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Abstract

Three-body continuum states are investigated with the hyperspherical method on
a Lagrange mesh. The R-matrix theory is used to treat the asymptotic behaviour
of scattering wave functions. The formalism is developed for neutral as well as for
charged systems. We point out some specificities of continuum states in the hyper-
spherical method. The collision matrix can be determined with a good accuracy by
using propagation techniques. The method is applied to the 6He (=α+n+n) and
6Be (=α+p+p) systems, as well as to 14Be (=12Be+n+n). For 6He, we essentially
recover results of the literature. Application to 14Be suggests the existence of an ex-
cited 2+ state below threshold. The calculated B(E2) value should make this state
observable with Coulomb excitation experiments.

1 Introduction

Three-body systems present a large variety of interesting features [1,2]. The
discovery of a halo structure in 6He [3] triggered many experimental and the-
oretical works on exotic nuclei, such as 6He, 11Li or 14Be. The bound-state
spectroscopy of Borromean systems is now relatively well known. On the ex-
perimental side, current intensities of radioactive beams are high enough for
precise measurements of spectroscopic properties, such as energies, r.m.s. radii
on quadrupole moments. On the theoretical side, several methods have been
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developed, and provide accurate solutions of the three-body Schrödinger equa-
tion.

The hyperspherical harmonic method (HHM) is known to be well adapted
to three-body systems [4,5]. The six Jacobi coordinates are replaced by five
angles, and a single dimensional coordinate, the hyperradius. The HHM trans-
forms the three-body Schrödinger equation into a set of coupled differential
equations depending on the hyperradius. It has been applied to many exotic
nuclei.

Recently, we have combined the HHM with the Lagrange-mesh technique [6].
The Lagrange-mesh method (see Ref. [7] and references therein) is an ap-
proximate variational calculation that resembles a mesh calculation. The ma-
trix elements are calculated at the Gauss approximation associated with the
mesh. They become very simple. In particular, the potential matrix elements
are replaced by their values at the mesh points. In spite of its simplicity, the
Lagrange-mesh method is as accurate as the corresponding variational calcu-
lation. This was shown for two-body [7] as well as for three-body [6] systems.

In the present work, we extend the formalism of Ref. [6] to three-body contin-
uum states. The information provided by continuum states is a natural comple-
ment to the bound-state spectroscopy. Experimentally, three-body continuum
states are investigated through breakup experiments (see for example Ref. [8]).
On the theoretical point of view, various methods have been developed. Some
of them, such as the Complex Scaling Method [9], or the Analytic Continua-
tion in the Coupling Constant [10] deal with resonances only; they cannot be
applied to non-resonant states. Other methods, such as the R-matrix theory
[11] are more difficult to apply, but can be used for non-resonant, as well as
for resonant states.

Applications of the R-matrix method to two-body systems have been per-
formed for many years in nuclear as well as in atomic physics. In nuclear
physics, applications to three-body systems are more recent [12]. The R-matrix
theory allows the use of a variational basis to describe unbound states. It is
based on an internal region, where the wave function is expanded over the ba-
sis, and on an external region, where the asymptotic behaviour can be used. In
three-body systems, the hyperspherical formalism is very efficient for bound
states. For unbound states, however, it raises problems owing to the long range
of the coupling potentials [12]. In the R-matrix framework this can be solved
by using propagation techniques [13].

In two-body systems, the Lagrange-mesh technique associated with the R-
matrix formalism has been applied in single- [14] and multi-channel [15] cal-
culations. The purpose of the present work is to extend the method to three-
body systems. Another development concerns the application to charged sys-
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tems. Many exotic nuclei are unbound, even in their ground states, due to
the Coulomb force. We show applications to the α+n+n and 12Be+n+n sys-
tems, for which two-body potentials are available in the literature. The mirror
systems are also investigated.

In Section 2, we summarize the three-body formalism, and present the R-
matrix method. Section 3 is devoted to applications to 6He and 14Be, with the
mirror systems. Concluding remarks are given in Section 4.

2 Three-body continuum states

2.1 Hamiltonian and wave functions

Let us consider three particles with mass numbers Ai (in units of the nucleon
mass mN), and space coordinates ri. A three-body Hamiltonian is given by

H =
3
∑

i=1

Ti +
3
∑

i>j=1

Vij(rj − ri), (1)

where Ti is the kinetic energy of nucleon i, and Vij a nucleus-nucleus potential.
We neglect three-body forces in this presentation.

The HHM is known to be an efficient tool to deal with three-body systems.
This formalism is well known, and we refer to Refs. [2,5] for detail. Starting
from coordinates ri, one defines the Jacobi coordinates xk and yk (k = 1, 2, 3).
We adopt here the notations of Ref. [6]. The hyperradius ρ and hyperangle αk

are then defined as

ρ2 = x2
k + y2

k,

αk = arctan
yk

xk
. (2)

The hyperangle αk and the orientations Ωxk
and Ωyk

provide a set of angles
Ω5k. In this notation the kinetic energy reads

Tρ =
3
∑

i=1

Ti − Tcm = − h̄2

2mN

(

∂2

∂ρ2
+

5

ρ

∂

∂ρ
− K2(Ω5k)

ρ2

)

. (3)

In Eq. (3), Tcm is the c.m. kinetic energy, and K2 is a five-dimensional angular
momentum [16] whose eigenfunctions (with eigenvalues K(K + 4)) are given
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by

Yℓxℓy

KLML
(Ω5) =φ

ℓxℓy

K (α)
[

Yℓx
(Ωx) ⊗ Yℓy

(Ωy)
]LML

,

φ
ℓxℓy

K (α) =N ℓxℓy

K (cos α)ℓx(sin α)ℓyP
(ℓy+

1
2

,ℓx+
1
2
)

n (cos 2α), (4)

where P (α,β)
n (x) is a Jacobi polynomial and N ℓxℓy

K a normalization factor [5]
(here k is implied). In these definitions, K is the hypermomentum, (ℓx, ℓy) are
the orbital momenta associated with (x,y), and n is a positive integer defined
by

n = (K − ℓx − ℓy)/2. (5)

Introducing the spin component χSMS yields the hyperspherical function with
total spin J

YJM
γK (Ω5) =

[

Yℓxℓy

KL (Ω5) ⊗ χS
]JM

, (6)

where index γ stands for (ℓx, ℓy, L, S).

