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Abstract

A new arsp2K module is presented for evaluating the electron densitetion of any multi-
configuration Hartree-Fock or configuration interactiorvevéunction in the non relativistic or
relativistic Breit-Pauli approximation. It is first streskthat the density function is not a priori
spherically symmetric in the general open shell case. Waymiidding it as a spherical sym-
metric function are discussed, from which the radial etattiensity function emerges. This
function is written in second quantized coupled tensodatffor exploring the atomic spherical
symmetry. The calculation of its expectation value is penfed using the angular momentum
theory in orbital, spin, and quasispin spaces, adoptingne@ngdized graphical technique. The
natural orbitals are evaluated from the diagonalizatioefdensity matrix.
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Nature of physical problem
This program determines the atomic electronic densityerMICHF (LS) or Breit-Pauli €S J) approxima-
tion. It also evaluates the natural orbitals by diagonatjzhe density matrix.

Method of solution

Building the density operator using second quantizatiopheBical symmetry averaging - Evaluating the
matrix elements of the one-body excitation operators ircthdiguration state function (CSF) space using
the angular momentum theory in orbital, spin, and quasispates.

Restrictions on the complexity of the problem
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Group, pgf90, compiler.
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1. Introduction

In electronic structure theory there are several appraatthdescribe the behavior of elec-
trons in atoms and molecules. Most of them are based on the wature of the particles,
permitting the system to be described by wave functionsigemstates of the Schrodinger equa-
tion. The Hohenberg—Kohn (HK))/[1] theorems on the other heaydthat the electronic structure
of a system is completely determined by its ground statdreleclensity function. According to
the HK theorems, the energy of any system can be written asdidmal of this density func-
tion. Based on these results, within Density Function TW¢DFT), several methods have been
developed to describe atoms and molecules through theditgéanction [2]. The development
of density functionals which yield a system’s energy hasobee a major field of research in
Chemistry and Physics. Nowadays a lot of research is being tioinvestigate how the elec-
tron density function describes the system. In concept&dl far example, chemical reactivity
indices are defined, which indicate how a system behaveshemical reaction, by considering
perturbations to the electron density function. Althougdvesfunction methods were well de-
veloped before, DFT is now the most widely used electromigcstire method. The wide spread
use of DFT can be accounted to the relative computational wiék which energies can be de-
termined. Where a wave function describing Mparticle system involves the position- and
spin- coordinates of all electrons, a density functioncdbsig the same system, only depends
on the coordinates of one particle. Following the work of My [3], one can try to extract
physically essential features from the electron densitgfion.

Some of the present authors have established the periodicthe atoms in Mendeleev’s
periodic Table by making an information theoretical anislyd the electron density functions
as probability distributions [4]. Another work quantifideetrelativistic &ects on the basis of
a comparison of density functions calculated within the-oasfiguration Hartree—Fock and
Dirac—Fock approximationsl[5].

The present code is an extension of the Atomic Structurea&moksp2K [6] for evaluating
the atomic density function from non relativistic and refistic (in the Breit-Pauli approxima-
tion) multiconfigurationab initio wavefunctions of atomic systems, adopting dficeent ap-
proach for spin-angular integrations [7, 8]. It allows theastigation of correlationfiects on
the density function for any non-relativistic correlatiorodel, and of relativistic féects in the

Breit-Pauli approximation.



In quantum chemistry, the natural orbitals (NO) are knowprtwvide a particularly ficient
choice of single-particle states [9, 10]. Moreover, NO give most rapidly convergent approx-
imation to the total wave function and are often used as slsas$ifor generating a better wave
function in an iterative manner. In atomic physics, NO amelsaused, although they consti-
tute the orbital basis of the reduced form of the MCHF expamsfor helium-like and nominal
two-electron atomic systems |11]. It would be worthwhilestady their potential for more than
two electrons in the search offieient optimization strategies. The present code fills this logy

building the natural orbitals through the diagonalizatibithe density matrix.

2. On the symmetry of the density function

In this section we start by formulating the multiconfiguoativave function for a well defined
atomic state, and we calculate the corresponding dengitstitn. From this calculation, we
regain the specific angular (non-spherical) dependendeeadé¢nsity function. We also present

different ways for deriving a spherical electron density fuorcti

2.1. The multiconfiguration many-electron wavefunction

In the multiconfiguration approach, theelectron wavefunctio®,.s m ms IS @ linear combi-
nation ofM configuration state functions (CSFB),. s m ms Which are eigenfunctions of the total
angular momenturh?, the spin momentur8? and their projectionk, andS,, with eigenvalues
R2L(L + 1), #2S(S + 1), hBM_ andiMs, respectively

M
Porsmms (X1, - XN) = Z C D(aiLS M_Msg; X1, - Xn) . (1)
i

The set of variable$x;} represent the electron’s space and spin coordingtes (rj, o) =

(ri, %, ¢j, o). The individual CSFs are built from a set of one-electrangpbitals,

rimsm ) = Ra(1)¥in (9, 90sm () = +Pu(0)¥im (9, s () @

whereRy(r) = Pa(r)/r, Yim (9, ¢) andysm (o) are the radial, the angular and the spin parts of
the one electron functions. The mixing ¢beients{ci} and the radial function{R,,(r)} are
solutions of the multiconfiguration Hartree-Fock methoth@ MCHF approach. For a given set

of orbitals, the mixing coficient may also be the solution of the configuration intecac(iCl)



problem. The relativistic corrections can be taken intooaodt by diagonalizing the Breit-Pauli

