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Médecine, L-49033 Angers, France

Context: Dominant activating mutations of the TSH receptor are the cause of familial nonauto-
immune hyperthyroidism (FNAH) (inherited mutations affecting the whole gland since embryo-
genesis) and the majority of hyperfunctioning autonomous adenomas (AAs) (somatic mutations
affecting only one cell later in the adulthood).

Objective: The objective of the study was defining the functional and molecular phenotypes of
FNAH and comparing them with the ones of AA.

Design: Functional phenotypes were determined in vitro and molecular phenotypes by hybrid-
ization on microarray slides.

Patients: Nine patients with FNAH were investigated, six for functional in vitro study of the tissue
and five for gene expression.

Results: Iodide metabolism, H2O2, cAMP, and inositol phosphate generation in FNAH slices stim-
ulated or not with TSH were normal. The mitogenic response of cultured FNAH thyrocytes to TSH
was normal but more sensitive to the hormone. Gene expression profiles of FNAH and AAs showed
that among 474 genes significantly regulated in FNAH, 93% were similarly regulated in AAs.
Besides, 783 genes were regulated only in AAs. Bioinformatic analysis pointed out common down-
regulations of genes involved in immune response, cell/cell and cell/matrix adhesions, and apo-
ptosis. Pathways up-regulated only in AAs mainly involve diverse biosyntheses. These results are
consonant with the larger growth of AAs than FNAH tissues.

Conclusions: Whether hereditary or somatic after birth, activating mutations of the TSH receptor
have the same qualitative consequences on the thyroid cell phenotype, but somatic mutations in
AAs have a much stronger effect than FNAH mutations. Both are variants of one disease: genetic
hyperthyroidism. (J Clin Endocrinol Metab 94: 2602–2609, 2009)

Nonautoimmune hyperthyroidism is a common thyroid dis-
order caused by mutations of the TSH receptor (TSHR),

Gs�, or their effectors that constitutively activate the cAMP cas-
cade, and, in few cases, the phosphatidylinositol trisphosphate-

Ca2� cascade, leading to differentiation and proliferation of the
thyrocytes (1, 2). If the mutation is hereditary, the disease is
called familial nonautoimmune hyperthyroidism (FNAH) (also
called hereditary toxic thyroid hyperplasia or autosomal domi-
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nant nonautoimmune hyperthyroidism). If it is a neomutation
occurring early during the gestation, it is called sporadic con-
genital nonautoimmune hyperthyroidism (SCNAH) (2). In both
cases, the whole gland is affected. If the mutation occurs later,
generally in adulthood, autonomous activity of the receptor or of
Gs� causes a clonal expansion of the mutated cell, leading to the
very common hyperfunctioning autonomous adenomas (AAs)
(3, 4). The rare cases of FNAH and SCNAH must be differen-
tiated from the much more frequent and transient form of fetal
and neonatal hyperthyroidism caused by transplacental passage
of maternal stimulating TSHR autoantibodies. Most of the mu-
tations found in SCNAH have also been found in AAs (about
88%). In contrast, the majority of mutations in FNAH are not
observed in AA (about 24% in common) (Fig. 1). Twenty-eight
different autosomal dominant activating germline mutations
have been identified in FNAH and SCNAH, mostly located in the
transmembrane regions (exon 10) of the receptor (5–28) (Fig. 1).

FNAH from 130 patients and 22 families present the follow-
ing clinical characteristics (5, 6, 8, 11, 13, 14, 17, 20, 21, 24,
26–38): 1) autosomal dominant transmission, no sexual pre-
dominance (59 males and 71 females); 2) hyperthyroidism with
a variable age of onset (even within a given family), with de-
creased plasma TSH levels and often elevated T3 and T4 serum
levels and frequent relapses after partial thyroidectomy (11, 39);