A wave function ΨJMπ, solution of the Schrödinger equation associated with
Hamiltonian (1), is expanded over basis functions (6) as

ΨJMπ(ρ, Ω5) = ρ−5/2
∑

γK

χJπ
γK(ρ) YJM

γK (Ω5), (7)

where π = (−1)K is the parity of the three-body relative motion, and χJπ
γK(ρ)

are hyperradial wave functions which should be determined. Rigorously, the
summation over (γK) should contain an infinite number of terms. In practice,
this expansion is limited by a maximum K value, denoted as Kmax. For weakly
bound states, it is well known that the convergence is rather slow, and that
large Kmax values must be used. Typically 100 − 200 terms are necessary for
realistic Kmax values.

The radial functions χJπ
γK(ρ) are derived from a set of coupled differential

equations

[

− h̄2

2mN

(

d2

dρ2
− LK(LK + 1)

ρ2

)

− E

]

χJπ
γK(ρ)

+
∑

K ′γ′

V Jπ
Kγ,K ′γ′(ρ) χJπ

γ′K ′(ρ) = 0, (8)
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with LK = K + 3/2. The potential terms are given by the contribution of the
three nucleus-nucleus interactions

V Jπ
Kγ,K ′γ′(ρ) =

3
∑

i=1

(V
Jπ(Ni)
Kγ,K ′γ′(ρ) + V

Jπ(Ci)
Kγ,K ′γ′(ρ)), (9)

where we have explicitly written the nuclear (N) and Coulomb (C) terms.

Assuming the use of (x1, y1) for the coordinate set, the contribution i = 1 is
directly determined from

V
Jπ(1)
Kγ,K ′γ′(ρ) =

∫

YJM∗

γK (Ω5) V23

(

ρ cos α√
µ23

)

YJM
γ′K ′(Ω5)dΩ5, (10)

where µij = AiAj/(Ai + Aj). The terms i = 2, 3 are computed in the same
way, with an additional transformation using the Raynal-Revai coefficients
[16]. Definition (10) is common to the nuclear and Coulomb contributions.
Integrations over Ωx and Ωy are performed analytically, whereas integration
over the hyperangle α is treated numerically. For the Coulomb potential, the
ρ dependence is trivial; we have

3
∑

i=1

V
Jπ(Ci)
Kγ,K ′γ′(ρ) = zJπ

Kγ,K ′γ′

e2

ρ
(11)

where zJπ
γK,γ′,K ′ is an effective charge, independent of ρ, and calculated nu-

merically from Eq. (10) and from Raynal-Revai coefficients [17]. Examples of
matrices zJπ are given in Ref. [17] for the α+p+p system. Knowing the analyt-
ical ρ-dependence of the potential is crucial for continuum states (see below).
Notice that, to derive Eq. (11), one assumes the 1/|rj −ri| dependence of the
Coulomb potential. Using a point-sphere definition is straightforward, as the
difference can be included in the nuclear part.

2.2 Asymptotic behaviour of the potential

For small ρ values the potential must be determined by numerical integration
of Eq. (10). However, analytical approximations can be derived for large ρ
values. For the Coulomb interaction, definition (11) is always valid. Let us
now consider the nuclear contribution. After integration over Ωx and Ωy, a
matrix element between basis states (4) is written as
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V
ℓxℓy ,ℓ′xℓ′y
KL,K ′L′ (ρ)= δLL′δℓyℓ′y

π/2
∫

0

φ
ℓxℓy

K (α)VN

(

ρ cos α√
µ23

)

φ
ℓ′xℓy

K ′ (α) sin2 α cos2 αdα

=N ℓxℓy

K N ℓ′xℓy

K ′ δLL′δℓyℓ′y

1

ρ3

ρ
∫

0

P
(ℓy+

1
2

,ℓx+
1
2
)

n

(

2
u2

ρ2
− 1

)

VN

(

u√
µ23

)

×P
(ℓy+

1
2

,ℓ′x+
1
2
)

n′

(

2
u2

ρ2
− 1

)(

1 − u2

ρ2

)ℓy+
1
2
(

u

ρ

)ℓx+ℓ′x

u2du (12)

To deal with the spin, the coupling order in Eq. (6) is modified in order
to introduce the total spin of the interacting particles jx = ℓx + S. This is
achieved with standard angular-momentum algebra, involving 6j coefficients.
If the tensor force is not included, we also have ℓx = ℓ′x. For large ρ values,
and if the potential goes to zero faster than 1/u2, we can use the following
expansions [18]

P (α,β)
n (2x − 1) =

n
∑

m=0

c(α,β)
m xm,

c(α,β)
m =

(−1)n+m

m!(n − m)!

Γ(β + n + 1)Γ(α + β + n + m + 1)

Γ(β + m + 1)Γ(α + β + n + 1)
,

(1 − x)α =
∞
∑

m=0

(

α
m

)

(−x)m, (13)

and we end up with the asymptotic expansion of the potential

V
ℓxℓy ,ℓ′xℓ′y
KL,K ′L′ (ρ) ≈ δLL′δℓyℓ′y

1

ρℓx+ℓ′x+3

∞
∑

k=0

vk

ρ2k
, (14)

where

vk =N ℓxℓy

K N ℓ′xℓy

K ′

∞
∫

0

uℓx+ℓ′x+2k+2V

(

u√
µ23

)

du

×
∑

m1,m2

(−1)k−m1−m2

(

ℓy + 1
2

k − m1 − m2

)

c
(ℓy+

1
2

,ℓx+
1
2
)

m1 c
(ℓy+

1
2

,ℓ′x+
1
2
)

m2 . (15)

Owing to the finite range of the potential, the upper limit in the integrals (12)
has been replaced by infinity. Up to a normalization factor, the contribution of
each k value is a moment of the potential. As it is well known [12], the leading
term is v0/ρ

3 for ℓx = ℓ′x = 0. Expansion (14) is carried out for the three
nucleus-nucleus potentials with additional Raynal-Revai transformations for
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the second and third terms. Analytic expansions of potentials (10) are finally
obtained with

3
∑

i=1

V
Jπ(Ni)
Kγ,K ′γ′(ρ) ≈ 1

ρlx+l′x+3

∞
∑

k=0

ṽk

ρ2k
, (16)

where coefficients ṽk are obtained from vk after Raynal-Revai and spin coupling
transformations.

