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Université Libre de Bruxelles, 50 av. F. Roosevelt, B-1050 Bruxelles,
Belgium

PACS numbers: 31.15.Ar,31.30.Gs,32.10.Fn,32.10.Hq,32.80.Gc

Short title: Theoretical evaluation of the 7,9Be− 2s2p2 4P1/2,3/2,5/2 hyperfine structure

parameters and Be 2s2p 3Po electron-affinity

April 2, 2003

† Research Director of the Belgian National Fund for Scientific Research (FNRS)



2

Abstract. The hyperfine structures of 7,9Be− 2s2p2 4P1/2,3/2,5/2 are investigated
theoretically using the multiconfiguration Hartree-Fock and configuration interaction
methods. The effects of the hyperfine mixing between the fine-structure J-levels are
discussed. The feasibility of some atomic spectroscopy experiments, allowing the
determination of the 7Be quadrupole moment from the observed hyperfine structure
of the 7Be− negative ion and from the present electronic parameters, is investigated.
The Be 2s2p 3P o electron-affinity is monitored as a function of the orbital and
configuration spaces to assess the reliability of the wave functions of the neutral
atom and the negative ion. The theoretical value nicely converges towards the most
recent theoretical and experimental results.
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1. Introduction

The accuracy of the 7Be(p, γ)8B reaction factor is often presented as an important

limiting factor in the determination of the flux of high-energy neutrinos generated in

the solar core [1]. Although the key to the solar neutrinos problem might have been

found recently [2], it is still worthwhile to improve the experimental and theoretical

estimates of the relevant low-energy astrophysical S17 factor†. In this line, it has been

shown that this S factor is linearly correlated with the quadrupole moment of the
7Be nucleus [1]. There is thus some hope to refine the value of the S factor from the

knowledge of the nuclear quadrupole moment.

Atomic spectroscopy experiments on unstable beryllium isotopes are performed

these days, thanks to the ISOLDE facility at CERN [4]. In this latter reference,

isotope shift and hyperfine structure measurements are announced [5] for 7,9,10Be II

and a preliminary value of the nuclear magnetic dipole moments of 7Be has been

reported in this context [6].

The nuclear quadrupole moment value for 9Be has been extracted by combining

the ab initio electric field gradient value [7] and the experimental quadrupole cou-

pling constant of the metastable levels 9Be(2s2p 3P o
2,1), measured by the atomic-beam

magnetic-resonance method [8]. A similar experiment for exploring the hyperfine

structure of 7Be in its metastable levels would not be easy to realize on a low produced

radioactive element such as 7Be. Therefore, some experiment consisting in measuring

the hyperfine structures of the metastable negative ion 7Be−(2s2p2 4P ) which should

allow the extraction of the nuclear moment is hereafter proposed. The feasibility of

this determination depends on both the magnitude of the electric quadrupole inter-

action in the hyperfine structure and on the reliability of the theoretical electric field

gradient which can be evaluated from atomic variational calculations. Present work

provides the needed ingredients for such an analysis and complete through the nega-

tive ion the set of available electronic parameters for Be+ [9] and neutral beryllium [10].

Ab initio determination of the hyperfine parameters of 9Be−(2s2p2 4P1/2,3/2,5/2)

has been reported in the pioneer work of Beck and Nicolaides [11]. We reinvestigate

these electronic parameters using the multiconfiguration Hartree-Fock (MCHF) and

† see ref [3] for a definition of the low-energy cross-section S-factor. S17 denotes the cross-section
factor for the capture of protons by 7Be.
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configuration interaction (CI) methods combined with the active space concept to

monitor the convergence of the various electronic contributions as a function of the

orbital active set.

The multiconfiguration Hartree-Fock method and the computational strategy

based on the concept of the orbital active space are described in section 2. The

theoretical evaluation of the electron-affinity is considered in section 3 as a quality

test of the wave functions describing both the neutral atom and the negative

ion. The relevant hyperfine matrix elements are given in section 4.1, together

with the theoretical background needed to understand the separation between the

nuclear properties and the electronic contributions. The convergence of the hyperfine

parameters of the Be−(2s2p2 4PJ) levels is investigated in section 4.2. The relative

contributions of the electric quadrupole and magnetic dipole interaction terms to the

hyperfine splittings and the effect of the J-hyperfine mixing are discussed in section 4.3

for 9Be− and in section 4.4 for 7Be−. A sketch of an original experimental scheme

which should allow the determination of hyperfine structures of the metastable states

of the negative ions 7,9Be− is presented in section 4.5.