Hamiltonian [12] in theLS Jcoupled CSF basis to get the intermediate coupling eigaoxe

W
Woam(Xe, -+ XN) = Z a O(iLiSiIM; Xq, - - - Xn) . 3
o1

2.2. The non-spherical density function

The so-called “generalized density function’ [3] or the sfiorder reduced density matrix

[13] is a special case of the reduced density matrix[[10, 3]
y1(X1,X'1) =N f\P(Xl’ X2, ..., XN) P (X 1, X2, ..., XN) OX2. .. dXN , (4)

whereW(x1, Xz, . .., XN) is the total wave function of aN electron system an@l*(xa, X2, ..., Xn)
is its complex conjugate. The spin-less total electron iefinction p(r) is defined as the first

order reduced density matrix, integrated over the spin aalliated forx; = X’
p(ri) = f)’l(xl, X1)doy. (5)
This electron density function is normalized to the numielectrons of the system
fp(r) dr = fp(l’) r?singdrddde = N . (6)

As discussed in_[13], the single particle density functiam de calculated by evaluating the

expectation value of thé(r) operator,
p(r) = f‘P(xl, X2, ..., XN) 0(r) P (X1, X2, . . ., Xn) OX10X2 ... dXy , (7

whereé(r) probes the presence of electrons at a particular pointanespnd can be written as

the one-electron first-quantization operator

N
5(r)y= > 6(r —ry). (8)
i=1
Expressing each(r — r;) term in spherical coordinates [14]
o =ri) = Fges 00 = 1) 8(8 - 1) 6(¢ — 1) . 9)
and introducing the closure relation
D Vi@, )Y@’ ¢) = (cos? — cos) 6l — '), (10)
Im
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the operator{{8) becomes

N N
5= D100 1) = 5 3 |6 =) Y Yin(0, 9)¥inl8ho )| - (11)
i=1 i=1

Im
The exact spin-less total electron density functidn (7)leted for an eigenstate with well-

defined quantum numberk$ M_Ms), is

1 N
p(r)FSMMs Z Yim(9, fp)r—z (PoLs M Mg Z O(r = 1i) Yy, @) PoLs m ms) (12)
Im i=1

It is important to realize that the spherical harmonic congras are limited to theeven con-
tributions, since the bra and ket states have the same pasitg-1)%ii. Applying the Wigner-

Eckart theorem [15] gives

2L N
1 L I L
p)SMMs = N Yio(®,9) 5 (1) M (Fatsll Y 6(r = 1) Y (9, @)l ¥ars)
lover=0 r -ML. 0 M_ i—1
L
= D5 M Ya o8, ¢) (13)

1=0

where

LsMMs _ 1 L-M L 2 L C
p(r)y e = 2 (-1 M0 M (Warsll El o(r — i) Yo (3, @)l[Wars) . (14)
—WiL L i=

This resuH recovers Fertig and Kohn’s analysis [17] for the densityregponding to a well-
defined (S M Ms) eigenstate of the Schrodinger equation. In this paperatithors observed
that the self-consistent field densities obtained via therela and Hartree-Fock methods gener-
ally violate the specific finite spherical harmonic conteip@)-S™Ms. They also mention that
this exact form can be obtained by spherically averagingfifeetive potential, yielding single-
particle states with good angular momentum quantum num@érs atomic structure software
packagesrsp2K [6] applies this approach, as was done in the original &dtartree-Fock the-
ory [18,/19, 11]. This implies two things: i) the density fiion o(r)-SMMs calculated from
any multiconfiguration wave function of the fori (1), is reopriori spherically symmetric, ii)
this density function will contain all spherical harmonigneponents (up tol2) as long as the

one-electron orbital active set spanning the configurapace id-rich enough.

1The same result can be obtained by reducing the many-atectthiced matrix element as a sum over one-electron
reduced matrix elements as donelin [16].
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The density function can also be expressed in second ga#otiZ3]. Introducing the nota-

tion g = nglgm, ms, for spin-orbitals, expressiohl(4) becomes
71060, X'1) = > Dpg WX 1)sg(x4) (15)
Pa
whereDy, are elements of the density matrix which are given by
Dpq = (Plajagl¥) (16)

The sum in eq.[(15) runs over all possible pairs of quartetguaihtum numberp andg. The
spin-less density functiof}(5) calculated frgifr) = (|5(r)|¥), using the second quantized
form of the operatof(9)

A 1
5(r) = D a8 Omym WM g O = 17) (9~ 9') 6 — ¢ urg(1"))
pg
= > a08q S Royt, (Y5 i (8, @Ry (1) Yigm, (9 ) , (17)
pg
yields
p(r) = " Dpg gy, Rty (DY, (3 @)Reg (1) Yigm, (0, ¢) - (18)
Pq

