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Abstract

A new atsp2K module is presented for evaluating the electron density function of any multi-

configuration Hartree-Fock or configuration interaction wave function in the non relativistic or

relativistic Breit-Pauli approximation. It is first stressed that the density function is not a priori

spherically symmetric in the general open shell case. Ways of building it as a spherical sym-

metric function are discussed, from which the radial electron density function emerges. This

function is written in second quantized coupled tensorial form for exploring the atomic spherical

symmetry. The calculation of its expectation value is performed using the angular momentum

theory in orbital, spin, and quasispin spaces, adopting a generalized graphical technique. The

natural orbitals are evaluated from the diagonalization ofthe density matrix.
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1. Introduction

In electronic structure theory there are several approaches to describe the behavior of elec-

trons in atoms and molecules. Most of them are based on the wave nature of the particles,

permitting the system to be described by wave functions, as eigenstates of the Schrödinger equa-

tion. The Hohenberg–Kohn (HK) [1] theorems on the other handsay that the electronic structure

of a system is completely determined by its ground state electron density function. According to

the HK theorems, the energy of any system can be written as a functional of this density func-

tion. Based on these results, within Density Function Theory (DFT), several methods have been

developed to describe atoms and molecules through their density function [2]. The development

of density functionals which yield a system’s energy has become a major field of research in

Chemistry and Physics. Nowadays a lot of research is being done to investigate how the elec-

tron density function describes the system. In conceptual DFT for example, chemical reactivity

indices are defined, which indicate how a system behaves in a chemical reaction, by considering

perturbations to the electron density function. Although wave function methods were well de-

veloped before, DFT is now the most widely used electronic structure method. The wide spread

use of DFT can be accounted to the relative computational ease with which energies can be de-

termined. Where a wave function describing anN-particle system involves the position- and

spin- coordinates of all electrons, a density function, describing the same system, only depends

on the coordinates of one particle. Following the work of McWeeny [3], one can try to extract

physically essential features from the electron density function.

Some of the present authors have established the periodicity of the atoms in Mendeleev’s

periodic Table by making an information theoretical analysis of the electron density functions

as probability distributions [4]. Another work quantifies the relativistic effects on the basis of

a comparison of density functions calculated within the one-configuration Hartree–Fock and

Dirac–Fock approximations [5].

The present code is an extension of the Atomic Structure Packageatsp2K [6] for evaluating

the atomic density function from non relativistic and relativistic (in the Breit-Pauli approxima-

tion) multiconfigurationab initio wavefunctions of atomic systems, adopting an efficient ap-

proach for spin-angular integrations [7, 8]. It allows the investigation of correlation effects on

the density function for any non-relativistic correlationmodel, and of relativistic effects in the

Breit-Pauli approximation.
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In quantum chemistry, the natural orbitals (NO) are known toprovide a particularly efficient

choice of single-particle states [9, 10]. Moreover, NO givethe most rapidly convergent approx-

imation to the total wave function and are often used as a basis set for generating a better wave

function in an iterative manner. In atomic physics, NO are rarely used, although they consti-

tute the orbital basis of the reduced form of the MCHF expansions for helium-like and nominal

two-electron atomic systems [11]. It would be worthwhile tostudy their potential for more than

two electrons in the search of efficient optimization strategies. The present code fills this gap by

building the natural orbitals through the diagonalizationof the density matrix.

2. On the symmetry of the density function

In this section we start by formulating the multiconfiguration wave function for a well defined

atomic state, and we calculate the corresponding density function. From this calculation, we

regain the specific angular (non-spherical) dependence of the density function. We also present

different ways for deriving a spherical electron density function.