2. The MCHF computational procedure

The non-relativistic multiconfiguration Hartree-Fock (MCHF) approach is used for

calculating the wave function Ψ of the state labeled γLSMLMSπ where γ represents

the dominant configuration and π is the parity. The MCHF wave function Ψ is

expanded in terms of configuration state functions (CSF) {Φi} having the same

LSMLMSπ symmetry but arising from different electronic configurations (γi)

Ψ(γLSMLMSπ) =
∑

i=1

ci Φ(γiLSMLMSπ). (1)

The CSF’s are built on a basis of one-electron spin-orbital functions

φnlmlms =
1
r
Pnl(r)Ylml

(θ, ϕ)χms . (2)

In the MCHF procedure both the sets of radial functions {Pnili(r)} and mixing coef-

ficients {ci}, are optimized to self-consistency by solving numerically and iteratively

the multiconfiguration Hartree-Fock differential equations for the former and the con-

figuration interaction (CI) problem for the latter [12].



5

The active space method is used for building the CSFs expansion (1). The

expansion can be produced by considering electron excitations from the reference

configuration(s) to a given active set (AS) of orbitals. The rules adopted for generating

the configuration space differ according to the correlation model being used. Within a

given correlation model, the active set of orbitals spanning the configuration space can

be increased in a systematic way to monitor the convergence of the total energy or any

other property [13, 14]. The active set is specified by the maximum n-value considered,

without any l-restriction (ie. lmax = n − 1) if not specified. When a limitation on

the allowed angular momentum value is used, the usual symbolic notation is adopted.

For instance, the 8g active set notation indicates that n ≤ 8 orbitals are considered,

with the restriction lmax = 4 corresponding to g-orbitals, ie.

8g = {1s, 2s, 2p, 3s, . . . , 8s, 8p, 8d, 8f, 8g}.

In the present work, the single and double (SD) excitations from the reference

configuration have been used for generating the multiconfiguration space of the MCHF

approximation used for the orbital optimization. With a fixed set of radial functions

determined from a SD[10g] MCHF calculation, a configuration interaction calculation

can be performed over a larger set of configuration states. In our adopted strategy,

the configuration lists used in the CI calculations have been produced by merging

the configuration subspace created from single- and double-excitations to the 10g

active set (SD[10g]) with another subspace generated by allowing further triple- and

quadruple-excitations (TQ[x]) to smaller orbital active sets (x). This merging of CSF

lists is denoted hereafter by the union “∪” symbol. The limited population constraint

[13, 14] “at least three electrons with n ≤ 4” was adopted in this last step in order to

keep the size of the multiconfiguration expansions manageable.

3. The Be 2s2p 3P o electron-affinity

The energy levels diagram of beryllium is displayed in fig. 1. The two bounded terms of

Be− appear just below their respective detachment threshold. The fine and hyperfine

structures of the lowest bound state of the negative ion (9Be− 2s2p2 4P1/2,3/2,5/2) are

also represented qualitatively in the same figure, together with the beryllium electron-

affinity defined by

Ea = E(Be 2s2p 3P o)− E(Be− 2s2p2 4P ). (3)
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The MCHF/CI approaches described above have been used for both the neutral

atom and the negative ion, considering increasing orbital active sets up to [10g] for

the SD-MCHF calculations and including triple- and quadruple-excitations up to [7g]

for the CI calculations.

Combining the total energies of the negative ion with those of neutral beryllium

obtained by using the same excitation models, one can monitor the electron affinity of

beryllium as a function of the increasing orbital active set within a given correlation

model (SD or SDTQ). As illustrated by Table 1, convergence of the electron affinity

has not been achieved even with the largest CI calculations considered in the present

paper. However, the largest CI active set gives a value in agreement with the theo-

retical estimation of Olsen et al. [15] and the convergence trend to a somewhat larger

value is on line with the theoretical value obtained by Hsu and Chung [16] and with

the most recent experimental value [17], taking into account their quoted uncertainty.

Table 1 reflects the high quality of the wave functions which are used for estimating

the electronic contributions to the hyperfine structure parameters discussed in sec-

tions 4 and 5.