To illustrate the spherical harmonics content of the dgnisithe Hartree-Fock approxima-
tion, consider the atomic terms32p?( 2P)3d *F for which the M., Ms) = (+3, +3/2) subspace

reduces to a single Slater determinant
Watsmms = P(1872p°( °P)3d *F3.43/2) = 115182p,12po3d.2| . (19)
When evaluatind (18), all non-zef,q-values appear on the diagongal<£ q), yielding

p(r) Free3z = g o) + gz + Wap,, (V)12 + 10200 (NI + 13, (1) - (20)

This density has a cleaon-spherical angular dependence. However, referring tq [20]

J J
WH () = Yam(@: @) = D ba(d, M) Pan(cosd) = > b M) Yano(d¢)  (21)
n=0 n=0

one recovers the even Legendre polynomial content of thsiyealthough not reaching the
(2L = 6) limit Yg o1, ¢) of the exact density (13). However this limit will be attadhwhen
extending the one-electron orbital active set to higheutrgnomentum values for building a

correlated wave function.



Mixed contributions p # g) may appear in[(18) throughffediagonal matrix elements in
the CSF basis. For example, the interactiond¢ts>2p?( 3P)3d *F,3.3/2) with the angular
correlation componend(1°2p3d(3F)4f 4F.3.3/2) , a single electron excitationp?2 — 4f,
gives rise toY;,Y;, andY;] , Y, , contributions. But these contributions are also limite@ven
Legendre polynomials, as appearing in equafioh (13). lddstarting from the Clebsch-Gordan

series|[20]

l1+lo
Y|1m1(19, QD)YIZmZ(ﬂ, (p) Z Z [(2'1 + 1)(22 + 1)(2 + 1)

I= ||1 |2HT'I= |

12 ml 1o 2| [ P
(-1) Yim(, ¢)
0O 0O m N -m
(22)
and using
Yi-m(@, ¢) = (1) (8. ¢) (23)
one finds that any contribution of the tyWe, Yi,q arising from a single electron excitatifpg) —
ll.q) preserving the parity, ie—1) = (-1)"2, takes the form
1/2

@+ +1)(2A+1)
A

1+l
Yo N0 = 1S [

lever=Il1-I2|

i 12 | R PR
Yio(®, ¢) .
0O 0O -qg +q O
(24)
At this stage, we would like to stress that in an MCHF caldalathe density never contains —

what Fertig and Kohn [17] called — fiending” spherical harmonic components, whatever the

maximuml-value of the orbital active space.

2.3. The spherical density function

A sphericallysymmetric density function can be obtained for an arbit@®F ®,1sm ms by

averaging the (R + 1)(2S + 1) magnetic components of the spin-less density function

1
p(r)S = m ZP(V)LSMM > (25)

wherep(r)-SMMs s constructed according to ef. {18)
p(r)-SMMs = Z(‘D(yLsMMslaanl(I)aLs MMs ) Omg.me, ¥p(M)¥q(r) . (26)
Pq
Applying equations[{25) and (26) for the atomic terst2p?( 3P)3d *F considered in the

previous section, we simply get

PO = 1 (2P20) + 2P0 + Py(n) @)
8



which is, in contrastto eq. [20), obviously spherically symmetric. The sum owdr ,(Ms)
performed in [(2b) guarantees, for anjtsubshell, the presence of all necessary components
{Yim | m = —I,... + 1} with the same weight factor, which permits the applicatibtnsold’s
theorem|[21]

+l
21+1
Z [Yim, (8, 90)|2 = “ar (28)
TU
m=-I
and yields the spherical symmetry. This result is valid foy aingle CSF
1
P = =5 D awPA() . (29)
nl

whereqpy is the occupation number of-subshell. Its sphericity explicitly appears by rewriting

(29) as
D(r)

p(r) = p(r) Yool @)I* = 2 Yoo(#. ) . (30)
with
p(r) = rlz Zl P31 , (31)
and “
sz%m=2%%m=2%ﬂ%m. (32)

Theradial distribution function D(r) represents the probability of finding an electron between
the distances andr + dr from the nucleus, regardless of direcHoﬁ'his radial density function
reveals the atomic shell structure when plotted as funaifan Its integration over gives the

total number of electrons of the system

fom D(r)dr:fow rzp(r)dr=;Qn| =N. (33)

Where above the spherical symmetry of the average deh&yq2lemonstrated for a single
CSF thanks to Unsold’s theorem, it can be demonstrateceigémeral case by combinirig{25),
(@3) and the 3} sum rule[[15]

DD
M.

k L
-M. 0 M

] = (2k+ 1)Y2 80 (34)

2Note that, although denoted & this function (evaluated at the = 0) is not the so-called “modified electron
density” used in the context of isotope shifts![22]. Thedats indeeg(0) = 4rp(0).
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for eachk = 2l contribution [I#). However, the radial densjigr) will be more complicated
than [31), involving mixed contributions of the typg(r)Pn(r) = r’Ryi(r)Ra(r), as developed
below.