Let us evaluate coefficients ṽk for 6He=α+n+n, with the α−n potential taken
from Kanada et al. [19]. Coefficients ṽ0 to ṽ4 are given in Table 1 for J = 0+.
We also provide the amplitude of the centrifugal term

vcent =
h̄2

2mN
(K + 3/2)(K + 5/2), (17)

which depends on ρ as 1/ρ2. It is clear from Table 1 that coefficients ṽk are
large and increasing with k. Integrals in (15) must be computed with a high
accuracy. Special attention must be paid to partial waves involving two-body
forbidden states. In this case, we use a supersymmetry transform of the poten-
tial [20], in order to remove forbidden states in the three-body problem. This
transformation is carried out numerically, and the resulting potential presents
a singularity at short distances.

From Table 1, we evaluate the ρ value where the nuclear part is negligible
with respect to the centrifugal term. In other words, ρmax is defined as

|ṽ0|
ρ3

max

= ǫ × vcent

ρ2
max

. (18)

Values of ρmax are given in Table 1 by assuming ǫ = 0.01. In general they are
larger for low K values for two reasons: (i) the centrifugal term is of course
lower, and (ii) low partial waves generally involve forbidden states which lead
to singularities in the potential, and hence to larger values of ṽ0.

From the ρmax values displayed in Table 1, it is clear that the channel ra-
dius a of the R matrix must be very large. Using basis functions valid up to
these distances would require tremendous basis sizes. This is solved by using
a propagation technique which is presented in Sec. 2.3.3.

In the analytical expansion of the potential, the maximum value kmax is de-
termined from the requirement

7



Table 1
Coefficients ṽ0 to ṽ4 in 6He for J = 0+, L = S = 0, and for typical partial waves
(energies are expressed in MeV and lengths in fm). The bracketed values represent
the power of 10, and γ = ℓx, ℓy.

K,γ K ′, γ′ ṽ0 ṽ1 ṽ2 ṽ3 ṽ4 vcent ρmax

0,0,0 0,0,0 3.40(3) -7.46(3) -2.02(4) -1.53(5) -1.78(6) 78 4370
4,0,0 4,0,0 1.18(3) -1.20(5) 7.31(6) -2.13(8) 2.87(9) 741 160
8,0,0 8,0,0 -2.59(3) -1.19(5) 5.46(7) -6.66(9) 4.98(11) 2068 125
4,2,2 4,2,2 2.61(4) -1.27(6) 5.40(7) -1.39(9) 1.81(10) 741 3520
8,2,2 8,2,2 5.49(4) -7.82(6) 1.06(9) -1.02(11) 6.78(12) 2068 2660

0,0,0 4,0,0 -3.41(3) 8.04(4) -1.09(6) 4.27(6) 1.43(7)
0,0,0 8,0,0 1.19(3) -1.08(5) 6.21(6) -1.75(8) 2.33(9)
0,0,0 4,2,2 9.62(3) -2.41(5) 3.47(6) -1.37(7) -4.61(7)
0,0,0 8,2,2 1.40(4) -9.90(5) 4.80(7) -1.30(9) 1.71(10)

ṽkmax+1

a2kmax+2
≪ ṽkmax

a2kmax
. (19)

This yields typical values kmax ≈ 3 − 4, depending on the system and on the
partial wave.

2.3 Three-body R-matrix

2.3.1 Principle of the R matrix

The R-matrix theory is well known for many years [11]. It allows matching a
variational function over a finite interval with the correct asymptotic solutions
of the Schrödinger equation. We summarize here the main ingredients of the
R-matrix theory and emphasize its three-body aspects. The R-matrix method
is based on the assumption that the configuration space can be divided into
two regions: an internal region, with radius a, where the solution of (8) is
given by some variational expansion, and an external region where the exact
solutions of (8) are known. This is formulated as

χJπ
γK,int(ρ) =

N
∑

i=1

cJπ
γKi ui(ρ), (20)

where the N functions ui(ρ) represent the variational basis, and cJπ
γKi are the

corresponding coefficients. In the external region, it is assumed that only the
Coulomb and centrifugal potentials do not vanish; we have, for an entrance
channel γ′K ′,
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χJπ
γK,ext(ρ) = AJπ

γK

[

H−

γK(kρ)δγγ′δKK ′ − UJπ
γK,γ′K ′H+

γK(kρ)
]

, (21)

where the amplitude is chosen as

AJπ
γK = iK+1(2π/k)5/2, (22)

and where UJπ is the collision matrix, and k =
√

2mNE/h̄2 is the wave
number [12]. If the three particles do not interact, Eq. (21) is a partial wave
of a 6-dimension plane wave [16]

exp [i(kx.x + ky.y)] =
(2π)3

(kρ)2

∑

ℓxℓyLMLK

iKJK+2(kρ)

×Yℓxℓy

KLML
(Ω5ρ)Yℓxℓy∗

KLML
(Ω5k). (23)

For charged systems, we have

H±

γK(x) =GK+ 3

2

(ηγK , x) ± iFK+ 3

2

(ηγK , x), (24)

where GK+3/2 and FK+3/2 are the irregular and regular Coulomb functions,
respectively [21]. The Sommerfeld parameters ηγK are given by

ηγK = zJπ
γK,γK

mNe2

h̄2k
, (25)

where zJπ is the effective-charge matrix (11); η therefore depends on the chan-
nel. Notice that we neglect non-diagonal terms of the Coulomb potential. This
is in general a good approximation as these terms are significantly smaller than
diagonal terms [17]. For neutral systems, the ingoing and outgoing functions
H±

γK(x) do not depend on γ and are defined as

H±

γK(x) = ±i
(

πx

2

)1/2

[JK+2(x) ± iYK+2(x)] , (26)

where Jn(x) and Yn(x) are Bessel functions of first, and second kind, respec-
tively. The phase is chosen to recover the plane wave in absence of interaction
(U=I).

For bound states (E < 0), the external wave function is written as

χJπ
γK,ext(ρ) = BJπ

γK W−ηγK ,K+2(2κρ), (27)
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where Wab(x) is a Whittaker function, and BJπ
γK the amplitude (κ2 = −2mNE/h̄2).