4. The hyperfine structure of Be− 2s2p2 4P1/2,3/2,5/2

4.1. Theory

The hyperfine interaction matrix elements, in the |JIFMF 〉 coupled states basis, are

usually expressed in terms of the diagonal (J = J ′) and off-diagonal (J 6= J ′) magnetic

dipole (A) and electric quadrupole (B) hyperfine parameters:

AJ =
µI

I

1
[J(J + 1)(2J + 1)]1/2

〈γJJ‖T(1)‖γJJ〉, (4)

AJ,J−1 =
µI

I

1
[J(2J − 1)(2J + 1)]1/2

〈γJJ‖T(1)‖γJ (J − 1)〉, (5)

BJ = 2Q

(
J(2J − 1)

(J + 1)(2J + 1)(2J + 3)

)1/2

〈γJJ‖T(2)‖γJJ〉, (6)

BJ,J−1 =
Q

2

(
J(J − 1)

(J + 1)(2J − 1)(2J + 1)

)1/2

〈γJJ‖T(2)‖γJ(J − 1)〉, (7)

BJ,J−2 =
Q

4

(
J(J − 1)(2J − 1)
(2J − 3)(2J + 1)

)1/2

〈γJJ‖T(2)‖γJ(J − 2)〉, (8)
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in which the nuclear magnetic dipole µI and electric quadrupole moment Q are the

relevant nuclear quantities. The electronic matrix elements are obtained by integrating

the irreducible spherical tensors,

T(1) =
α2

2

N∑

i=1

{
2l(1)(i)r−3

i − gs

√
10[C(2)(i)× s(1)(i)](1)r−3

i

+gs
8
3
πδ(ri)s(1)(i)

}
(9)

and

T(2) = −
N∑

i=1

C(2)(i)r−3
i (10)

over the spin and spatial electron coordinates [18]. The rank-one tensor of the magnetic

dipole hyperfine interaction represents the magnetic field due to the electrons at the

site of the nucleus arising from the orbital motion of the electrons (orbital term), from

the dipole field due to the spin motion of the electrons (spin-dipole term), and the

Fermi contact contribution which appears only for s-electrons. The rank-two tensor of

the electric quadrupole hyperfine interaction is the electric field gradient at the site of

the nucleus which interacts with the nuclear quadrupole moment to bring the electric

quadrupole hyperfine interaction.

In light atoms where the relativistic effects can be neglected, the diagonal and off-

diagonal A and B factors can be expressed in terms of the J-independent hyperfine

parameters al, asd, ac and bq [19]

al = 〈γLSMLMS |
N∑

i=1

l
(1)
0 (i)r−3

i | γLSMLMS〉,

asd = 〈γLSMLMS |
N∑

i=1

2C
(2)
0 (i)s(1)

0 (i)r−3
i | γLSMLMS〉,

ac = 〈γLSMLMS |
N∑

i=1

2s
(1)
0 (i)r−2

i δ(ri) | γLSMLMS〉,

bq = 〈γLSMLMS |
N∑

i=1

2C
(2)
0 (i)r−3

i | γLSMLMS〉,

where ML = L and MS = S. These parameters are usually known as the orbital

(al), spin-dipole (asd) and contact (ac) electronic parameters while the bq parameter

represents the electric field gradient at the nucleus.



8

4.2. Convergence study of the hyperfine parameters

The basic hyperfine structure (HFS) parameters of Be− 2s2p2 4P from which the AJ

and BJ constants can be evaluated if the nuclear quantities (I, µI and Q) are known,

are monitored in Table 2 as functions of the active set.

In the MCHF level of approximation used for the orbital optimization with a SD

configuration space, the largest orbital space (10g) seems to be complete enough for

getting a convergence better than 0.1% in the al, asd and ac parameters . Convergence

of the bq parameter is more difficult to get, the value being still affected by 1.3%

going from the SD[9g] to the SD[10g] MCHF expansion. The inclusion of triple

and quadruple excitations through the (SD[10g] ∪ TQ[7g]) CI calculations affects

the orbital (al) and the electric field gradient (bq) parameters by less than 0.3%.

The corresponding variation is somewhat larger (although less than 0.8%) for the

spin-dipole and contact hyperfine parameters. For the four parameters, the SD-TQ

configuration spaces look complete enough, the largest variation (0.3%) being found

for the asd parameter. Taking all these observations into account, our final hyperfine

electronic parameters and associated uncertainties are estimated as al = 0.1732(5),

asd = 0.0378(2), ac = 7.748(21) and bq = 0.066(2).