Instead of obtaining a spherically symmetric density fiorcty averaging the magnetic
component(r)-SMMs through eq.[(25), one can build a radial density operatacated to
the function [[3R) which is spin- and angular-independeaet, independent of the spin- and
angular ¢, ¢) variables. Adopting the methodology used by Helgakeal [13] for defining the

spin-less density operator, we write a general first quatitim spin-freeadial operator

N
f=> 1) (35)
i=1
in second quantization as
Pg
wheref,q is the one-electron integral
foq = f Y50 F(F)a(r? sinddrdddedo . 37)

Applying this formalism to the radial density operator

N
S8(r) = Z s(r-r, (38)
i=1

and using the spin-orbital factorizatidd (2) for bgtlandq quartets, we obtain the second quan-

tization form

5(r) = Z dpq(r) @l . (39)
Pq
with
dpq(r) = 5Iplq 5mpmq 5mspmsq R;p|p(r)anIq(r)r2 > (40)

where the Kronecker delta arises from the orthonormalitpprty of the spherical harmonics

and spin functions. With real radial one-electron funcsidhe operatof(39) becomes

6(r) = Z St Onymy Omem aﬂ,,,mmammms Rovi(NRu(r)r? (41)
w.l.m,msnlm.ms,
= > > ammaimm, R (DRu(n)r?. (42)
n,nlm,ms
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Its expectation value provides the radial density funciign) = r2p(r) = 4ar?p(r) defined by
(30) and[(3R).
Building the coupled tensor of ranks (00) from the [[2¢2)] components of the creation and

annihilation operators [23]

(an |an|)(00) = \/m Z an Imym, Snimm > (43)

the operatof(41) becomes
5y == 2@+ 1)2 (& 2n)gy. R(DRa(r)r2. (44)
|

The expectation value of this operator provides the sphkdensity function for any atomic
state. Note that, in contrast 0 {26), the tensorial rank3 ¢@rantee the diagonal character in

L, S, M, andMs, thanks to Wigner-Eckart theorem

L 0 L S 0o g
<a’LSM—MS|T(OO)la L'S'M{ M%) = (- 1)L+S—M|_—Ms{ ]{ ](aLSIIT(Oo)HarLrsr).

-My 0 M -Ms 0 Mg
(45)
Moreover, theM, /Ms independence emerges from the specjadydmbol
j 0 j, j-meo -1/2
= (1)) + 125} Sy - (46)
—m; 0 I’T‘(j

In other words, where the non-spherical components areegastit by the averaging process
(28), they simply do not exist and will never appear for thagiey calculated froni(44), for any
(ML, Ms) magnetic component.

The radial distribution functio®(r) = r?p(r) can be calculated from the expectation value
of the operator{44), using the wave functidh (1)[dr (3). lathost general case (expansian (3)),

using the [S)J-coupled form of the excitation operator,

(arTvla“')éOO)O = (a;'la“'):)?) : (47)

one obtains

(PaalFO, ) (48)

(Poamld(N)¥oam) = (—1)J_M{

11



with

FOP = N 2@+ D) Y (alyan)y 1, (nlnl) . (49)
1=1 nn
and
L, (W1,n) (r) = Ry(Ru(r)r?. (50)

The diagonal reduced matrix element (RME) evanuated wittBiteit-Pauli eigenvectol]3) has
the following form
(FaaIFPN W00y = > aay (D(aiLiSi)IFCUD(eL;S; ) (51)
N
where the RME in thel(S)J coupled basis reduces to

2J+1

m (D(ai LiSi)|||E;()OO)||‘D(CYjLjsj)>5Li,Li5si,sj

(52)

0

(0(ei LiSi IM)IFPOY| ()L S IMY)) = \/

and
(COR
'/:})(,)c% = —IZ: v2(2 +1) Z(alqam)oo L, (n'l,nl) . (53)
=1 n,n

From the analogy of the operatdr {53) and the non-relaitivise-body Hamiltonian op-
erator (see eq. (A5) of [24]), one observes that the anguaeficients of the radial functions
I, (W], nl) (r) are identical to those of the one-electron Hamiltonianaiddtegralsly n , as an-
ticipated from McWeeny analysis|[3]. These angularfioients can be derived by working out
the matrix elements of a one—particle scalar ope@‘aﬂ) between configuration state functions
with u open shells, as explicitly derived by Gaigaésl[25] who expressed them as a sum over

one—electron contributions

(®(aLS) '

FOl|a@Ls) = 3 (@(aLs) [l nyl))|| (e’LS)) (54)

nili,njlj

where
(@(aLS) [F(nli, nilp)|| @(e'LS))

= (_1)A+l V2(2;i + 1) R(/li,/lj,/\bra, Aket) 5|i,|j lp (nih, njlj)

) . . 00
X {5(ni, n;) (ni|iN' aiQiLiSi H[a(ljzl' 9 % a(f‘l/l'zs)

nl a’iQiLiSi)

+(1-6(ni, ny)) (niliN‘ @iQLiS ”a(l% 9

ni|iNi/ a’iQiLiSi)

N; lis
X (I’]j|jJ a/ijLij Ha(i/‘z)

N
n; j'a'ijLij)} . (55)
12



In this last expression, = | or s, (O(aLS)| and|®(a’LS)) are respectively bra and ket functions
with u open subshells,

b ki
APra = (LiSi, L;S;, Li-Siv, Lj/Sj/) “ and Aket = (LiSi, L;Sj, LiSir, LjrSjr) o denote the respec-

tive sets of active subshell angular momenta. The operaﬁﬁ?’s are second quantization op-

erators in quasispin space of raqk= 1/2. The operatoa(l‘j';‘zn m = aﬂf)nﬁ creates electrons
with angular momentum quantum numbémsy, s, ms and its conjugat(af“l'/sz)m m = éﬂf,)ns =

(—1)'+S*m*msa9§1) m, annihilates electrons with the same quantum numbefss, ms in a given
subshell. The ccfﬁcientR(/li, Aj, AP3 A"et) is the recoupling matrices in ands- spaces and

is a phase factor.