2.1. The multiconfiguration many-electron wavefunction

In the multiconfiguration approach, theN-electron wavefunctionΨαLS ML MS is a linear combi-

nation ofM configuration state functions (CSFs)Φαi LS ML MS which are eigenfunctions of the total

angular momentumL2, the spin momentumS2 and their projectionsLz andSz, with eigenvalues

~
2L(L + 1) , ~2S(S + 1), ~ML and~MS, respectively

ΨαLS ML MS (x1, · · ·xN) =
M∑

i=1

ci Φ(αiLS MLMS; x1, · · ·xN) . (1)

The set of variables{x j} represent the electron’s space and spin coordinatesx j ≡ (r j, σ j) ≡

(r j , ϑ j , ϕ j, σ j). The individual CSFs are built from a set of one-electron spin-orbitals,

ψnlml sms(x) = Rnl(r)Ylml (ϑ, ϕ)χsms(σ) =
1
r

Pnl(r)Ylml (ϑ, ϕ)χsms(σ) , (2)

whereRnl(r) ≡ Pnl(r)/r, Ylml (ϑ, ϕ) andχsms(σ) are the radial, the angular and the spin parts of

the one electron functions. The mixing coefficients{ci} and the radial functions{Rnj l j (r)} are

solutions of the multiconfiguration Hartree-Fock method inthe MCHF approach. For a given set

of orbitals, the mixing coefficient may also be the solution of the configuration interaction (CI)
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problem. The relativistic corrections can be taken into account by diagonalizing the Breit-Pauli

Hamiltonian [12] in theLS J-coupled CSF basis to get the intermediate coupling eigenvectors

ΨαJM(x1, · · · xN) =
M′∑

i=1

ai Φ(αiLiSi JM; x1, · · · xN) . (3)

2.2. The non-spherical density function

The so-called “generalized density function” [3] or the “first order reduced density matrix”

[13] is a special case of the reduced density matrix [10, 3]

γ1(x1, x′1) = N
∫
Ψ(x1, x2, . . . , xN) Ψ∗(x′1, x2, . . . , xN) dx2 . . .dxN , (4)

whereΨ(x1, x2, . . . , xN) is the total wave function of anN electron system andΨ∗(x1, x2, . . . , xN)

is its complex conjugate. The spin-less total electron density functionρ(r ) is defined as the first

order reduced density matrix, integrated over the spin and evaluated forx1 = x′1

ρ(r1) =
∫

γ1(x1, x1)dσ1. (5)

This electron density function is normalized to the number of electrons of the system
∫

ρ(r ) dr =
∫

ρ(r ) r2 sinϑdrdϑdϕ = N . (6)

As discussed in [13], the single particle density function can be calculated by evaluating the

expectation value of theδ(r ) operator,

ρ(r ) =
∫
Ψ(x1, x2, . . . , xN) δ(r ) Ψ∗(x1, x2, . . . , xN) dx1dx2 . . .dxN , (7)

whereδ(r ) probes the presence of electrons at a particular point in space and can be written as

the one-electron first-quantization operator

δ(r ) =
N∑

i=1

δ(r − r i) . (8)

Expressing eachδ(r − r i) term in spherical coordinates [14]

δ(r − r i) =
1

r2 sinϑ
δ(r − r i) δ(ϑ − ϑi) δ(ϕ − ϕi) , (9)

and introducing the closure relation

∑

lm

Ylm(ϑ, ϕ)Y∗lm(ϑ′, ϕ′) = δ(cosϑ − cosϑ′) δ(ϕ − ϕ′) , (10)
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the operator (8) becomes

δ(r ) =
N∑

i=1

δ(r − r i) =
1
r2

N∑

i=1

δ(r − r i)
∑

lm

Ylm(ϑ, ϕ)Y∗lm(ϑi, ϕi)

 . (11)

The exact spin-less total electron density function (7) evaluated for an eigenstate with well-

defined quantum numbers (LS MLMS), is

ρ(r )LS ML MS =
∑

lm

Ylm(ϑ, ϕ)
1
r2
〈ΨαLS ML MS |

N∑

i=1

δ(r − r i) Y∗lm(ϑi , ϕi)|ΨαLS ML MS〉 (12)