We report in the same table the electronic contributions calculated by Beck and

Nicolaides [11] using configuration interaction techniques in Slater-type orbital basis

sets. Their ac, asd and ac-values † agree well with the present n = 4 − 6 SD-

MCHF results. This consistency is not surprising after analysing their correlation

models using “up to 250 N -electron functions”. Their corresponding total energy,

E = −14.573 085 a.u., also falls in the range of the corresponding SD-MCHF energies

for these orbital active sets (see Table 1).

4.3. Hyperfine structure of 9Be−

The AJ and BJ parameters calculated for 9Be− 4P1/2,3/2,5/2 using the nuclear data

compiled by Raghavan [20] (I = 3/2, µ = −1.177492(17) µN ), together with the

nuclear quadrupole moment value Q = +0.05288(38) b determined by Sundholm

and Olsen [7], are reported in Table 3 and Table 4. Note that this Q(9Be) value

results from the combination of the experimental quadrupole coupling constant,

† Tedious angular momentum algebra allowed us to set the relations between our electronic
parameters and their “hyperfine reduced matrix elements”, only valid for 4P : al = (1/

√
6) αl, asd =

−(1/10
√

5) αd, ac = (3
√

3/2
√

5) αc, bq = (1/
√

30) αq .
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B2 = 1.429(8) MHz, measured by the atomic-beam magnetic-resonance technique

[8] for 2s2p 3P o
2 with the theoretical electric field gradient calculated by Sundholm

and Olsen using the finite-element MCHF method, using the relation ‡

B(MHz) = −234.9647 qQ(b)bq(a−3
0 ).

Applying the same procedure with the bq = −0.1152545 a−3
0 value calculated from the

present SD[10g] ∪ TQ[7g] MCHF/CI expansion (13278 CFSs), the nuclear quadrupole

moment is estimated to be Q = +0.05277 b, falling inside the error bars given by

Sundholm and Olsen [7].

The diagonal (J, J) and off-diagonal (J, J ′) magnetic dipole and electric

quadrupole hyperfine interaction constants A and B values corresponding to the

largest MCHF/CI expansions ( SD[10g] ∪ TQ[7g] ) are reported in Table 5, along

with the detailed balance of the three contributions to the A-parameters. As shown

by this table, the contact term is largely dominant in all cases.

The hyperfine splittings ∆EF,F ′ = EF ′ − EF are reported in Table 6. The first

series of results correspond to the first-order perturbation correction, evaluated from

the expectation value of the hyperfine interaction perturbation term using the coupled

state function |JIFMF 〉 as zero-order wave functions, i.e.

∆E(J, I, F ) = EM1(J, I, F ) + EE2(J, I, F ), (11)

with

EM1(J, I, F ) =
1
2
AJ C (12)

and

EE2(J, I, F ) = BJ

3
4C(C + 1)− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
(13)

in which

C = F (F + 1)− J(J + 1)− I(I + 1).

The magnetic dipole (M1) and electric quadrupole (E2) contributions are given

separately in the table. In this scheme, the hyperfine structure of 9Be− 2s2p2 4P1/2

is only due to the dipole magnetic interaction. If the correction is limited to the M1

‡ q(3P2) = 1. as calculated from [19].
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contribution, the hyperfine splittings strictly obey the Landé interval rule for the three

J-values considered, i.e.

∆EJ
F−1,F ≡ EJ

F − EJ
F−1 = F AJ .

To the knowledge of the authors, there is no observed hyperfine structure data

to compare with. The only comparison which can be done is with the pioneer

theoretical work of Beck and Nicolaides [11] for the basic hyperfine parameters (see

Table 2). Off-diagonal hyperfine effects between different fine-structure levels have

been considered by these authors. Unfortunately, owing to space limitations in their

published work, explicit results for Be− 4P were not presented and the reader is left

with the interesting comment that “off-diagonal effects will be significant”, without

any further quantitative discussion of these effects for this system.

The second set of results presented in Table 6 takes into account the hyperfine

coupling between J-levels having the same F -value. Using the ab initio hyperfine

parameters, the hyperfine structures have been evaluated by diagonalizing the

interaction matrix built from equations (12) and (13) for the diagonal matrix elements,

and from similar expressions [18, 21] for the off-diagonal J-coupling terms. The

experimental fine structure of Andersen et al. [22] has been used for setting the zero-

order interaction matrix. The differences between the hyperfine splittings obtained

using the first-order perturbation and the diagonalization models are very similar

if restricting the hyperfine interaction to the M1 contribution (differences between

columns 8 and 4) or if including the E2 contribution (M1+E2) (differences between

columns 9 and 7). This illustrates that the J-hyperfine coupling is mainly due to the

magnetic dipole interaction. The same observation can be done on the basis of the

differences between the M1 and (M1+E2) results in the diagonalization model which

almost reproduce the first order electric quadrupole correction. The effect of this

(J, J ′) off-diagonal M1 coupling, which can be realized from a comparison of columns

4 and 8, is of the same order of magnitude than the diagonal E2 corrections, i.e. in

the range of 0.2−1% of the diagonal magnetic dipole contribution.