3. Density matrix and natural orbitals

Using [48), [51),[(B2) and(%5), the radial distribution ¢tion gets the following form

D(r) = r?p(r) = Y a&Dij(Nay = > a'| >- > v 1,(vlnh]ay, (56)
ij ij

I mn

which can be rewritten in a compact form

D(r) = > > phealp(l, ), (57)
I n'n
with
Phin= D8 Vo i (58)

=
Thes,), Kronecker appearing if_(55) assujres the block-structutkeoflensity matriy whose
elements are defined Hy {58) for thangular symmetry.
The natural orbitals (NO) are defined as the one-electroctitums that diagonalize the den-
sity matrixp
C'pC=5. (59)

Within a specific anguldrsymmetry, the eigenvalue problem for the relevallbck
Jch=clp (60)
defines the natural radial orbitals through the followiramsformation

Ra(r) = > chRu(r) . (61)

The eigenvaluegl!, = ﬁLk} are interpreted as the occupation numbers of the ffQ&)}.
13



4. Algorithm description

To calculate the radial density function and the naturaitaldbfrom an arbitraryN-electron
wavefunction?, v, we wrote a FORTRAN implementation of equatiénl(48), as aaresion of
thearsp2K package. The essential part in the calculation of theitiefumction, is the evaluation
of the reduced matrix elemenf({51). In pseudo-code, thecextimatrix elemenf($1) is written

as

(Paa IFLWog) = > > @y > " 1(u, v) UNITELEMENT (1, v)
j [T

SPIN.ANGULAR _DENSITY (CSF, 1; CSF;,v; 00). (62)

where
UNITELEMENT (u,v) = —[l,, §,]%6(I,,, ). (63)

The routine SPINANGULAR_DENSITY, is inspired by the routine NONHIPER of thés hy-
perfine structures program of ATSP2K. It organizes the datmn of the spin-angular part of
(59) by calling the subroutine ONEPARTICLE1 or ONEPARTIC2LEom [6]. ONEPARTI-
CLEL1 performs the calculation of the spin-angular part wthenone-electron operator acts on
one open shell and ONEPARTICLE2 performs the calculatioemwthe operator acts on two
open shells. Both calculate the spin-angular part usingxpeesion[(55) in which, (nil;, njl;) =
1. The products of the weight factors with the correspondipig-angular part are stored and
accumulated in the two dimensional array FACTORMATRIX() where the rows and columns
are defined by then{) subshell quantum numbers of the bra and ket, respectvAIJTORMA-
TRIX is the precursor of the density matrx{58). The produmiithe array elements with their
corresponding radial pakt (n'l, nl) are accumulated to build the radial distribution functBi)¢
The reader is referred to the flowchart in figlite 1 for a schienoarview of the calculation of
the density function.

The NOs are obtained by diagonalizing this matrix and usiegigenvectors to construct the
orbitals. The diagonalization of the density matfixl(5%é&formed using thesSYEV subroutine
from the Lapackl[26] library. This routine computes all gigalues and eigenvectors for a given

real symmetric matrix. The NOs are ordered and labelledrdiogto their occupation numbers

{/1:( = ﬁ:(k}
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Most of the subroutines needed #nsity exist inhfs of ATSP2K, besides the routines
from the ATSP2K libraries. The new modules @eensity.f, spin_angular density.f and
unitelement.f. The codereadwfn.f that reads in the wave functiondfiirs from the one
encountered ilbfs by the COMMON/ADATA2/AT, TT,ELNAME (NWD) needed to store the ATOM,
TERM and ELNAME variables.

As an illustration, an interactive session is describegpeadixXA, for an = 3 CAS-MCHF
expansion of the beryllium ground state (63 CSFs). Upon i@t of density, the user is
asked to specify the name of the data files, which were olatdioen an ATSP2K rundensity
then reads the CSF weightg;{ and{a;} for the non-relativisic and Breit-Pauli expansions, re-
spectively), the configuration state functions quantum inems and the radial functions from the
files. The conventions of the data and the file types, sumemdiiztabld L, were adopted from
ATSP2K. However, for a relativistic calculation, the should be renamed filel and edited to
extract the selected relativistieeigenvector of interest.