For neutral systems, we have

χJπ
γK,ext(ρ) = CJπ

γK (κρ)1/2KK+2(κρ), (28)

where Kn(x) is a modified Bessel function.

2.3.2 The Bloch-Schrödinger equation

The basic idea of the R-matrix theory is to solve Eq. (8) over the internal
region. To restore the hermiticity of the kinetic energy, one solves the Bloch-
Schrödinger equation

(H + L(L) − E) ΨJMπ = L(L)ΨJMπ, (29)

with the Bloch operator L(L) defined as

L(L) =
h̄2

2mN

∑

γK

|YJM
γK > δ(ρ − a0)

1

ρ5/2

(

∂

∂ρ
− LγK

ρ

)

ρ5/2 < YJM
γK |, (30)

where L is a set of arbitrary constants LγK . In the following, we assume
LγK = 0 for positive energies. Formulas presented in this subsection are given
for any channel radius a0, which can be different from a, defined in 2.3.1.

Let us define matrix CJπ as

CJπ
γKi,γ′K ′i′ =< uiYJM

γK |H + L(L) − E|ui′YJM
γ′K ′ >I , (31)

where subscript I means that the matrix element is evaluated in the internal
region only, i.e. for ρ ≤ a0. Using the partial-wave expansion (7) and the
continuity of the wave function at ρ = a0, we obtain the R-matrix at a0 from

RJπ
γK,γ′K ′(a0) =

h̄2

2mNa0

∑

i,i′
ui(a0)

(

CJπ
)−1

γKi,γ′K ′i′
ui′(a0). (32)

2.3.3 R-matrix propagation and collision matrix

As shown in Sect. 2.2, the nuclear potential extends to very large distances,
even for short-range nucleus-nucleus interactions. In other words, the asymp-
totic behaviour (21) is not accurate below distances which may be as large as
1000 fm or more. This is a drawback of the hyperspherical method, where even
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for large ρ values, two particles can still be close to each other and contribute
to the three-body matrix elements.

It is clear that using basis functions valid up to distances of 1000 fm is not
realistic, as the size of the basis would be huge. On the other hand, using a low
channel radius (typically 30 ∼ 40 fm) would keep the basis size in reasonable
limits, but would not satisfy the key point of the R-matrix theory, namely that
the wave function has reached its asymptotic behaviour at the channel radius
a0. This problem can be solved with propagation techniques, well known in
atomic physics [13]. The idea is to use a0 as a starting point for the R matrix;
its value is small enough to allow reasonable basis sizes. The R matrix is then
propagated from a0 to a, where the Coulomb asymptotic behaviour (21) is
valid. Between a0 and a, the wave functions χJπ(ρ) are still given by Eq. (8),
but with the potential replaced by its (analytical) asymptotic expansion.

More precisely, the internal wave functions in the different intervals are given
by

χJπ
γK,int(ρ) =

N
∑

i=1

cJπ
γKi ui(ρ) for ρ ≤ a0,

= χ̃Jπ
γK(ρ) for a0 ≤ ρ ≤ a, (33)

where χ̃γK(ρ) are solutions of Eq. (8) with the analytical expansion (16) of
the potential term.

The R matrix is first computed at a0 with Eq. (32) (typical values are a0 ≈
20− 40 fm). Then we consider N0 sets of initial conditions for χ̃(ρ), where N0

is the number of γK values (from now on we drop the Jπ index for clarity).
We combine these sets as matrix χ̃0(ρ), and choose

χ̃0(a0) = I, (34)

where I is the unit matrix.

According to the definition of the R matrix [11], we immediately find the
derivative at a0

χ̃0

′(a0) =
1

a0
R−1(a0)χ̃0(a0) =

1

a0
R−1(a0). (35)

Knowing functions χ̃0γK and their derivatives at a0, they are then propagated
until a by using the Numerov algorithm [22], well adapted to the Schrödinger
equation. The analytical form (16) of the potential is used, with a summation
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limited to a few k values. The R matrix at a is then determined by using
Eq. (35) with χ̃0(a) and χ̃′

0(a). We have

R(a) =
1

a
χ̃0(a) (χ̃0

′(a))
−1

. (36)

Notice that the propagated R matrix (36) does not depend on the choice of
χ̃0(a0). In Ref. [13], the propagation is performed through the Green function
defined in the intermediate region, and expanded over a basis. The method
presented here uses the Numerov algorithm, and does not rely on the choice of
a basis. The analytical form of the potential in this region makes calculations
fast and accurate.

Finally the collision matrix is obtained from the R matrix at the channel
radius a with

UJπ =
(

ZJπ⋆
)−1

ZJπ, (37)

and

ZJπ
γK,γ′K ′ = H−

γK(ka)δγγ′δKK ′ − ka(H−

γK(ka))′RJπ
γK,γ′K ′(a), (38)

where the derivation is performed with respect to ka.

Lower values of the channel radius a can be used by employing the Gailitis
method [23]. In this method the asymptotic forms (24) are generalized with
the aim of using them at shorter distances. This means that the propagation
should be performed in a more limited range (typical values for a are a ∼
200 − 400 fm). However this does not avoid propagation which, in any case,
is very fast. In addition, the Gailitis method cannot be applied to charged
systems, as it assumes from the very beginning that the coupling potentials
decrease faster than 1/ρ.

The extension of the R-matrix formalism to bound states is well known for
two-body systems [24]. Basically, the LγK constants are defined so as to cancel
the r.h.s. of Eq. (29). Then, the problem is reduced to a matrix diagonalization
with iteration on the energy [24,25].

2.3.4 Wave functions

Once the collision matrix is known, the internal wave function (33) can be
determined in both intervals. Although the choice of χ̃0(a0) is arbitrary, func-
tions χ̃(ρ) entering Eq. (33) do not depend on that choice. In the intermediate
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region a0 ≤ ρ ≤ a, functions χ̃(ρ) and χ̃0(ρ) are related to each other by a
linear transformation

χ̃(ρ) = χ̃0(ρ)M . (39)

Matrix M is deduced by using the asymptotic behaviour (21) at ρ = a,

χ̃(a) = χ̃0(a)M = χext(a), (40)

where χext(a) is the matrix involving all entrance channels [see Eq. (21)]. It
depends on the collision matrix.

