Table S1. List of forward and reverse primers and respective PCR conditions used to make FISH probes, to perform 5' RACE-PCR and RT-PCR investigations, and for BRAF, NRAS, $H R A S$, and $K R A S$ genes sequencing.

Primers names	Primers sequence
BRAF i3 ${ }^{(1)}$	5' TTCTTCCCGCTATGTTTAGGGCCA 3'
BRAF e7 ${ }^{(1)}$	5’ TCCTGTGGTATTGGGTGGTGTTCA 3’
BRAF e11 ${ }^{(2)}$	5’ TGATTGGGAGATTCCTGATGGGCA 3’
BRAF i13 ${ }^{(2)}$	5’ TCCAAGCAGGCTTCTAACTGGGAA 3’
BRAF SP4 ${ }^{(3)}$	5’ CATGAAGAGTAGGATATTCACA 3'
BRAF SP5 ${ }^{(3)}$	5’ GTAACTGCTGAGGTGTAGGTGCTGT 3’
BRAF SP6 ${ }^{(3)}$	5’ CACATTCAACATTTTCACTGCCACAT 3’
forward fusion FCHSD1a ${ }^{(4)}$	5’ GTACTGCAACGACTGGAGCA 3’
reverse fusion BRAF ${ }^{(4)}$	5’ CTCGAGTCCCGTCTACCAAG 3’
forward fusion FCHSD1b ${ }^{(5)}$	5’ GCTGTCCCAGAGGGACCTCT 3’
reverse SP8 ${ }^{(5)}$	5’ GTTCTGATGCACTGCGGTGA 3’
FBRAFe10 ${ }^{(6)}$	5’ TCATTACCTGGCTCACTAACTAA 3’
BRAFe15 ${ }^{(6)}$	5’ TGGATCCAGACAACTGTTCA 3’
BRAFe14 ${ }^{(7)}$	5’ СTTACACGCCAAGTCAATCATC 3’
SP9 ${ }^{(7)}$	5’ TGGCAATGAGCGGGCCA 3’
NRASF1 ${ }^{(8)}$	5’ AATCTGTCCAAAGCAGAGGCAGTG 3’
NRASR1 ${ }^{(8)}$	5’ TGGCAATCCCATACAACCCTGAGT 3’
NRASF4 ${ }^{(9)}$	5’ ACCAGACAGGGTGTTGAAGATGCT 3’
NRASR4 ${ }^{(9)}$	5’ GCAGATGCCAGTTTAGAGAATAGAGCC 3’
KRASF1 ${ }^{(10)}$	5’ ATTTCGGACTGGGAGCGAGC 3'
KRASR1 ${ }^{(10)}$	5’ CTTCTTGCTAAGTCCTGAGCCTGT 3’
HRASF1 ${ }^{(11)}$	5’ AGGAGACCCTGTAGGAGGACC 3’
HRASR1 ${ }^{(11)}$	5’ TCTTGGCCGAGGTCTCGATGTA 3’

${ }^{(1)} \&{ }^{(2)}$ primer sets used to make FISH probes targeting regions covering intron 3 to exon 7, and exon 11 to intron 13 of BRAF gene, respectively. PCR were performed using the Expand Long Template PCR System (Roche, Basel, Switzerland) in a final volume of $50 \mu \mathrm{l}$, including buffer 3, 300 nM of primers, $400 \mu \mathrm{M}$ of dNTP mix, and 3.75 U of DNA Polymerase. The amplification protocol was performed following manufacturer's instructions, except for the annealing temperature $\left(58^{\circ} \mathrm{C}\right)$. Five hundreds ng of these PCR products were labeled using the Vysis Nick Translation Kit and Vysis SpectrumOrange-dUTP (Downers Grove, IL, USA).