In an interactive sessiodensity asks the user a few questions concerning the output and
wether the NOs should be evaluated. In téable 2 we list and cemhthe questions. Most of the
output, however, is written to disk. The output files prodiibg the program are summarized
in table[3. Thename . d file, which is always generated, contains the radial distiitm D(r) and
densityp(r) functions. Thedensity program by default generates some output to the standard
out: the “modified electron density” [22] at the nuclepé) = 47p(0)), the occupation numbers
of the natural orbitals, with their composition in terms bé&toriginal orbitals, and as a final
check, the integral of the density function that should ghetotal number of electrons accord-
ing to (33). ThePn(p) = r 2P, (r) functions appearing in the filesame .p1t andname.n
are defined in the logaritmic variabte= log,(Zr) [11] for the original and natural orbitals re-
spectively. If the user asks for more detailg€s’ to the questio®RINT ALL DATA (y/*)),
density prints out the contributions to the reduced matrix eleni&8},(providing for each pair
(i, j) of CSFs, the labelsu(v) of the orbitals involved, the corresponding spin-anguisefti-
cient, together with the relevant weights prodwga(). Using this option, the user also gets the
contributions to the modified density at the nucleus, themof the input orbitals, the matrix
elements of the density matrix, and the natural orbitaléofleethey are sorted according to their
occupation number), with their complete eigenvector cositjom.

To install the program (FORTRAN 90 compilation and linkingiwthe ATSP2K libraries),
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the providedistaLL script should be edited to set the appropriate path andamwient variables.

5. Applications and examples

To illustrate the data in the output files, we plotted in fighrine radial density distribution
D(r) = r?p(r) from the. d output file calculated for a CAS-MCHF wave function of theydum
ground state (Bes£2<? 1S), using an = 9 orbital active set. In the same figure, the Hartree-Fock
radial density is compared with the one obtained with twgelation models: i) the@ = 2 CAS-
MCHF expansion, largely dominated by the near-degeneraxingnassociated to the Layzer
complex ¥%{2s* + 2p?} and i) then = 9 CAS-MCHF. From the plotted results we notice that
the density of then = 2 calculation already contains the major correlatiffie@s, compared to
then = 9 calculation. Indeed, the density does not seem to charméog foing from then = 2
to then = 9 orbital basis, the valence double excitatiai2p? contributing for 9.7% of the wave
function. From the energy point of view however, this oba#ion is somewhat surprising (see
table[4): the correlation energy associated tortke 2 CAS-MCHF solution “only” represents
47% of then = 9 correlation energy.

In a separated pair-MCHF approach, the reduced forms of 8feeXpansions are often used
to get a compact multiconfiguration representation of tatestnd to avoid possible variational
redundancies between orbital rotations and mixingifozents transformations. For some spe-
cific cases, the so-produced MCHF one-electron functioesathing else than the natural or-
bitals [11]. For expansions closed under orbital rotatiome can test our density computational
tool by: 1) perfoming an (unreduced) MCHF calculation, 2)aof the natural orbitals from the
diagonalization of the density matrix and 3) making a Cl gkltion in the resulting NO basis.
Both calculations should yield the same total energy for tather diferent representations of
the same total wave function. Amongst the two, the NO-CSFResion is naturally condensed.
This is illustrated in tablg]5 for a = 5 SD-MCHF valence correlation calculation on the ground
state of Be E = —14.619 083 a.u., using a Hartree-Fock frozen core). The eigtorgecalcu-
lated in both MCHF and NO one-electron bases are reported¢@mgared to each other. Note
that, in this specific case (a pair 86° symmetry), the transformation that diagonalizes the den-
sity matrix eliminates thefb-diagonal i # ') contributions ¥nin’l [27]. The reduction in the
number of CSFs (36> 15) through the use of NOs is quite impressive. Far-a6 SD-MCHF

valence correlation calculation the CI-NO approach yield3SF expansion with 29 terms less
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and for a CAS-MCHF = 9 wave function (271 733 CSFs), the NO basis leads to a rexuafi
15 695 CSFs.

As a third example, we illustrate the influence of relaticigffects — in the Breit-Pauli ap-
proximation — on the density function of the Be-like®Catom, by comparing the densities of
the fine-structure states®s2p 3P;, *P; and>P;. From the plots in figurgl3 and the data given
in table[6 we observe that the largest enerdjedeénce corresponds to the largedtatience in
density function. More bound is the level, higher is the glmtdensity in the inner region.

When studying the electronffaities, it is often interesting to investigate thefdrential
correlation &ects between the negative ion and the neutral system [2§Lré# displays the
density functionD(r) of both the [Ne]3?3p* 3P ground state of neutral Sulphur (S) and the
[Ne]3s?3p° 2P° ground state of the negative ion,Svaluated with elaborate correlation models
[29], together with their dferenceAD(r). The latter reveals where the “extra” electron lies and

its integration gives one, as it should.
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A. An interactive session

$cat n3.c

1s( 2) 2s( 2)
150 150 1S
1s( 2) 2s( 1) 3s(1)
1S0 2S1 281 2S5 1S
1s( 2) 2p( 2)
1S0 1S0 1S
1s( 2) 2p( 1) 3p(1)
150 2P1 2P1 2P 1S
1s( 2) 3s( 2)
150 1S0 1S
1s( 2) 3p( 2)
150 150 1S
1s( 2) 3d( 2)
150 1S0 1S
1s( 1) 2s(2) 3s(1)

3p( 4)

180

3p( 2) 3d( 2)
150 180 18

3p( 2) 3d( 2)
1D2 1D2 18

3p( 2) 3d( 2)
3P2 3P2 1S

3d( 4)

