 24 large CMN were obtained from

children treated by either curettage or excision. At diagnosis, none of

them presented melanoma degeneration or cellular proliferation-

mimicking melanoma. The follow-up duration is 1–11 years, and

until now, none of these patients developed a melanoma (De Raeve

and Roseeuw, 2002). Informed consent from patients and agreement

of the Ethical Committee were obtained. This study respected the

Declaration of Helsinki Principles.

Cell culture

Cells from CMN samples as well as normal melanocytes from 13

different foreskins were isolated using a collagenase/dispase

preparation (Morandini R., personal communication). Cell cultures

and RNA extraction methodologies are detailed in the Supplemen-

tary Materials and Methods.

Karyotype analyses

Slides preparation and G-banding were carried out as described earlier

(Heimann et al., 1998). Karyotypes were expressed according to the

International System for Human Cytogenetic Nomenclature (1995).

FISH study

Fluorescence in situ hybridization analyses were performed as

described earlier (Heimann et al., 1998), on metaphase and

interphase cells from each nevus culture, using the BAC RP11-

25N5 (supplied by the Archives Group at the Sanger Institute,

Cambridge, UK) spanning the BRAF gene on 7q34. At least 50

interphase nuclei were counted for each case.

RT-PCR and sequencing
Exons 11 and 15 of the BRAF gene as well as the whole NRAS coding

sequence were screened in all patients, with the use of specific

forward and reverse primers (Supplementary Materials and

Methods). All known H- and K-RAS mutations, including hot-spots

codons 12, 13, and 61 (http://www.sanger.ac.uk/genetics/CGP/

cosmic), as well as the whole coding region of BRAF, were screened

in the two CMN without NRAS or BRAF mutation/rearrangement.

The PCR conditions are described in Supplementary Materials

and Methods. PCR products were sequenced with the same sets of

primers as PCR.

Microarray experiments

aRNA synthesis, labeling, and microarray hybridization.
aRNA synthesis and labeling are detailed in Supplementary

Materials and methods. All fluorescently labeled aRNA from the

27 nevi were hybridized onto ‘‘in-house made’’ slides containing

40,368 spots with 7,657 identified cDNA, each nevus being

cohybridized and compared with a pool of melanocyte aRNA from

the 13 different foreskins (normal control). The cDNA used for the

slides were isolated from cDNA libraries of CP64-MEL melanoma

cell line, normal melanocyte, leukocytes, and fetal brain (Invitrogen,

Carlsbad, CA). All hybridizations onto ‘‘in-house made’’ slides were

performed in triplicate (including one dye-swapped hybridization).

Dye-labeled aRNAs from the four BRAF-mutated CMN were

subsequently cohybridized with normal control (pool of 13 fore-

skins) on HEEBO arrays (Stanford Functional Genomics Facility,

California) containing 44,544 70mer probes. Hybridizations onto

HEEBO slides were replicated with dye swap.

Microarray data analysis. Slides were scanned using a Molecular

Devices 4000B laser scanner and expression levels were quantified

using GenePix Pro 6.1 image analysis software (Axon Instruments,

CA). Image acquisitions were performed with automatic photo-

multiplier gains adjustment. Artifact-associated spots were elimi-

nated by both visual and software-guided flags. The fluorescence

values were imported into Acuity 4.0 software package (Molecular

Devices, Union City, CA). A nonlinear Lowess (locally weighted

scatter plot) normalization method applied to each individual block

(print-tip option) was carried out using Acuity 4.0 software. The

resulting data files were used for further data analysis. Data obtained

from mean of the normalized log 2 ratio calculated for each triplicate

were used for multidimensional scaling and hierarchical clustering.

Statistical methods. The ‘‘SAM one class’’ method with the

default parameters (Tusher et al., 2001) was used to identify genes

differentially expressed among all the samples hybridized on

‘‘in-house made’’ slides, as well as the ones differentially expressed

among the four BRAF-mutated samples hybridized on HEEBO slides

(Tables S1b, c and S2b). As we wished to isolate genes obviously

dysregulated from this first list of ‘‘SAM one class’’-selected genes, a

second more stringent selection was done by using a cutoff of

absolute normalized fold change 41.5 in any direction in X75%

of the samples (X21/27 CMN samples in microarray analysis from

‘‘in-house made’’ slides, Tables S1b and c, or X3/4 BRAF-mutated

samples in microarray analysis from HEEBO slides, Table S2b).