The fine structure of Be− 4P sets the zero-order energy separation for building

the hyperfine interaction matrix inducing the J-coupling. The present non-relativistic

MCHF wave functions have been used to evaluate the fine structure splittings using

the Breit-Pauli Hamiltonian. The corresponding results (MCHF+BP) are reported
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in Table 9 and compared with other theories and observation. The computational

task is huge: the calculation of the non-fine and fine-structure corrections took 156h

CPU-time on a Compaq AlphaServer GS140 for the largest MCHF/CI expansion. The

only observed values available for these splittings are those measured by Andersen et

al [22] using state-selective stepwise two-photon detachment. On the theoretical side,

relativistic corrections have been calculated using first-order perturbation theory by

Beck and Nicolaides in their pioneer work [11] and by Hsu and Chung [16] from their

“full core plus correlation” (FCPC) wave functions. As for the hyperfine structure

parameters, the present results for which correlation is limited to n = 4 − 6 orbital

active sets are consistent with Nicolaides and Beck. However, the convergence pattern

shows that these limited orbital active sets in the SD expansion multiconfiguration

Hartree-Fock model do not make the complete story of the fine structure splittings

and that their evaluation still requires larger expansions. More surprising is the large

difference found for the 5/2 − 3/2 energy separation between the present results and

those reported by Hsu and Chung. The agreement between FCPC and MCHF+BP

was indeed found to be gratifying for three-electron ions [23]. The present MCHF+BP

3/2− 1/2 fine structure splitting, although sensitively larger than the FCPC result, is

closer to observation.

4.4. Hyperfine structure of 7Be−

7Be has a rather long half-life (T1/2 = 53.29 d) and is a good candidate for performing

atomic spectroscopy measurements. Like the stable isotope 9Be, its nuclear spin is

I = 3/2. The magnetic moment has been estimated recently by comparing hyperfine

structures of 2s 2S1/2 − 2p 2P o
1/2 for 7Be+ and 9Be+, as obtained from collinear fast-

beam laser spectroscopy with optical detection. The preliminary value reported in [6]

is µ = −1.398(15) µN . The quadrupole moment of this isotope has been estimated

to be −0.060 ≤ Q(7Be)≤ −0.069 b [1] from a set of parameters that reproduce

simultaneously the most important properties of 7Be, 7Li and 8B. We adopted the

mean value, i.e. Q(7Be)= −0.0645 b.

The hyperfine parameters and splittings calculated with these nuclear data and

the electronic parameters of the present work are reported in Table 7 and Table 8,

respectively. All the comments made for the stable isotope 9Be− concerning the effect

of the mixing of fine-structure levels, apply for 7Be−. One major difference however is
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the opposite sign of the electric quadrupole interaction term relatively to the magnetic

dipole contribution, due to the negative sign of the Q(7Be) quadrupole moment.

4.5. On the possible extraction of Q(7Be) from a spectroscopic study of the negative
ion

The quadrupole moment of the nucleus can be deduced from hyperfine structure

analysis provided that the studied atomic level has a J-value higher than 1/2. The

case of neutral beryllium is difficult because the J-value of its ground state is J = 0

and furthermore, as in light atoms, the hyperfine splitting constant is very small

which makes attempts to measure excited level HFS through optical spectroscopy

hazardous, the structure being comparable to the natural linewidth of the level. In

1967, Blachman and Lurio [8] studied the HFS of the metastable level 1s22s2p 3P o
1 .

In this case, the long lifetime of the level made it possible to perform radiofrequency

spectroscopy and to determine the hyperfine structure with a very high accuracy.

However, this experiment required a peculiar source using electron bombardment of

a thermal Be atomic beam, which would not be easy to realize on a low produced

radioactive element such as 7Be.

An alternative way is to perform an experiment on the ground term 2s2p2 4P of

the negative ion 7Be−. This term consists of three metastable levels J = 1/2, 3/2, 5/2.