180

3d( 4)

154
*

$cat n3.1
Be Z = 4.0 NEL = 0 NCFG = 63

2%J = 0 NUMBER = 1

Ssms = 0.484179758

1 -14.654414586 1s(2).2s(2)_1S
0.95181933 0.00029779 0.30027819 0.00037936-0.00118903-0.00023749-0.01763502
0.00019391-0.04365498 0.00316223-0.00663489 0.00377678-0.00043175 0.00173694
-0.00032836-0.00086628 0.00002903 0.00159570-0.00108079-0.00181964 0.00002085
-0.00001498-0.00000941 0.00415462 0.00703251-0.02349037 0.02848932-0.00012045
-0.00265663 0.00007304-0.00016224-0.00019179 0.00009463 0.00016368 0.00001426
0.00011178-0.00003997 0.00061770 0.00194285-0.00725367-0.00004543 0.00897260
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0.00000543-0.00001468-0.00005233-0.00000271-0.00000675-0.00000998-0.00002343
0.00003445 0.00000814-0.00013590-0.00000014-0.00000679-0.00002475 0.00042840
0.00000708-0.00000844-0.00052396 0.00000473 0.00000004 0.00000119 0.00000002
$density

Density calculation, Summer 2009

Give <name> of the <name>.c, <name>.l <name>.w files:
n3

Files: n3

PRINT THE ORBITALS (*/n)

Printout orbitals

PRINT THE MATRIX (*/n)

Printout the matrix

CALCULATE NATURAL ORBITALS (*/n)

Calculate natural orbitals

PRINT ALL DATA (y/*)

Do not print all informations

ANALYSING THE CALCULATION

ACCURACY IS SET TO 1.0000000000000007E-016

STATE (WITH 63 CONFIGURATIONS):

THERE ARE 6 ORBITALS AS FOLLOWS:
1s 2s 2p 3s 3p 3d

THERE ARE O CLOSED SUBSHELLS COMMON TO ALL CONFIGURATIONS AS FOLLOWS:

NORM OF WEIGHTS = 1.000000004562740
ATOM Be TERM 1Se

ALL WAVEFUNCTIONS EXIST.

START OF THE DENSITY CALCULATION

MODIFIED ELECTRON DENSITY AT THE NUCLEUS:

0= 444 .31734212383130000

EIGENVECTOR:
1 = Eigenvalue 6 : 0.19968595313710157E+01

1s ’=

-0.99450714610441153E+00 is AZ= 0.14887071657598840E+02
0.10466865508139691E+00 2s AZ= 0.10194455194727872E+01

-0.94819357413400507E-04 3s AZ= 0.23772474518338814E+02
2 = Eigenvalue 5 : 0.18147702141513149E+01

2s ’=

0.99450712354440736E+00 2s AZ= 0.10194455194727872E+01
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[eNe)

SUl

INTEGRAL OF THE DENSITY FUNCTION:

N

.10466862950576727E+00
.24334504925053317E-03

= Eigenvalue 2 : 0
-

.99999996589623770E+00
.11976912542329965E-03
.23208377825771107E-03

= Eigenvalue 4 : 0
’=

.99999853877956664E+00
.17095141798808027E-02

= Eigenvalue 3 : 0
=

.99999853877956664E+00
.17095141798808027E-02

= Eigenvalue 1 : 0
I=

.10000000000000000E+01

M OF EIGENVALUES

1s
3s

AZ=
AZ=

0.14887071657598840E+02
0.23772474518338814E+02

.12503444827533565E-02

3s
1s
2s

AZ=
AZ=
AZ=

0.23772474518338814E+02
0.14887071657598840E+02
0.10194455194727872E+01

.18458626963217419E+00

2p
3p

AZ=
AZ=

0.15057313981228271E+01
0.51881186928943286E+02

.18993473382529018E-02

3p
2p

AZ=
AZ=

0.51881186928943286E+02
0.15057313981228271E+01

.63431127544789989E-03

3d

= 4.00000001825096200

DENSITY FUNCTION IS IN FILE n3.d

EN

D.

AZ=

4.000000018250959

0.31738718272621771E+00
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extension data in the file

.cC configuration state function (CSF) expansion

W radial wave functions (numerical values in binary form)

il expansion co@cients from a non-relativistid S) calculation
j expansion co@cients from a Breit-Paulil(S J) calculation

Table 1: File convention

Question Answer Implication

PRINT THE ORBITALS (*/n) y The input radial functions will be written toplt .

PRINT THE MATRIX (*/n) y The density matrix will be written tomatrix .

CALCULATE NATURAL ORBITALS (*/n) y Calculate the NOs and write them on (formatted)
and . nw (unformatted) files.