${ }^{(3)} \operatorname{Poly}(\mathrm{A})^{+}$RNA were reverse transcribed with a $B R A F$-specific primer SP4. For 5' RACE PCR assay (Rapid Amplification of cDNA Ends, Version 2.0, Invitrogen, Carlsbad, CA,

USA), first and second PCR rounds were performed according to the manufacturer's instructions, and with the use of specific $B R A F$ reverse primers SP5 and SP6.
${ }^{(4)}$ primer set used to detect the FCHSD1 - BRAF hybrid transcript. Thirty ng of cDNA were subjected to amplification in a final volume of $50 \mu \mathrm{l}$, with 200 nM of primers, $200 \mu \mathrm{M}$ of dNTP mix, 2 mM of MgCl 2 , and 2.5 U of Taq DNA Polymerase in Invitrogen buffer (Invitrogen, Carlsbad, CA, USA). Amplification conditions were $94^{\circ} \mathrm{C}$ (3 minutes), followed by 35 cycles of $94^{\circ} \mathrm{C}$ (30 seconds), $55^{\circ} \mathrm{C}$ (30 seconds), and $72^{\circ} \mathrm{C}$ (1 minute 30 seconds), and a final elongation of 7 minutes at $72^{\circ} \mathrm{C}$.
${ }^{(5)}$ primer set used to confirm the presence of the whole BRAF PKD in the fusion transcript. PCR were performed using the Expand Long Template PCR System (Roche, Basel, Switzerland) in a final volume of $50 \mu \mathrm{l}$, including buffer 2, 300 nM of primers, $400 \mu \mathrm{M}$ of dNTP mix, and 3.75 U of DNA Polymerase. The amplification protocol was performed following manufacturer's instructions, except for the annealing temperature $\left(60^{\circ} \mathrm{C}\right)$. ${ }^{(6),(7),(8),(9),(10)} \&{ }^{(11)}$ primer sets used to screen for BRAF, NRAS, KRAS and HRAS point mutations. Thirty ng of cDNA were subjected to amplification in a final volume of $50 \mu \mathrm{l}$, with 200 nM of primers, $200 \mu \mathrm{M}$ of dNTP mix, $\operatorname{MgCl} 2\left(2.5 \mathrm{mM}\right.$ for primers ${ }^{(6)}$, primers ${ }^{(10)}$ and primers ${ }^{(11)}, 1.5 \mathrm{mM}$ for primers ${ }^{(7)}$ and primers ${ }^{(8)}$, and 2 mM for primers ${ }^{(9)}$), and 2.5 U of Taq DNA Polymerase (Invitrogen, Carlsbad, CA, USA). The amplification conditions were $94^{\circ} \mathrm{C}$ (3 minutes), followed by 35 cycles of $94^{\circ} \mathrm{C}$ (30 seconds), $57^{\circ} \mathrm{C}, 54^{\circ} \mathrm{C}, 59^{\circ} \mathrm{C}, 58^{\circ} \mathrm{C}, 56^{\circ} \mathrm{C}$ and $56^{\circ} \mathrm{C}$ respectively (30 seconds), $72^{\circ} \mathrm{C}$ (1 minute 30 seconds), and a final elongation of 7 minutes at $72^{\circ} \mathrm{C}$.

Figure S1. FCHSD1-BRAF fusion cDNA sequence and predicted amino acid sequence for patient 1. Vertical red arrow points the breakpoint location, italic boldface the PKD of the BRAF gene.