Coefficients cJπ
γKi defining the internal wave function in the interval ρ ≤ a0 are

finally obtained by

cJπ
γKi =

h̄2

2mN

∑

γ′K ′i′

(C−1)
Jπ
γKi,γ′K ′i′

(

dχ̃Jπ
γ′K ′

dρ

)

ρ=a0

ui′(a0). (41)

2.3.5 The Lagrange-mesh method

Up to now, the basis functions ui(ρ) are not specified. We use here the Lagrange-
mesh method which has been proved to be quite efficient in two-body [26] and
three-body [6] systems. Notice however that its application to three-body con-
tinuum states is new.

When dealing with a finite interval, the N basis functions ui(ρ) are defined as
[14]

ui(ρ) = (−1)N−i
(

1 − xi

a0xi

)1/2 ρPN(2ρ/a0 − 1)

ρ − a0xi
, (42)

where the xi are the zeros of a shifted Legendre polynomial given by

PN(2xi − 1) = 0. (43)

The basis functions satisfy the Lagrange condition

ui(a0xj) = (a0λi)
−1/2δij , (44)

where the λi are the weights of the Gauss-Legendre quadrature corresponding
to the [0,1] interval, i.e. half of the weights corresponding to the traditional
interval [-1,1].
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The main advantage of the Lagrange-mesh technique is to strongly simplify
the calculation of matrix elements (31) if the Gauss approximation is used.
Matrix elements of the kinetic energy (T + L) are obtained analytically [14].
Integration over ρ provides matrix elements of the potential by a single eval-
uation of the potential at ρ = a0xi. The potential matrix is diagonal with
respect to i and i′.

In Ref. [6], we applied the Lagrange-mesh technique to bound states of three-
body systems. As the natural interval ranges from zero to infinity, we used a
Laguerre mesh. It was shown that the Gauss quadrature is quite accurate for
the matrix elements, and that computer times can be strongly reduced.

3 Applications

3.1 Conditions of the calculations

Here we apply the method to the 6He and 14Be nuclei. The α-n and 12Be-
n interactions are chosen as local potentials. They contain Pauli forbidden
states (one in ℓ = 0 for α-n, and one in ℓ = 0, 1 for 12Be-n) which should
be removed for a correct description of three-body states [12,6]. For bound
states, two methods are available: the use of a projector [27], and a supersym-
metric transformation of the nucleus-nucleus potential [20]. Although both
approaches provide different wave functions, spectroscopic properties are sim-
ilar [6]. For unbound systems, it turns out that the projector technique is
quite difficult to apply with a good accuracy. Expansions similar to Eq. (16)
for the projection operator provide non-local potentials. Consequently, all ap-
plications presented here are obtained with supersymmetric partners of the
nucleus-nucleus potentials.

As collision matrices can be quite large, it is impossible to analyze all ele-
ments. To show the essential information derived from the collision matrix,
we rather present some eigenphases. Those presenting the largest variation in
the considered energy range are shown.

Analyzing the collision matrix in terms of eigenphases raises two problems.
First, it is in general not obvious to link the eigenphases at different energies.
As eigenphases cannot be associated with given quantum numbers, there is
no direct way to draw continuous eigenphases. The procedure can be strongly
improved by analyzing the eigenvectors. Starting from a given energy, eigen-
phases for the next energy are chosen by minimizing the differences between
the corresponding eigenvectors.
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A second problem associated with eigenphases arises from the Coulomb in-
teraction. As matrix elements of the Coulomb force are not diagonal, the
corresponding phase shifts do not appear in a simple way, as in two-body col-
lisions. Consequently, in order to extract the nuclear contribution UN from
the total collision matrix U , we perform two calculations: a full calculation
providing U , and a calculation without the nuclear contribution, providing
the Coulomb collision matrix UC. Then we define the nuclear collision matrix
UN by

U = UC
1/2UNUC

1/2. (45)

As U and UC are symmetric and unitary, the same properties hold for UN .
Examples of Coulomb phase shifts will be given in the next sections.

3.2 Application to 6He and 6Be

The conditions of the calculation are those of Ref. [6]. The α-n potential Vα−n

has been derived by Kanada et al. [19]. It contains spin-orbit and parity terms.
The n-n potential is the Minnesota interaction [28]. As bare nucleus-nucleus
potentials cannot be expected to reproduce the 6He ground-state energy with
a high accuracy, we renormalize Vα−n by a factor λ = 1.051 (note that this
value was misprinted in Ref. [6]). This value reproduces the 6He experimental
energy −0.97 MeV and provides 2.44 fm for the r.m.s. radius. The convergence
with respect to Kmax and to the Lagrange-mesh parameters has already been
discussed in Ref. [6].

Let us first illustrate the importance of the propagation technique. In Fig. 1, we
plot some elements of the J = 0+ collision matrix under different conditions.
In each case, we compare the phase shifts for two channel radii: a0 = 20 fm
and a0 = 30 fm. The calculation is performed with and without propagation.
For K = 0, reasonable values can be obtained without propagation. However,
for larger K values (K = 8 is displayed with ℓx = ℓy = 0 and ℓx = ℓy = 4), the
channel radius should be quite large to reach convergence. To keep the same
accuracy, the number of basis functions should be increased. However, one
basis function per fm is a good estimate, and this leads to unrealistically large
basis sizes. This convergence problem is due to the long range of the potential.
The propagation technique (performed here up to a = 250 fm) allows us to
get a very high stability (better than 0.1◦ at all energies) even for rather small
channel radii. Consequently calculations with high K values are still feasible.

To illustrate the diagonalization of the collision matrix, we compare in Fig. 2
the diagonal phase shifts with the corresponding eigenphases. We have selected
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Fig. 1. α+n+n phase shifts (J = 0+) for channel radii a0 = 20 fm (N = 20) and
a0 = 30 fm (N = 30), and for different partial waves. Solid lines are obtained with
propagation up to a = 250 fm of the R matrix (curves corresponding to different a0

are undistinguishable), and dashed lines without propagation.

a particular case, with J = 2+, and Kmax = 2. With these conditions the
collision matrix is 4× 4, and presents a narrow resonance near 2 MeV. In the
upper part of Fig. 2, we plot the diagonal phase shifts. One of them presents a
180◦ jump, characteristical of narrow resonances. This resonant behaviour is
also observable in two other partial waves. After diagonalization of the collision
matrix (Fig. 2, lower part) the resonant behaviour shows up in one eigenphase
only. The three other eigenphases smoothly depend on energy.