3) goiter of variable size, either homogenous (51 cases on 67) or
multinodular (15 cases on 67); and 4) absence of lymphocytic
infiltrates. Total thyroid ablation alone or combined with ra-
dioiodine is the only treatment able to prevent relapses. None of
the reported FNAH degenerated into malignant carcinomas (see
supplemental information, Table 1, published as supplemental
data on The Endocrine Society’s Journals Online Web site at
http://jcem.endojournals.org). Apart from pathology, thyroid
tissue from such patients has never been studied. In the present
work, we describe the characteristics of the thyroids of nine cases
of FNAH, eight with already known mutations (9, 11, 17, 18)
and one with a never reported mutation; six were investigated for
in vitro properties of their thyrocytes and five for gene expres-
sion. Primary cultures of thyroid cells and tissue slices from op-
erated patients were studied with regard to signal transduction
and gene expression profiles were obtained by microarrays and
compared with those of a pool of four AAs. FNAH and AAs both
result from TSHR mutations, which start to exert their effects in
embryo or adult live, respectively, i.e. at stages when thyroid
regulation is very different. Whereas TSH is mainly responsible
for growth after birth, other, as-yet-undefined, pathways are
responsible for growth in the embryo (40–42). One might there-
fore expect different phenotypes when comparing an inherited
mutation affecting all thyrocytes since thyroid differentiation in
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FIG. 1. Amino acid structure of the TSHR and locations of gain of function mutations found in FNAH (green), SCNAH (red), or FNAH and SCNAH (yellow). TSHR
mutations also found in AA are encircled in blue. TSHR mutations only found in AAs are not indicated.
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the embryo with a somatic mutation affecting one cell after birth.
Our study shows common characteristics in AA and FNAH and
concludes that both are similar hyperfunctional minimal devia-
tion tumors with a more severe phenotype for adenomas.

Materials and Methods

Tissue samples
For in vitro studies, tissues from six thyroids of the Nancy family were

used (FNAH1, FNAH4, FNAH6, FNAH7, FNAH8, FNAH9) (see ped-
igree in supplemental information, Fig. 1). For gene expression studies,
thyroid samples were obtained from five FNAH French patients [from
Nancy (FNAH1 and FNAH4), Reims (FNAH2) (11), Lyon (FNAH3),
and Angers (FNAH5)] Clinical data about FNAH patients, investigated
before treatment, are summarized in Table 1.

AAs were obtained from four different patients and pooled. To com-
pare FNAH and AAs, we used the same reference pool of 23 normal
thyroid tissues adjacent to different pathologies.

Tissues were immediately dissected, placed on ice, sliced or digested
for incubation or snap frozen in liquid nitrogen, and stored at �80 C until
RNA processing. Protocols have been approved by the ethics committees
of the institutions. Diagnoses have been established on the basis of long-
standing hyperthyroidism, absence of thyroid-stimulating antibodies in
the serum and in some cases family history, and confirmed by DNA
sequencing of the TSHR.

More detailed data on these familial cases of FNAH are summarized
in supplemental information, Table 1.

Biochemical assays
For tissue slices studies, fresh tissues were sliced at room temperature

with a Stadie-Riggs microtome (Arthur Thomas, Philadelphia, PA). The
methods for cAMP, H2O2, and inositol phosphates measurements, io-
dide trapping, iodide organification (PB125I), preparation, primary cul-
tures, and proliferation measurements are described in supplemental
information, Text 1.

RNA purification, cDNA synthesis and labeling, and
microarray hybridization

Total RNA was extracted from thyroid tissues using a Trizol reagent
(Invitrogen, Carlsbad, CA), followed by purification on RNeasy col-
umns (QIAGEN, Hilden, Germany). After amplification (using Amino
Allyl MessageAmp II aRNA amplification kit; Ambion, Austin, TX), 8
�g aRNA were labeled, fragmented, and hybridized for 16–18 h onto
human exonic evidence-based oligonucleotide 70-mer oligonucleotide
microarrays, containing approximately 48,500 probes (representing ex-

onic sequences, alternatively spliced exons, expressed sequence tag, and
controls). All hybridizations were performed in duplicates with dyes
swap. The microarray slides were washed under stringent conditions and
scanned using an GenePix 4000B scanner (Axon, Sunnyvale, CA).

Data filtering and analysis
Expression levels were quantified with GenePix Pro 5.0 (Axon). Data

were normalized and expressed as the log2 ratio of fluorescence inten-
sities of the sample and the reference, for each spot on the array and dye
swapped duplicates were averaged. Spots with missing values for more
than 25% of the samples were discarded. The subset of spots that varied
from the baseline by at least 1.5-fold in at least four of the five FNAH
samples (without any opposite regulation), called the FNAH list (sup-
plemental information, Table 2), and those that varied from the baseline
by at least 1.5-fold in the AA pool with no modulation in FNAH, called
the AA list (supplemental information, Table 3), were selected for further
analysis.