```
    1 M Q P
    GGCTTCCTCCAGTTCCGGAGTCCAGTGGCTGACCGCCTTGCTGGAGCGGAGATGCAGCCG
    P
    CCGCCCCGAAAAGTGAAGCCGGCCCAGGAGGTGAAGCTTCGCTTCCTGGAACAGCTGAGC
    I Ll Q T W Q Q R E E A D D L L L E D D I N R S S Y S
    ATCCTTCAGACCTGGCAGCAGAGGGAGGCGGATCTGCTGGAGGACATCAGATCCTACAGC
```



```
    AAGCAGAGGGCAGCCATTGAACGGGAGTATGGGCAGGCACTCCAGAAACTGGCTGGCCCA
    F
    TTCCTGAAGAGGGAAGGGCACCGGAGCGGTGAGATGGACAGCAGGGGCAGGACAGTGTTC
    G A W W R C L L L D A T T V A A G G Q T T R L L Q A
    GGTGCCTGGCGCTGCCTGCTGGATGCCACCGTGGCTGGGGGCCAAACCCGACTCCAGGCG
    S Dl R Y F R D L L A G G G T G G R N
    TCTGACCGATACCGTGACCTAGCAGGGGGTACAGGGCGGAGCGCCAAGGAGCAGGTGCTT
```



```
    AGGAAGGGAACAGAGAACCTCCAGAGGGCGCAGGCTGAGGTGCTGCAGTCTGTCCGGGAG
    L
    CTGAGCCGAAGTCGGAAGCTGTATGGGCAGCGGGAACGTGTGTGGGCCTTGGCACAGGAG
    K A Allllllllllllllllllllll
    AAGGCGGCTGATGTCCAGGCCAGGCTAAACCGAAGTGACCATGGGATCTTCCACTCTCGG
    T
    ACCAGTCTCCAGAAACTGAGCACCAAGCTGTCCGCCCAGTCAGCCCAGTACTCCCAGCAG
    L Q A A R N E Y L L N L V A A T N N A H
    CTGCAAGCAGCCCGCAATGAGTACCTGCTTAACTTGGTGGCTACCAATGCCCACCTCGAC
    H Y Y Q E E L P A L L K K A L L V S S E L S S E
    CATTACTACCAGGAGGAACTGCCAGCTCTGCTCAAGGCCCTGGTCAGTGAGCTGTCAGAG
    H
    CACTTGAGGGACCCCCTGACCTCCCTGAGCCACACTGAGCTGGAAGCCGCAGAGGTCATC
    L E H H
    CTGGAGCATGCCCACCGCGGGGAGCAGACAACCTCCCAGGTAAGCTGGGAGCAAGACCTG
    K L F L Q E P F V F S S P P T P
    AAGCTGTTTCTTCAGGAGCCTGGTGTATTTTCCCCCACCCCACCTCAGCAGTTTCAGCCA
    A G T D Q V C V L E W G A E E G V A F G K S
    GCAGGGACTGATCAGGTGTGTGTCCTGGAGTGGGGAGCAGAAGGCGTGGCTGGCAAGAGT
    G L E K E E V Q Q R L T T S R R A A A R R D D Y 
    GGCCTGGAGAAAGAGGTTCAGCGCTTGACCAGCCGAGCTGCCCGTGACTACAAGATCCAG
    N
    AACCATGGGCATCGGGTACTGCAACGACTGGAGCAGAGGCGGCAGCAGGCTTCAGAGCGG
    E A P S I I E Q R R L Q E E V R R E S S I I R R R A A
    GAGGCTCCAAGCATAGAACAGAGGTTACAGGAAGTGCGAGAGAGCATCCGCCGGGCACAG
```



```
1 2 0 1 \text { GTGAGCCAGGTGAAGGGGGCTGCCCGGCTGGCCCTGCTGCAGGGGGCTGGCTTAGATGTG}
    404 E R W L K P A M T O Q A P Q D D E V V E E Q E E R R
1 2 6 1 \text { GAGCGCTGGCTGAAGCCAGCCATGACCCAGGCCCAGGATGAGGTGGAGCAGGAGCGGCGG}
    424 L S E E A R L L S Q R R D L L S P
1321 CTCAGTGAGGCTCGGCTGTCCCAGAGGGACCTCTCTCCAACCOGACTTGATTAGAGACCAA
    444 G F R G D G G S T T T G L S S A T T P