The convergence with respect to Kmax is illustrated in Fig. 3 with the J =
0+ eigenphases. It turns out that, at low energies, high hypermomenta are
necessary to achieve a precise convergence. However, above 4 MeV, Kmax = 20
is sufficient to obtain an accuracy of 2◦.

Figure 4 gives the eigenphases for J = 0+, 1−, 2+ in 6He and 6Be (Kmax is
taken as 24, 19 and 16, respectively). As expected, the 2+ phase shift of 6He
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presents a narrow resonance. The theoretical energy (about 0.2 MeV) is how-
ever underestimated as the experimental value [29] is E = 0.82 MeV. In order
to provide meaningful properties for this state, we have readjusted the scal-
ing factor to λ = 1.020, which provides the correct energy. The 0+ and 1−

phase shifts show broad structures near 1.5 MeV. Similar phase shifts have
been obtained by Danilin et al. [30,31] and by Thompson et al. [12] with other
potentials.
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In 6Be, the ground state is found at E = 1.26 MeV with a width Γ = 65 keV.
These values are in reasonable agreement with experiment [29] (E = 1.37
MeV, Γ = 92 ± 6 keV), the width being underestimated by the model due
to the lower energy. Experimentally, a 2+ state is known near E = 3.0 MeV
with a width of Γ = 1.16±0.06 MeV. These properties are consistent with the
theoretical 2+ eigenphase, which presents a broad structure near E ≈ 4 MeV.
The largest Coulomb eigenphases (J = 0+) are shown as dotted lines in Fig. 4.
As expected, the Coulomb interaction plays a dominant role at low energies,
but it cannot be completely neglected even near 10 MeV. Coulomb eigenphases
for other spin values are very similar and therefore are not presented. Energies
and widths are given in Table 2.

In Table 2, we also present the E2 transition probability in 6He. For the narrow
2+ resonance, we use the bound-state approximation. Without effective charge,
the B(E2) value for the 0+ → 2+ transition is underestimated with respect to
the experimental value [8]. However, the E2 matrix element is very sensitive to
the effective charge. A small correction (δe = 0.05e) provides a B(E2) within
the experimental error bars.
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Fig. 4. Eigenphases of 6He and 6Be for different J values (solid lines). For 6Be,
dotted lines represent the largest Coulomb eigenphases for J = 0+.

18



Table 2
6He and 6Be properties. Unless specified, experimental data are taken from Ref. [29].

6He 6Be

present exp. present exp.
E(0+) (MeV) -0.97 -0.97 1.26 1.37
Γ(0+) (keV) 65 92 ± 6
E(2+) (MeV) 0.8 0.82 ≈ 4.0 3.04
Γ(2+) (MeV) 0.04 0.113 ± 0.020 ≈ 1.0 1.16 ± 0.06√

< r2 > (fm) 2.44 2.33 ± 0.04a)

2.57 ± 0.10b)

2.45 ± 0.10c)

B(E2,0+ → 2+) (e2.fm4) 1.23 (δe = 0) 3.2 ± 0.6d)

2.69 (δe = 0.05e)
a) Ref. [3], b) Ref. [32] c) Ref. [33], d) Ref. [8]

3.3 Application to 14Be

As shown in previous works [34–36], a 12Be+n+n three-body model can pro-
vide a realistic description of 14Be. The spectroscopy of the 14Be ground state
has already been investigated in non-microscopic [34–37] and microscopic [38]
models. Here we extend three-body descriptions to 14Be excited and contin-
uum states.

The 13Be ground state is expected to be a virtual s wave, with a large and neg-
ative scattering length (as < −10 fm) [39]. In addition, the existence of a 5/2+

d-state near 2 MeV is well established. These properties can be reproduced by
a 12Be-n potential

V (r) = − V0 + Vs ℓ · s

1 + exp((r − r0)/a)
, (46)

where ℓ is the relative angular momentum and s the neutron spin. In Eq. (46),
r0 = 2.908 fm, a = 0.67 fm, V0 = 43 MeV, Vs = 6 MeV. The range and diffuse-
ness of the Woods-Saxon potential are taken from Ref. [36]. The amplitudes
V0 and Vs provide E(5/2+) = 2.1 MeV, and as = −47 fm, which are consistent
with the data. For the n-n potential, we use the Minnesota interaction, as for
the 6He study.

With these potentials, the 14Be ground state is found at E = −0.16 MeV,
which represents an underbinding with respect to experiment (−1.34 ± 0.11
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MeV [40]). This calculation has been performed with Kmax = 24, which en-
sures the convergence. The underbinding problem is common to all three-
body approaches, and can be solved in two ways. (i) A renormalization factor
λ = 1.08 provides a ground-state energy at −1.30 MeV, i.e. within the exper-
imental uncertainties. This procedure leads to a slightly bound 13Be ground
state, which might influence the 14Be properties. (ii) A three-body phenomeno-
logical term V (123), taken as in Ref. [12], i.e.,

V
(123)
Kγ,K ′γ′(ρ) = −δKK ′δγγ′ V3/[1 + (ρ/ρ3)

2], (47)

reproduces the experimental energy with an amplitude V3 = 4.7 MeV (ac-
cording to Ref. [12], we take ρ3 = 5 fm). This potential is diagonal in (K, γ),
and is simply added to the two-body term [see Eqs. (10),(11)]. In 6He, it was
shown that both readjustments of the interaction provide similar results [6].
However the renormalization factor is larger for 14Be, and both methods will
be considered in the following.

The convergence with respect to Kmax is illustrated in Fig. 5. For J = 0+,
the calculations have been done with Kmax up to 24. The energies obtained
with renormalization or with the three-body potential are very similar. This
confirms the conclusion drawn for the 6He nucleus [6].