Validation of microarray gene expression data by
quantitative real-time RT-PCR (qRT-PCR)

A number of modulated genes on the microarray slides were inves-
tigated using real-time RT-PCR (SYBR Green) (Eurogentec, Liege, Bel-
gium) in the tissues used for microarray analysis. The following mRNA
expressions were evaluated using, when possible, transexonic primers,
designed with Primer Express software (Applied Biosystems, Foster City,
CA): matrix metallopeptidase-1, gap junction protein-�2, laminin-�2,
caveolin 1 (CAV1), P-cadherin, regulator of G protein signaling 2, col-
lagen, type XVII�1 (COL17A1), and growth differentiation factor 15
(GDF15) (the sequences of the primers are provided in supplemental
information, Table 4). qRT-PCRs were performed in triplicate for each
gene on the five FNAH and three AAs. The data were normalized using
tetratricopeptide repeat domain 1 and neural precursor cell expressed
developmentally down-regulated 8 (43, 44).

Results

In vitro studies on thyroid slices and on thyrocytes in
primary culture

A first question was whether the functional phenotype in vitro
of the FNAH thyroids reflects their in vivo hyperactivity. A com-
parison of various functional parameters was made between
slices of thyroids from congenital hyperthyroid patients of the
Nancy family and previously studied normal thyroids. The data
were highly variable between individuals, which would mask the

TABLE 1. TSHR mutation, age of the patient, TSH, and free T3 and free T4 levels before treatment for the nine FNAH patients
(FNAH 1 to �9) investigated

Samples
TSHR

mutation
Age of

patient (yr)
TSH levels
(mU/liter)

FT3 levels
(pmol/liter)

FT4 levels
(pmol/liter)

Gene expression
analysis

In vitro
studies

FNAH1 Val509Ala 12 0.02 6.9 32 X X
FNAH2 Cys672Tyr 54 0.006 15 46 X
FNAH3 Thr490Arg 27 0.02 7.65 12 X
FNAH4 Val509Ala 32 0.04 6.7 51.7 X X
FNAH5 Pro639Ser 12 N.D. 3.4 51 X
FNAH6 Val509Ala 14 0.04 14.6 56 X
FNAH7 Val509Ala 32 0.02 9.5 36.6 X
FNAH8 Val509Ala 15 0.07 11 33.3 X
FNAH9 Val509Ala 9 0.03 22.8 57.3 X
Normal values 0.2–4.0 2.5–5.8 11–25

FNAH1, FNAH2, FNAH3, FNAH4, and FNAH5 were investigated for gene expression analysis. FNAH1, FNAH4, FNAH6, FNAH7, FNAH8, and FNAH9 were investigated for
in vitro studies. N.D., Not defined.
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most marked differences. Nevertheless, iodide trapping, as eval-
uated by the iodide trapping ratios, iodide binding to proteins,
and its main controlling step, H2O2 generation, were not en-
hanced in hyperthyroid tissues. The two latter processes were
significantly stimulated by TSH (supplemental information, Ta-
ble 5). Obviously these measurements have been normalized to
an equal amount of tissue and therefore do not reflect the larger
size of FNAH thyroids.

We next investigated whether the main signal transduction cas-
cades controlled by TSH, i.e. the cAMP cascade (as evaluated by
cAMP accumulation) and the phosphatidyl inositol cascade [as
evaluatedby inositolphosphate (IP)generation]operatesimilarly in
FNAH and normal tissues. Slices were treated with different con-
centrations of TSH, and both pathways were activated in normal
and pathological tissues (Fig. 2, A and B). Whereas the stimulation
of the cAMP cascade was biphasic with a maximum at a TSH
concentration of 1–3 mU/ml, the activation of the PI pathway was
monophasic but less sensitive to TSH, as already shown for normal
tissues (45). The effects were qualitatively similar in both types of
tissues, although the cAMP response was lower in FNAH tissue.

Because thyroids of FNAH patients are larger than normal thy-
roids, we next investigated whether their thyrocytes respond more
to physiological mitogenic stimulants. Cell proliferation after TSH
stimulationwasassessed inprimaryculturesof thyrocytesprepared
from FNAH tissues. As already reported for normal thyrocytes
(46), TSH and forskolin in the presence of insulin at high concen-
tration (5 �g/ml), which activates the IGF1 receptor, induced a
marked increase in the proportion of cells entering into S phase, i.e.
DNA synthesis. In the three cultures investigated, thyrocytes de-
rived from FNAH appeared more sensitive to TSH than previously
studied normal thyrocytes, with a response already at 0.03 mU/ml,
which had never been found in normal thyrocytes (Fig. 2C). In
addition, TSH as well as forskolin induced DNA synthesis, even
in the absence of insulin or IGF-1, which had never been observed
in normal thyrocytes (supplemental information, Fig. 2).