The lifetime of the J = 3/2 level is of 42 µsec [24] which allows measurements in

the kHz precision range; the other two, J = 1/2 and 5/2 have lifetime much shorter,

respectively 0.73 and 0.33 µsec [22]. We can take advantage of this lifetime difference

to imagine a detection scheme of a RF resonance between HFS levels of the J=3/2

state.

The scheme of the proposed experiment is sketched in Fig. 2. We need to start

with a source of negative ions at low energy, in order to get a low velocity beam

(no more than a few tens Km/sec). This may be obtained using a sputter source

or a laser plasma source with a post acceleration of a few eV. The negative ions

from the beam, preferably in pulsed operation, are deflected by electric field plates to

separate ions from neutrals and then detected after a time of flight of around 30 µsec

using a channel-plate detector. As the metastable state 2s2p2 4P of Be− has only

the J = 3/2 level with a long lifetime, one will get rapidly a beam of Be− ions in

the level 2s2p2 4P3/2. The principle of the experiment is to measure precisely the
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frequencies of the different transitions F → F ± 1(F = 2, 1). This can be done using

RF excitations and magnetic resonance. The detection of resonance will be performed

thanks to the great difference in lifetime of the levels J = 3/2 (τ = 42 µsec) and

J = 5/2 (τ = 0.3 µsec). Using a first RF loop in the A-region, tuned on the transition

(J = 3/2, F = 2) → (J = 5/2, F = 3) at around 17.1 GHz, one depopulates the

level (J = 3/2, F = 2), reducing the signal of Be− to 11/16 of its maximum value

when taking into account the multiplicity of the different F -levels. In the B-region,

an identical loop is used to analyze the population of ions in the (J = 3/2, F = 2)

level after crossing the C-region. If no excitation occurs in this region, the signal on

the detector will stay unchanged. In the C-region the RF excitation between levels

J = 3/2, F = 2 → F = 3, 1 will be performed using two Ramsey loops. At resonance,

if the RF power in the Ramsey loops is properly adjusted, all the population of the

level F = 3 (or 1) is transferred to the level F = 2. This level will then be emptied

by the B-loop and the signal on the detector will be further reduced to either 4/16 or

8/16 of its maximum value, depending on the excitation to the F = 3 or F = 1 level,

respectively. It is also possible to detect electrons resulting from the autodetachment

following excitation by the B-loop. In this case, the resonance signal will appear on a

zero level. This increases the sensitivity of the detection but certainly would require

to add an acceleration voltage for the electrons just behind the B-loop where they

are created. For 7Be−, the splitting between HFS levels ∆EF−1,F has been estimated

by the ab initio calculations presented in this paper (see Table 8), for the transitions

J = 3/2, F = 2 → F = 3, 1. They are respectively given by 3A+B and 2A−B where

A and B are respectively the magnetic dipole and the electric quadrupole coupling

constant. The relatively large A3/2 factor (−111.5 MHz) should allow to well separate

the two resonances of interest. However, the B3/2 factor, from which one can extract

the quadrupole moment, is much smaller, being estimated to be −0.8 MHz from the

present work. Despite its smallness, this quantity should be still large enough to allow

its determination using the experiment described above: with a distant between the

Ramsey loops of 10 cm, the interaction time is of the order of 10 µsec, and the linewidth

of the resonance is of the order of 65 kHz. The central position of the resonance could

then still be measured with an accuracy of the order of the kHz, quite sufficient to

extract a reliable value of the B factor.
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Figure captions

• Fig. 1: Schematic diagram of the 7,9Be− 2s2p2 4PJ fine and hyperfine structures,

with their detachment treshold Be 2s2p 3P o.

• Fig. 2: Schematic diagram of an experiment designed to measure HFS splitting in

Be−. The level scheme, in the upper part of the drawing, indicates the transitions

excited using RF loops A, B and C.
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Tables and table captions

Table 1. Total energies of Be 2s2p 3P o and Be 2s2p2 4P together with the electron-
affinity of Be 2s2p 3P o as functions of the active set.