1381 GGATTTCGTGGTGATGGAGGATCAACCACAGGTTTGTCTGCTACCCCCCCTGCCTCATTA
    464 P G S L T N N V K K A L L Q K K S P
1 4 4 1 ~ C C T G G C T C A C T A A C T A A C G T G A A A G C C T T A C A G A A A T C T C C A G G A C C T C A G C G A G A A A G G ~
    484 K S S S S S S S E E D R R N N R M M K T T L L G
1 5 0 1 ~ A A G T C A T C T T C A T C C T C A G A A G A C A G G A A T C G A A T G A A A A C A C T T G G T A G A C G G G A C T C G ~
    504 S D D D W W E I I P D D G Q Q I
1 5 6 1 \text { AGTGATGATTGGGAGATTCCTGATGGGCAGATTACAGTGGGACAAAGAATTGGATCTGGA}
```

```
    524 S F
1621 TCATTTGGAACAGTCTACAAGGGAAAGTGGCATGGTGATGTGGCAGTGAAAATGTTGAAT
    544 V
1 6 8 1 \text { GTGACAGCACCTACACCTCAGCAGTTACAAGCCTTCAAAAATGAAGTAGGAGTACTCAGG}
    564 K
1 7 4 1 \text { AAAACACGACATGTGAATATCCTACTCTTCATGGGCTATTCCACAAAGCCACAACTGGCT}
    584 I
1 8 0 1 \text { ATTGTTACCCAGTGGTGTGAGGGCTCCAGCTTGTATCACCATCTCCATATCATTGAGACC}
    604 K
1 8 6 1 \text { AAATTTGAGATGATCAAACTTATAGATATTGCACGACAGACTGCACAGGGCATGGATTAC}
    624 L
1921 TTACACGCCAAGTCAATCATCCACAGAGACCTCAAGAGTAATAATATATTTCTTCATGAA
    644 D D L T T V V
1 9 8 1 ~ G A C C T C A C A G T A A A A A T A G G T G A T T T T G G T C T A G C T A C A G T G A A A T C T C G A T G G A G T G G G ~
    664 S
2041 TCCCATCAGTTTGAACAGTTGTCTGGATCCATTTTGTGGATGGCACCAGAAGTCATCAGA
    684 M Q D D K K N
2 1 0 1 ~ A T G C A A G A T A A A A A T C C A T A C A G C T T T C A G T C A G A T G T A T A T G C A T T T G G A A T T G T T C T G ~
    704 Y
2 1 6 1 ~ T A T G A A T T G A T G A C T G G A C A G T T A C C T T A T T C A A A C A T C A A C A A C A G G G A C C A G A T A A T T ~
    724}\boldsymbol{F
2221 TTTATGGTGGGACGAGGATACCTGTCTCCAGATCTCAGTAAGGTACGGAGTAACTGTCCA
    744 K
2 2 8 1 \text { AAAGCCATGAAGAGATTAATGGCAGAGTGCCTCAAAAAGAAAAGAGATGAGAGACCACTC}
    764 F
2341 TTTCCCCAAATTCTCGCCTCTATTGAGCTGCTGGCCCGCTCATTGCCAAAAATTCACCGC
    784 S A S E P S L N R A G F Q T T E D D F S L Y
2 4 0 1 ~ A G T G C A T C A G A A C C C T C C T T G A A T C G G G C T G G T T T C C A A A C A G A G G A T T T T A G T C T A T A T ~
    804 A C A A S P K T P P I I Q A G G F Y G A F F P
2461 GCTTGTGCTTCTCCAAAAACACCCATCCAGGCAGGGGGATATGGTGCGTTTCCTGTCCAC
    *
2521 TGAAACAAATGAGTGAGAGAGTTCAGGAGAGTAGCAACAAAAGGAAAATAAATGAACATA
2581 TGTTTGCTTATATGTTAAATTGAATAAAATACTCTCTTTTTTTTTAAGGTGAACCAAAGA
```