Gene expression profiling of FNAH and AA
Comparison of the molecular phenotypes of FNAH and AA

thyroids can best be demonstrated by a comprehensive microar-
ray analysis of gene expression in the two types of tissues. Gene

expression profiles were investigated in five different FNAH and
a pool of four AAs, compared with a common reference pool of
23 normal thyroid tissues. Tumor and reference RNA samples
were cohybridized on human exonic evidence-based oligonucle-
otide microarrays, and differentially expressed genes were
searched for, as described in Materials and Methods. We defined
two lists of genes, which were analyzed in greater detail. First, we
selected genes that were modulated in FNAH (FNAH list, sup-
plemental information, Table 2). Among the 474 genes from this
list, 432 (91%) were regulated in the same way in AAs, 30 (6%)
were not regulated in AAs, and only two (0.4%) were regulated
in the opposite way: GDF15 and COL17A1, which were up-
regulated in AAs and down-regulated in FNAH. Second, we
looked for genes modulated in AAs but not in FNAH (AA list,
supplemental information, Table 3): 783 genes filled this crite-
rion. In addition, our gene expression data showed a large pro-
portion of significantly down-regulated genes in FNAH and
AAs, corresponding, respectively, to 96 and 77% of the total
number of regulated genes. Strikingly, among the down-regu-
lated genes common to FNAH and AAs, 75.64% were more
down-regulated in AAs than FNAH.

Validation of microarray data
Given that FNAH does not contain adjacent tissue, we com-

pared FNAH to a pool of 23 normal tissues, and to compare the
two diseases, AAs were compared with the same pool rather than
their normal but quiescent counterpart as in previous studies. It
is therefore not surprising that the phenotype observed for AAs
in this study is milder than in the previous studies. On the other
hand, the confirmation of the majority of significant previous
findings clearly shows that they truly reflect the pathology of
autonomous adenomas.

The differential expression of several genes in the gene lists
described above confirmed previously published data on AAs,
including the large series of AAs studied by our group (4, 47–52),
on thyroids of transgenic mice expressing the adenosine A2 re-
ceptor (Tg-A2aR) and developing huge goiters (53) and on pri-
mary cultures stimulated by TSH (43): NIS (48), Dio1 (4), ID3
(49), Dio2 (52), Fcgbp (4), TPO (4), MT1H (4), and PTPN4 (50)
were up-regulated, whereas Cav1 (4, 47, 53), Cav2 (4, 47), IL8
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(43), RRAD (49), Dusp2 (4), Klf2 (4), Clu (4), Gadd45 (4), Nfk-
bia (4), RGS2 (4, 43, 53), and Myc (48) were down-regulated.

To further validate our data, eight significantly modulated
genes were investigated by real-time qRT-PCR. Experiments
were performed on the five FNAH studied by microarrays and
three independent AAs. Similar modulation patterns were found
for the expression of seven genes comparing microarray analysis
with qRT-PCR, thus validating the microarray data (Fig. 3). For
one gene, COL17A1, although the qRT-PCR data for FNAH
were consistent with the microarray results, the up-regulation
observed by microarray for pooled autonomous adenomas was
not confirmed by qRT-PCR.

Analysis of our gene lists by Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways and Gene Ontology (GO)
categories using Database for Annotation, Visualization
and Integrated Discovery software

To assess the most representative biological activities altered
in both FNAH and AA (FNAH list) and AAs only (AA list), we
used the statistical methods from the Database for Annotation,
Visualization and Integrated Discovery software (54, 55). Figure
4 shows the most represented altered pathways according to
KEGG and supplemental information, Table 6, the most repre-
sented altered functions according to GO (GO level of 5, P �

0.05). As shown in Fig. 4, the main KEGG pathways altered in
both AAs and FNAH, classified by increasing P values, involve
immune cell infiltration and cell adhesion. The expressions of
most of the genes involved in these pathways are down-regulated
in the tumors (Fig. 4A). The main KEGG pathways altered only
in AAs concern cell metabolism. Apart from genes involved in
alanine and aspartate metabolism, all others are essentially up-
regulated (Fig. 4B). In addition, analysis of supplemental Table
6 pointed out apoptosis among the most altered functions in
FNAH and AAs, with 91% of the genes that are down-regulated.