Pearson-centered correlation coefficients of normalized log 2

ratio were used to quantify the similarity between the samples.
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Relationships among expression profiles were visualized by perform-

ing hierarchical clustering using centered correlation and average

linkage algorithm (Figure 1b). The corresponding multidimensional

scaling analysis, which provides a graphical representation of the

distances among samples without forcing the samples into specific

clusters, was performed using BRB-Array Tools 3.5 software (Figure 1a).

A resampling analysis using a bootstrapping approach was

performed on the complete set of genes, to evaluate the reliability

of a close pattern between the six BRAFþ and NCG25 samples

(Saaed et al., 2003). A subset of genes differentially expressed

between the two classes of unpaired samples (the six BRAFþ
samples and NCG25 versus the remaining samples including

NCG10) was identified by using a multivariate permutation test,

namely SAM method (Tusher et al., 2001), to ensure that the number

of false discoveries did not exceed 0.01%. The multidimensional

scaling and hierarchical clustering were repeated with this subset of

genes (Figures 1c and d). To validate the selected genes by ‘‘SAM

two unpaired classes’’ analysis, a resampling method, the leave-one-

out cross-validation-procedure (available in BRB-Array Tools 3.5

software), was applied on the same two unpaired classes of samples

(Molinaro et al., 2005). With leave-one-out cross-validation, the

cross-validation process omits one sample at a time. For each sample

omitted, the entire analysis is repeated from scratch, including the

determination of genes that are univariately significant on the

reduced training sample. From this gene list, a multivariate predictor

is constructed and applied to the sample that was omitted for

determining to which of the two classes the given sample belongs.

Several multivariate classification methods were used, including the

compound covariate predictor, diagonal linear discriminant analysis

and the nearest neighbor predictor (Simon et al., 2003). This is

repeated, omitting all of the samples one at a time.

Quantitative Real-Time RT-PCR

To confirm the validity of the microarray experiments (HEEBO

slides), eight unique transcripts (ARL4C, ETS1, PMP22, TACC1,

TFRC, TIMP3, GAPDH, and CCND1) showing significant up- or

downregulation in nevic samples relative to the ‘‘normal pool’’ were

assessed by QRT-PCR (SYBR Green).

A validation performed on an unrelated sample would have been

the ideal situation. The incidence of large CMN being around

1/20,000, its occurrence will be of 5–6 cases per year in Belgium,

as more or less 116,000 births are recorded per year (http://www.

one.be/rap/.%5Crap%5Caccomp_autour_naissance.html), among

which only 15% of cases would harbor a BRAF mutation. In brief,

only one BRAF-mutated large CMN is expected each year in our

country. This explains the fact that validations were performed on

the same sample set that was used for the expression study and will

be repeated once additional samples will be available.

Two control genes, succinate dehydrogenase complex subunit A

(SDHA) and tetratricopeptide repeat domain 1 (TTC1), were selected

using geNorm program (http://medgen.ugent.be/genorm/) (Vande-

sompele et al., 2002), and used for normalization of the QRT-PCR

results from the eight up- or downregulated transcripts mentioned

above, using qBase v1.3.4 free software (http://medgen.ugent.be/

qBase/) (Hellemans et al., 2007). Each test sample was run in

triplicate for all tested genes.

The PCR conditions are described in Supplementary Materials

and Methods. The expression of each candidate gene was calculated

as the ratio of the normalized expression of that gene in nevic

samples to those in ‘‘normal pool’’. Comparisons between CMN and

normal samples were performed with the one-way analysis of

variance and Dunnett Multiple Comparisons tests.

Immunohistochemical studies

Immunohistochemical studies were performed to confirm the most

relevant microarray results but had to be limited to antibodies

available on the market: TYRP-1 (Abcam, Cambridge, UK), DCT

(Abcam, Cambridge, UK), osteopontin (Abcam; R&Dsystems,

Minneapolis, MN; Santa Cruz, CA), ALDH1A1 (Abcam) and

HSP90 (Abcam) proteins. At first, all these antibodies were tested

on their respective positive tissue controls (melanoma for TYRP-1,

DCT and osteopontin, liver for ALDH1A1, and vesical carcinoma for

HSP90), and TYRP-1 was the only antibody giving reliable results.

Immunohistochemical studies on our CMN cases were then limited

to TYRP-1.

Immunohistochemical methodologies are detailed in Supple-

mentary Materials and Methods.
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