Spectroscopic properties of 14Be are given in Tables 3 and 4. The r.m.s. radii
have been determined with 2.57 fm as 12Be radius. For the ground state,
we have

√
< r2 > = 3.10 fm or 3.14 fm, in nice agreement with experiment

(3.16 ± 0.38 fm, see Ref. [41]). In all cases, the S = 1 component (denoted as
PS=1) is small (< 5%). The decomposition in shell-model orbitals (see Table
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Table 3
Properties of the 14Be 0+ and 2+ states. λ is the renormalization factor of the 12Be-n
potential and V3 is this amplitude of the three-body potential.

λ = 1.08, V3 = 0 λ = 1, V3 = 4.7

0+ E (MeV) −1.34 −1.34√
< r2 > (fm) 3.10 3.14

PS=1 0.046 0.033

2+ E (MeV) −0.15 −0.03√
< r2 > (fm) 2.99 3.04

PS=1 0.192 0.165

0+ → 2+ B(E2) (e2.fm4) 0.48 (δe = 0) 0.64 (δe = 0)
3.18 (δe = 0.05e) 4.05 (δe = 0.05e)

4) shows that the 0+ state is essentially (≈ 70%) (2s1/2)
2, with small (2d3/2)

2

and (2d5/2)
2 admixtures.

Table 4
Components (in %) in 14Be wave functions.

0+(λ = 1.08, V3 = 0) 0+(λ = 1, V3 = 4.7)

(p3/2)
2 2.0 2.2

(p1/2)
2 1.0 1.1

(s1/2)
2 70.4 73.1

(d5/2)
2 14.6 13.0

(d3/2)
2 11.2 9.8

2+(λ = 1.08, V3 = 0) 2+(λ = 1, V3 = 4.7)

p3/2p3/2 7.7 8.2

p3/2f7/2 9.6 9.4

p1/2p3/2 18.0 18.6

p1/2f5/2 5.8 5.7

s1/2d5/2 23.2 23.5

s1/2d3/2 19.2 18.5

d5/2d5/2 5.6 5.3

d3/2d5/2 4.0 3.6

d3/2d3/2 3.0 2.9

Regarding J = 2+, we have considered values up to Kmax = 16, where the
number of partial waves is 172. Going beyond Kmax = 16 would require too
large computer memories. Fig. 5 shows the energy convergence with respect to
Kmax. For both potentials, the energy is below threshold, and the r.m.s. radius
is close to 3 fm. A partial-wave analysis provides 19% of S = 1 admixture, a
value much larger than in the ground state. Table 4 suggests that the structure
of the 2+ state is spread over many components. The (s1/2d5/2) component is
dominant (≈ 23%) but other (sd) and (pf) orbitals also play a role.
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E2 transition probabilities are also given in Table 3. Without effective charge,
we have B(E2,0+ → 2+) = 0.48 and 0.64 e2fm4, which is lower than for the
corresponding transition in 6He. However, the amplitudes of the proton and
neutron E2 operators being even more different in 14Be than in 6He, the B(E2)
values strongly depend on the effective charge. For δe = 0.05e, we find B(E2)
= 3.18 or 4.05 e2fm4 according to the potential. Such transition probabilities
should be measurable through Coulomb excitation experiments.

In Figs. 6-7, we present the 0+ and 2+ radial wave functions and probabilities
P (x, y) defined as

P Jπ(x, y) =
∫

dΩx dΩyx
2y2 | ΨJMπ(x, y) |2 . (48)
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Fig. 6. Left panel: radial functions χ(ρ) for the 0+ state. The curves are labeled
by ℓx, ℓy, n. Right panel: probability P (rnn, rBe−nn), deduced from Eq. (48) with
rnn =

√
2x and rBe−nn =

√

6/7y. Contour levels are plotted by steps of 0.005.

The dominant S = 0 components are plotted. The 0+ probability shows two
well distinct maxima, which resemble the maxima found in 6He, corresponding
to ”dineutron” and ”cigar” configurations. Partial waves χJπ

γK(ρ) have maxima
for ρ > 5 fm. This corresponds to distances larger than in 6He [6] where the
maxima of the main components are located near 4 fm. As expected, the 2+

probability is similar to the 0+ probability, with two maxima.

Three-body eigenphases are displayed in Fig. 8. As for the 14Be spectroscopy
the use of a three-body potential does not qualitatively change the phase shifts.
The 1− phase shift presents two jumps but they cannot be directly assigned
to physical resonances. On the contrary, the 2+ phase shift shows a narrow
resonance near 2 MeV. For the sake of completeness, 12O+p+p mirror phase
shifts are also shown in Fig. 8. As expected, no narrow structure is found. A
very broad 0+ resonance shows up near 8 MeV, and should correspond to the
14Ne ground state.
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Fig. 8. Three-body 12Be-n-n and 12O-p-p eigenphases. Solid lines correspond to a
renormalized core-nucleon potential, and dotted lines to a phenomenological three-
-body term.

4 Conclusion

In this work, we have extended the three-body formalism of Ref. [6] to unbound
states. As for two-body systems, the Lagrange-mesh technique, associated with
the R-matrix method, provides an efficient and accurate way to derive collision
matrices and wave functions. Compared with two-body systems, three-body
R-matrix approaches are more tedious, owing to the coupling potentials which
extend to very large distances. This behaviour is inherent to the use of hyper-
spherical coordinates which provide three-body potentials behaving as 1/ρ3,
even for short-range two-body interactions. This problem can be efficiently
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solved by using propagation techniques. Here, we propagate the wave func-
tion and the R matrix by using the Numerov algorithm. This formalism has
been extended to charged systems.

The 6He system has essentially been used as a test of the method, as most of its
properties are available in the literature. The B(E2, 0+ → 2+) experimental
value can be reproduced with a small effective charge δe = 0.05e. We have
determined α+p+p phase shifts, and found a good agreement with experiment
for the 6Be ground-state properties.

Application to three-body 12Be+n+n states is new, and has been developed
in two directions. The bound-state description of 14Be provides evidence for a
2+ bound state, as expected from the shell model. The study of the 12Be+n+n
system has been complemented by three-body phase shifts, which suggest the
existence of a second narrow 2+ resonance at Ex ≈ 3.4 MeV.