Discussion

The investigation of both in vitro properties of FNAH thyroid
slices and gene expression profiles in FNAH tissues leads to sev-

eral major conclusions: 1) FNAH thyrocytes are not more func-
tionally active than normal thyrocytes, but there are more of
them; 2) the moderate increase in size of the thyroid of FNAH
patients is not the result of an increased proliferation rate but
rather of a decrease of apoptosis; and 3) the number of dysregu-
lated genes and their expression are milder but similar to auton-
omous adenomas, suggesting that FNAH and AAs are variants
of a same disease: genetic hyperthyroidism.

Thyrocytes of FNAH thyroids do not appear more function-
ally active than normal tissue. There are no detected differences
regarding iodide uptake and organification, H2O2 generation,
cAMP and IP levels and their responses to TSH. There was only
a mild effect on thyroid-specific gene expression (e.g. DUOX1,
DUOX2) (data not shown). All these measurements are related
to a similar amount of cells, suggesting that the hyperthyroidism
of these patients reflects more the number of active cells, their
goiter (28), than their level of activation. The situation is differ-
ent in AA tissue, which takes up more iodide and secretes more
hormone per gram than the normal tissue (56). The lower cAMP
response to TSH in FNAH thyrocytes than normal thyrocytes, as
already reported in AA-derived thyrocytes (57), might be ex-
plained by the expression of some phosphodiesterases (1A, 1B,
7B, 8A, 8B, 4D), negative feedbacks of the cAMP pathway,
which are increased in AAs (43) and to a lesser extent in FNAH.

The thyroids of FNAH patients grow slowly all through life
(28). Our data provide some explanation for that. FNAH thy-
rocytes in culture proliferated and responded to TSH almost as
normal thyrocytes (46, 57); they do not overexpress Ki67 or
proliferating cell nuclear antigen. This fits well with the absence
of up-regulation of growth-related genes such as IGFI, their re-
ceptors, epithelial growth factor receptor, etc. Gene expression
profiles showed that two types of modifications in gene expres-
sion can be correlated with the growth of the tissue: 1) the ac-
tivation of the Wnt pathway in FNAH and AAs, with the up-
regulation of activating proteins (low density lipoprotein
receptor-related protein-8) and the down-regulation of inhibi-
tory proteins (secreted frizzled related protein-2, SRY-box 15,
Dickkopf-3), except one (secreted frizzled related protein-1),
which is up-regulated (supplemental information, Fig. 3); 2) the
down-regulation of CAV-1 mRNA expression, as in AAs, in
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in vitro TSH-stimulated thyrocytes and Tg-A2AR mice (4, 43,
53). Caveolins are considered as tumor suppressor genes, and
data on CAV-1 suggested an antimitogenic role of this protein
(47). The goiter formation in FNAH might also be explained by
the initiation of DNA synthesis in FNAH cells in the absence of
insulin and at low TSH concentrations, which is never observed
in normal thyrocytes. In addition, a decreased rate of apoptosis,
suggested by the down-regulation of several proapoptotic genes
(91% of the genes in the GO apoptosis category), might also
contribute to thyroid growth, as in AAs, in which a lower rate of
apoptosis has directly been demonstrated (48). The down-reg-
ulation of several p53 pathway-related genes (supplemental in-
formation, Fig. 4) might also explain such a low apoptosis rate.

The analysis of KEGG and GO pathways pointed out another
striking characteristic common to AAs and FNAH: the down-
regulation of genes related to immune response and inflam-
mation. Most (98.6%) of the genes present in the following
categories were down-regulated: leukocyte transendothelial mi-
gration, cytokine-cytokine receptor integration, antigen process-
ing and presentation, hematopoietic cell lineage, Toll-like recep-
tor signaling pathway, and arachidonic acid metabolism (Fig.
4A). A down-regulation of prostaglandin, derived from arachi-
donic acid, had also been found in cultured dog thyroid cells after

TSH stimulation (58). In line with these re-
sults, more than 50% of the significant GO
categories related to the FNAH list with a
P � 0.05 are involved in immune response
and inflammation (supplemental informa-
tion, Table 6). It is already known by pa-
thologists that autonomous adenomas con-
tain few lymphocytes and macrophages,
explaining this down-regulation (4). This
can now be extended to the thyroids of
FNAH. Chronic stimulation of thyroid cells
therefore rather reduces immune reac-
tions, i.e. inflammation that is generally
considered a contributing factor for car-
cinogenesis (59).