Be(1s22s2p 3P o) Be−(1s22s2p2 4P )

Active set Etot(a.u.) NCSF Etot(a.u.) NCSF EA(eV)

HF -14.5115018 1 -14.5090277 1 -0.0673
2 -14.5115767 4 -14.5090395 4 -0.0690
3 -14.5533693 56 -14.5527630 78 -0.0165
4 -14.5597543 208 -14.5661729 313 0.1746
5 -14.5636590 502 -14.5713284 784 0.2087
6g -14.5652854 942 -14.5733203 1493 0.2186
7g -14.5658835 1528 -14.5742324 2440 0.2272
8g -14.5661239 2260 -14.5746172 3625 0.2311
9g -14.5662361 3138 -14.5748012 5048 0.2331
10g -14.5662905 4162 -14.5748912 6709 0.2340

SD[10g] ∪ TQ[3] -14.5665738 4230 -14.5753383 6919 0.2385
SD[10g] ∪ TQ[4] -14.5666494 5238 -14.5764941 11062 0.2679
SD[10g] ∪ TQ[5] -14.5667212 7918 -14.5768124 35699 0.2746
SD[10g] ∪ TQ[6g] -14.5667304 10598 -14.5770444 85976 0.2807
SD[10g] ∪ TQ[7g] -14.5667336 13278 -14.5772259 161893 0.2855

other theory [15] 0.285(5)
other theory [16] 0.2891(10)
obs. [17] 0.29099(10)

Table 2. Hyperfine electronic parameters (all in a.u.) for Be− 2s2p2 4P

active set al asd ac bq

HF 0.1652998 0.0330600 6.5025430 0.0661199
2 0.1653476 0.0330695 6.5044221 0.0661388
3 0.1684524 0.0348313 7.3509623 0.0693240
4 0.1706113 0.0384247 7.6458337 0.0602512
5 0.1727152 0.0365575 7.6022947 0.0633231
6g 0.1736252 0.0375705 7.6428579 0.0696089
7g 0.1736801 0.0378516 7.6899468 0.0666196
8g 0.1736053 0.0373309 7.6805143 0.0649583
9g 0.1735641 0.0374753 7.6859930 0.0666256
10g 0.1735259 0.0375060 7.6916313 0.0657945

SD[10g] ∪ TQ[3] 0.1732088 0.0375499 7.6905958 0.0658541
SD[10g] ∪ TQ[4] 0.1735688 0.0378480 7.7167935 0.0656721
SD[10g] ∪ TQ[5] 0.1735219 0.0376892 7.7305532 0.0658304
SD[10g] ∪ TQ[6g] 0.1733976 0.0377008 7.7314404 0.0660029
SD[10g] ∪ TQ[7g] 0.1732338 0.0378126 7.7492123 0.0659507

other theory [11] 0.17171 0.03698 7.5646 0.06401
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Table 3. Hyperfine magnetic dipole A (MHz) parameters of 9Be−.

active set A1/2 (MHz) A3/2 (MHz) A5/2 (MHz)

HF -175.0877540 -79.0137399 -70.9550723
2 -175.1383492 -79.0365733 -70.9755794
3 -198.6400065 -89.2433182 -79.5849990
4 -207.0206921 -92.4824669 -82.7055323
5 -205.5509157 -92.2040347 -82.2772620
6g -206.7163926 -92.6030897 -82.7404506
7g -208.0448113 -93.1477419 -83.2213146
8g -207.7432084 -93.0899853 -83.1091527
9g -207.9094513 -93.1397471 -83.1670223
10g -208.0705003 -93.2044076 -83.2231685

SD[10g] ∪ TQ[3] -208.0612288 -93.1804486 -83.2046335
SD[10g] ∪ TQ[4] -208.7956421 -93.4739892 -83.4862797
SD[10g] ∪ TQ[5] -209.1668877 -93.6591829 -83.6176776
SD[10g] ∪ TQ[6g] -209.1987027 -93.6662208 -83.6231748
SD[10g] ∪ TQ[7g] -209.7097497 -93.8674495 -83.7993000

Table 4. Hyperfine electric quadrupole B (MHz) parameters of 9Be−.

active set B3/2 (MHz) B5/2 (MHz)

HF 0.657229 -0.821536
2 0.657416 -0.821769
3 0.689077 -0.861346
4 0.598894 -0.748617
5 0.629429 -0.786786
6g 0.691909 -0.864885
7g 0.662195 -0.827744
8g 0.645682 -0.807102
9g 0.662255 -0.827818
10g 0.653994 -0.817492

SD[10g] ∪ TQ[3] 0.654587 -0.818233
SD[10g] ∪ TQ[4] 0.652777 -0.815971
SD[10g] ∪ TQ[5] 0.654351 -0.817938
SD[10g] ∪ TQ[6g] 0.656065 -0.820082
SD[10g] ∪ TQ[7g] 0.655546 -0.819433

Table 5. Contributions to the diagonal and off-diagonal AJ,J′ and BJ,J′ parameters

(MHz) of 9Be−.