A limitation of the method is the slow convergence of the phase shifts with re-
spect to the maximum hypermomentum Kmax. To achieve a full convergence,
values up to Kmax = 20 or more are necessary. This problem is even stronger
for high spins, where the number of partial waves increases rapidly. A possible
solution to this problem would be to apply the Feshbach reduction method [42]
to scattering states. Another possible development would be to use a projec-
tion technique to remove Pauli forbidden states [10]. In that case, asymptotic
potentials (15) are non local, which makes the calculation still heavier.

The present model offers an efficient way to investigate bound and unbound
states. In exotic nuclei, most low-lying states are unbound, and a rigorous
analysis requires scattering conditions. The inclusion of the Coulomb interac-
tion still extends the application field, and is interesting even for non-exotic
nuclei. In this context, an accurate analysis of unbound α+α+α states seems
desirable in view of its strong interest in the triple-α reaction rate [43].

Acknowledgements

We are grateful to Prof. F. Arickx for useful discussions about the three-
body Coulomb problem. This text presents research results of the Belgian
program P5/07 on interuniversity attraction poles initiated by the Belgian-
state Federal Services for Scientific, Technical and Cultural Affairs. One of the
authors (E.M.T.) is supported by the SSTC.

24



References

[1] B. Jonson, Phys. Rep. 389 (2004) 1.

[2] M.V. Zhukov, B.V. Danilin, D.V. Fedorov, J.M. Bang, I.J. Thompson, J.S.
Vaagen, Phys. Rep. 231 (1993) 151.

[3] I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto,
O. Yamakawa, T. Kobayashi, N. Takahashi, Phys. Rev. Lett. 55 (1985) 2676.

[4] P.M. Morse, H. Feshbach, Methods in Theoretical Physics, vol. II, McGraw-Hill,
New York, (1953).

[5] C.D. Lin, Phys. Rep. 257 (1995) 1.

[6] P. Descouvemont, C. Daniel, D. Baye, Phys. Rev. C 67 (2003) 044309.

[7] D. Baye, M. Hesse, M. Vincke, Phys. Rev. E 65 (2002) 026701.

[8] T. Aumann et al., Phys. Rev. C 59 (1999) 1252.

[9] Y.K. Ho, Phys. Rep. 99 (1983) 1.

[10] V.I. Kukulin, V.M. Krasnopol’sky, J. Phys. A 10 (1977) 33.

[11] A.M. Lane, R.G. Thomas, Rev. Mod. Phys. 30 (1958) 257.

[12] I.J. Thompson, B.V. Danilin, V.D. Efros, J.S. Vaagen, J.M. Bang, M.V. Zhukov,
Phys. Rev. C 61 (2000) 024318.

[13] V.M. Burke, C.J. Noble, Comput. Phys. Commun. 85 (1995) 471.

[14] D. Baye, M. Hesse, J.-M. Sparenberg, M. Vincke, J. Phys. B 31 (1998) 3439.

[15] M. Hesse, J.-M. Sparenberg, F. Van Raemdonck, D Baye, Nucl. Phys. A 640
(1998) 37.

[16] J. Raynal, J. Revai, Nuovo. Cim. A 39 (1970) 612.

[17] V. Vasilevsky, A.V. Nesterov, F. Arickx, J. Broeckhove, Phys. Rev. C 63 (2001)
034606.

[18] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Dover,
London (1972).

[19] H. Kanada, T. Kaneko, S. Nagata, M. Nomoto, Prog. Theor. Phys. 61 (1979)
1327.

[20] D. Baye, Phys. Rev. Lett. 58 (1987) 2738.

[21] I.J. Thompson, A.R. Barnett, J. Comput. Phys. 64 (1986) 490.

[22] J. Raynal, in ”Computing as a Language of Physics”, Trieste 1971, IAEA,
Vienna, (1972) p. 281.

25



[23] M. Gailitis, J. Phys. B9 (1976) 843.

[24] D. Baye, P. Descouvemont, Nucl. Phys. A 407 (1983) 77.

[25] P. Descouvemont, M. Vincke, Phys. Rev. A 42 (1990) 3835.

[26] M. Hesse, J. Roland, D. Baye, Nucl. Phys. A 709 (2002) 184.

[27] V.I. Kukulin, V.N. Pomerantsev, Ann. Phys. 111 (1978) 330.

[28] D.R. Thompson, M. LeMere, Y.C. Tang, Nucl. Phys. A 286 (1977) 53.

[29] D.R. Tilley, C.M. Cheves, J.L. Godwin, G.M. Hale, H.M. Hofmann, J.H. Kelley,
C.G. Sheua, H.R. Weller, Nucl. Phys. A 708 (2002) 3.

[30] B.V. Danilin, I.J. Thompson, J.S. Vaagen, M.V. Zhukov, Nucl. Phys. A 632
(1998) 383.

[31] B.V. Danilin, T. Rogde, J.S. Vaagen, I.J. Thompson, M.V. Zhukov, Phys. Rev.
C 69 (2004) 024609.

[32] L.V. Chulkov et al., Europhys. Lett. 8 (1989) 245.

[33] G.D. Alkhazov, A.V. Dobrovolsky, A.A. Lobodenko, Nucl. Phys. A 734 (2004)
361.

[34] D. Baye, Nucl. Phys. A 627 (1997) 305.

[35] A. Adahchour, D. Baye, P. Descouvemont, Phys. Lett. B 356 (1995) 445.

[36] I.J. Thompson, M.V. Zhukov, Phys. Rev. C 53 (1996) 708.

[37] T. Tarutina, I.J. Thompson, J.A. Tostevin, Nucl. Phys. A 733 (2004) 53.

[38] P. Descouvemont, Phys. Rev. C 52 (1995) 704.

[39] M. Thoennessen, S. Yokoyama, P.G. Hansen, Phys. Rev. C 63 (2001) 014308.

[40] G. Audi, A.H. Wapstra, Nucl. Phys. A 565 (1993) 1.

[41] I. Tanihata, T. Kobayashi, O. Yamakawa, S. Shimoura, K. Ekuni, K. Sugimoto,
N. Takahashi, T. Shimoda, H. Sato, Phys. Lett. B 206 (1988) 592.

[42] H. Feshbach, Ann. Phys. 19 (1962) 287.

[43] H. Fynbo et al., Nature 433 (2005) 136.

26