Genes involved in focal adhesion and cell
adhesion categories which mediate cell/cell
as well as cell/extracellular matrix (ECM)
interactions (such as LAMA3, LAMC2,
LAMB3, FN1, COL1A1) were also down-
regulated in AAs and FNAH, which may ex-
plain the flaky aspect of the AA and FNAH
tissues and is consistent with the observed
looseness of both types of tissues.

Results obtained on in vitro-incubated tissues and gene ex-
pression in FNAH thyroids demonstrated a similar but milder
phenotype as the one of AAs. The relatively low amount of gene
expression changes observed, as in autonomous adenomas (4),
fits well with the definition of a minimal deviation tumor,
functioning like normal tissue but without control (3), and is
supported by the great similarity of protein expression and phos-
phorylation in adenoma and quiescent tissue observed on two-
dimensional gels (56). The thyroid of FNAH deviates from nor-
mal tissue with about 474 differentially expressed genes, and
93.25% of the genes regulated in FNAH were also regulated in
the same way in AAs. Many genes regulated in AAs also varied
in the same direction in FNAH, albeit nonsignificantly. There is
therefore no support for the hypothesis that similar mechanisms
operating in the whole thyroid in the embryo and some cells in
adult life would lead to qualitatively different results. The same
conclusion applies to the generation of thyroid nodules after in
utero radiation exposure compared with childhood exposure (60).

Most of the modulated genes were down-regulated as in AAs
(4, 50), which suggests a simplification of signal transduction in
the cells (4). The fact that 783 genes were regulated only in AAs
and that for the down-regulated genes in AAs and FNAH,
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regulated genes.

TABLE 2. FNAH, AAs, and SCNAH represent different forms of genetic hyperthyroidism

Constitutive activation of the cAMP signaling pathway

Very mild Mild Strong

Timing of occurrence of genetic alteration
Hereditary, all cells (in embryo) Low TSH? Hereditary hyperthyroidism (FNAH) Lethal?
Embryonic neomutation, all cells Low TSH? Congenital hyperthyroidism (SCNAH) Lehal if not treated immediately after birth
Somatic mutation, one cell (in adult) No effect No effect or local growth in thyroid?a Hyperfunctioning AA

a Local effects as seen in goiter, hot microscopic areas containing activator, and TSHR mutations (62).
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75.64% of them were more regulated in AAs than FNAH, sug-
gests that the level of cAMP cascade activation achieved is higher
in AAs than FNAH. This is confirmed by the higher functional
activity and proliferation rate of the thyrocytes in AAs but not
FNAH (48). In fact, the majority of the mutations affecting the
TSHR are different in the two diseases, and it has been suggested
that they are probably more aggressive in AAs than FNAH (5, 9,
24). For TSH receptor mutations described in FNAH, SCNAH,
and AAs (Fig. 1), of the 21 mutations in FNAH, 16 are proper to
this lesion, four are common to AAs, and one is common to
FNAH, SCNAH, and AAs. Among the eight mutations found in
SCNAH, seven are also described in AAs. One hypothesis is that
a large part of the FNAH mutations are so mild that they would
not cause an AA if sporadically expressed in thyrocytes and,
conversely, that the strong activation encountered in AAs would
be very toxic and lethal for embryonic thyroids and embryos and
therefore would not be transmitted between generations.

Because adenomas are monoclonal (9), one can calculate that
the generation of a 1 g nodule by one mutated cell would require
a minimum of 30 divisions. The same amplification in a whole
embryonic thyroid (1 mg) would lead to a gland of 1 ton. Pre-
sumably, adenomas stop growing at the end of the life span of
their thyrocytes due to the shortening of their telomeres (61).
FNAH thyroids with a much smaller amplification keep growing
during adulthood. Also, the age of occurrence of hyperthyroid-
ism in pediatric cases of FNAH and SCNAH differs: five of 10 at
birth and five before 1 yr old for SCNAH, whereas only one at
birth and two before 1 yr among 29 FNAH (38).

In conclusion, the present study shows that FNAH, AAs, and
therefore SCNAH, with similar mutations as in autonomous
adenomas, represent different forms of one disease: genetic hy-
perthyroidism. The characteristics of the three forms depend on
the intensity of the constitutive activation of the TSHR/cAMP
signaling cascade, the developmental stage at which the genetic
defect occurs, and the cell population involved (Table 2).
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