J J ′ Aorb Asd Acont A B

1/2 1/2 8.6497814 -3.1503649 -215.2091662 -209.7097497 0.0
3/2 3/2 -3.4599126 4.2844962 -94.6920331 -93.8674495 0.6555465
5/2 5/2 -5.1898688 -1.1341313 -77.4752998 -83.7993000 -0.8194331

1/2 3/2 -6.8382526 3.2377567 68.0551139 64.4546180 0.0561028
1/2 5/2 0.0 0.0 0.0 0.0 -0.4858641
3/2 5/2 -3.1781326 -1.2732698 31.6291587 27.1777563 -0.2172850
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Table 6. Hyperfine splittings of 9Be−.

first-order perturbation theory hfs matrix diagonalization

J ∆EF−1,F (MHz) M1 E2 M1 + E2 M1 M1 + E2

1/2 ∆E1,2 2A1/2 −419.4195 0.0 0.0 −419.4195 −420.1512 −420.1573

3/2 ∆E2,3 3A3/2 −281.6024 B3/2 0.6555 −280.9468 −283.3927 −282.7258
∆E1,2 2A3/2 −187.7349 −B3/2 −0.6555 −188.3904 −187.4982 −188.1476
∆E0,1 A3/2 −93.8674 −B3/2 −0.6555 −94.5230 −93.3030 −93.9688

5/2 ∆E3,4 4A5/2 −335.1972 4/5B5/2 −0.6555 −335.8527 −336.1864 −336.8346
∆E2,3 3A5/2 −251.3979 −9/20B5/2 0.3687 −251.0292 −251.2758 −250.9207
∆E1,2 2A5/2 −167.5986 −4/5B5/2 0.6555 −166.9430 −167.1035 −166.4481

Table 7. Contributions to the diagonal and off-diagonal AJ,J′ and BJ,J′ parameters

(MHz) of 7Be−.

J J ′ Aorb Asd Acont A B

1/2 1/2 10.2696192 -3.7403313 -255.5112174 -248.9819295 0.0
3/2 3/2 -4.1078477 5.0868504 -112.4249356 -111.4459329 -0.7995981
5/2 5/2 -6.1617715 -1.3465192 -91.9840382 -99.4923290 0.9994976

1/2 3/2 -8.1188468 3.8440889 80.7997415 76.5249836 -0.0684309
1/2 5/2 0.0 0.0 0.0 0.0 0.5926292
3/2 5/2 -3.7732990 -1.5117140 37.5523264 32.2673133 0.2650318

Table 8. Hyperfine splittings of 7Be−.

first-order perturbation theory hfs matrix diagonalization

J ∆EF−1,F (MHz) M1 E2 M1 + E2 M1 M1 + E2

1/2 ∆E1,2 2A1/2 −497.9639 0.0 0.0 −497.9639 −498.9907 −498.9819

3/2 ∆E2,3 3A3/2 −334.3378 B3/2 −0.7996 −335.1374 −336.8561 −337.6720
∆E1,2 2A3/2 −222.8919 −B3/2 0.7996 −222.0932 −222.5612 −221.7706
∆E0,1 A3/2 −111.4459 −B3/2 0.7996 −110.6463 −110.6492 −109.8350

5/2 ∆E3,4 4A5/2 −397.9693 4/5B5/2 0.7996 −397.1697 −399.3602 −398.5713
∆E2,3 3A5/2 −298.4770 −9/10B5/2 −0.4498 −298.9268 −298.3057 −298.7358
∆E1,2 2A5/2 −198.9847 −4/5B5/2 −0.7996 −199.7843 −198.2884 −199.0878
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Table 9. MCHF+BP fine structure splittings (in cm−1) of Be− 2s2p2 4P as a
function of the active set.

Active set 5/2− 3/2 3/2− 1/2

HF 0.273 0.595
2 0.273 0.595
3 0.298 0.600
4 0.539 0.672
5 0.597 0.709
6g 0.613 0.717
7g 0.636 0.728
8g 0.643 0.731
9g 0.647 0.733
10g 0.649 0.734

SD[10g] ∪ TQ[3] 0.649 0.733
SD[10g] ∪ TQ[4] 0.687 0.750
SD[10g] ∪ TQ[5] 0.703 0.757
SD[10g] ∪ TQ[6g] 0.718 0.764
SD[10g] ∪ TQ[7g] 0.732 0.771

other theory [11] 0.5695 0.6914
other theory [16] 0.6151 0.7024
obs. [22] 0.59(7) 0.74(7)