PRINT ALL DATA (y/*) y Detailed output written to std out:

MODIFIED DENSITY AT THE NUCLEUS
NORM OF THE ORBITALS

DENSITY MATRIX

EIGENVALUES AND EIGENVECTORS

Table 2: Questiongensity asks the user.#" indicates the default answer.

extension data in the file
.plt i, Ru(ri), Pr(ri) = riRu(ri), Puiloi) = r /Pa(ri)

.d ri, p(ri), D(r) = rPp(ri)
.n ri, R(ri), Pri(ri) = riRa(ri), Pui(os) for Natural Orbitals
.ow analogue of w for the Natural Orbitals (contairi, (o;))

Table 3: Output files created ld¢nsity

model energy (a.u.) correlation energy (a.u.)
HF -14.573 023
n=2-CAS -14.616856 E"™2-E"F =0.043832
n=9-CAS -14.667013 E™°-E"F = 0.093986

Table 4: Total energy for the ground state of Be witfialient correlation models.
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CSF MCHF basis  Natural orbital basis

1s( 2) 2s( 2) 0.95282855 0.95370264
150 180 18

1s( 2) 2s( 1) 3s( 1) 0.03858929 0.00000000
150 281 281 2S 1S

1s( 2) 2s( 1) 4s( 1) -0.01524193 0.00000000
150 281 251 2S 1S

1s( 2) 2s( 1) 6s( 1) 0.00133387 -0.00000001
150 281 281 2S 1S

1s( 2) 2p( 2) 0.00133387 0.29736974
150 180 1S

1s( 2) 2p( 1) 3p( 1) -0.00032489 0.00000000
1S0 2P1 2P1 2P 1S

1s( 2) 2p( 1) 4p( D) -0.00019862 0.00000000
1S0 2P1 2P1 2P 1S

1s( 2) 2p( 1) 5p( 1) 0.00089172 -0.00000001
1S0 2P1 2P1 2P 1S

1s( 2) 3s( 2) -0.03930620 -0.04031077
1S0 150 18

1s( 2) 3s( 1) 4s( 1) -0.00463218 0.00000000
150 281 251 2S 1S

1s( 2) 3s( 1) 6s( 1) 0.00091733 0.00000000
150 281 281 2S 1S

1s( 2) 3p( 2) 0.29736945 0.00532117
1S0 150 18

1s( 2) 3p( 1) 4p( 1) -0.00003969 0.00000000
1S0 2P1 2P1 2P 1S

1s( 2) 3p( 1) 5p( 1) 0.00024549 0.00000000
1S0 2P1 2P1 2P 1S

1s( 2) 3d( 2) -0.01669194 -0.01669247
150 180 18

1s( 2) 3d( 1) 4d( 1) 0.00005217 0.00000000
1S0 2D1 2D1 2D 1S

1s( 2) 3d( 1) 5d( 1) -0.00011379 0.00000000
1S0 2D1 2D1 2D 1S

1s( 2) 4s( 2) -0.00422002 -0.00432946
150 180 18

1s( 2) 4s( 1) 5s( 1) -0.00107435 0.00000000
150 281 281 2S 1S

1s( 2) 4p( 2) 0.00182955 0.00184355
150 180 18

1s( 2) 4p( 1) 5p( 1) 0.00032865 0.00000000
1S0 2P1 2P1 2P 1S

1s( 2) 4d( 2) -0.00361419 -0.00363174
150 180 18

1s( 2) 4d( 1) 6d( 1) 0.00030308 0.00000000
1S0 2D1 2D1 2D 1S

1s( 2) 4£( 2) 0.00618640 0.00621375
1S0 150 18

1s( 2) 4f( 1) 5£( 1) -0.00048678 0.00000000
1S0 2F1 2F1 2F 1S

1s( 2) 5s( 2) -0.00160546 -0.00136552
1S0 150 18

1s( 2) 5p( 2) -0.00141498 -0.00149216
150 180 18

1s( 2) 5d( 2) -0.00103723 -0.00101914
1S0 150 18

1s( 2) 5f( 2) 0.00188266 0.00185530
150 180 18

1s( 2) 5g( 2) -0.00284386 -0.00284386
150 180 18

Table 5: Comparison of Be = 5-valence eigenvectors in the MCHF and NO bases.
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model energy (a.u.) energyftirence (a.u.)
1s°22p 3P;  -68.032 086
3p; -68.031473  AE;p=0.000 613
3p; -68.030102  AEp; = 0.001 370

Table 6: Fine structure total energies of\s?2s2p 3p°

Read and parse the configuration state funaiiatme . c
Read and parse the mixing ¢beientsname . 1
Read and parse the wavefunctioime . w

For each CSF in the Bré¥,jm|

For each CSF in the Bi&,jm)

Calculate the weight produeta;

and the spin-angular part.
Store the product in the FACTORMATRIX
entry (il;, njl;).

For each entry in the FACTORMATRIX

Add to the density the product of
the factor matrix entry times the
radial functiond, (i, v)

Write density function tmame . d

Figure 1: Flowchart of the Density program
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Figure 2: Density of Be'S ground state for dierent CAS-MCHF wave functions. Densityfidirences have been scaled
by a factor 100.

D(r) or AD(r)/ag*

o D(r)SF’o
- D(r)°P1 - D(r)™Po
-~ D(r)*P2 - D(r)°P1 1

| | |
0 0.5 1 15 2 2.t

r/ag

Figure 3: Comparison of thes12s2p 3Pg, 3PS and®P; radial density functions of &. Density diferences have been
scaled by a factor 10 000.
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Figure 4: Ground state S and 8ensity functions [29]. Density flerences have been scaled by a factor 30.
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