It is important to realize that the spherical harmonic components are limited to thel-even con-

tributions, since the bra and ket states have the same parityπ = (−1)
∑

i l i . Applying the Wigner-

Eckart theorem [15] gives

ρ(r )LS ML MS =

2L∑

leven=0

Yl 0(ϑ, ϕ)
1
r2

(−1)L−ML


L l L

−ML 0 ML

 〈ΨαLS‖
N∑

i=1

δ(r − r i) Y∗l (ϑi, ϕi)‖ΨαLS〉

=

L∑

l=0

ρ(r)LS ML MS

2l Y2l 0(ϑ, ϕ) (13)

where

ρ(r)LS ML MS

2l =
1
r2

(−1)L−ML


L 2l L

−ML 0 ML

 〈ΨαLS‖
N∑

i=1

δ(r − r i) Y∗2l(ϑi , ϕi)‖ΨαLS〉 . (14)

This result1 recovers Fertig and Kohn’s analysis [17] for the density corresponding to a well-

defined (LS MLMS) eigenstate of the Schrödinger equation. In this paper, the authors observed

that the self-consistent field densities obtained via the Hartree and Hartree-Fock methods gener-

ally violate the specific finite spherical harmonic content of ρ(r )LS ML MS . They also mention that

this exact form can be obtained by spherically averaging theeffective potential, yielding single-

particle states with good angular momentum quantum numbers. The atomic structure software

packageatsp2K [6] applies this approach, as was done in the original atomic Hartree-Fock the-

ory [18, 19, 11]. This implies two things: i) the density function ρ(r )LS ML MS calculated from

any multiconfiguration wave function of the form (1), is nota priori spherically symmetric, ii)

this density function will contain all spherical harmonic components (up to 2L) as long as the

one-electron orbital active set spanning the configurationspace isl-rich enough.

1The same result can be obtained by reducing the many-electron reduced matrix element as a sum over one-electron
reduced matrix elements as done in [16].
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The density function can also be expressed in second quantization [3]. Introducing the nota-

tion q ≡ nqlqmlqmsq for spin-orbitals, expression (4) becomes

γ1(x1, x′1) =
∑

pq

Dpq ψ
∗
p(x′1)ψq(x1) , (15)

whereDpq are elements of the density matrix which are given by

Dpq ≡ 〈Ψ|a†paq|Ψ 〉 . (16)

The sum in eq. (15) runs over all possible pairs of quartets ofquantum numbersp andq. The

spin-less density function (5) calculated fromρ(r ) = 〈Ψ|δ̂(r )|Ψ 〉, using the second quantized

form of the operator (9)

δ̂(r ) ≡
∑

pq

a†paq δmsp ,msq
〈ψp(r ′)| 1

r2 sinϑ
δ(r − r ′) δ(ϑ − ϑ′) δ(ϕ − ϕ′)|ψq(r ′)〉

=
∑

pq

a†paq δmsp ,msq
R∗nplp

(r)Y∗lpml p
(ϑ, ϕ)Rnqlq(r)Ylqmlq

(ϑ, ϕ) , (17)

yields

ρ(r ) =
∑

pq

Dpq δmsp ,msq
R∗nplp

(r)Y∗lpml p
(ϑ, ϕ)Rnqlq(r)Ylqmlq

(ϑ, ϕ) . (18)

To illustrate the spherical harmonics content of the density in the Hartree-Fock approxima-

tion, consider the atomic term 1s22p2( 3P)3d 4F for which the (ML,MS) = (+3,+3/2) subspace

reduces to a single Slater determinant

ΨαLS ML MS = Φ(1s22p2( 3P)3d 4F+3,+3/2) = |1s1s2p+12p03d+2| . (19)

When evaluating (18), all non-zeroDpq-values appear on the diagonal (p = q), yielding

ρ(r )
4F+3,+3/2 = |ψ1s(r )|2 + |ψ1s(r )|2 + |ψ2p+1(r )|2 + |ψ2p0(r )|2 + |ψ3d+2(r )|2 . (20)

This density has a clearnon-spherical angular dependence. However, referring to [20],

W‖JM(ϑ) ≡ |YJM(ϑ, ϕ)|2 =
J∑

n=0

bn(J,M) P2n(cosϑ) =
J∑

n=0

b′n(J,M) Y2n 0(ϑ, ϕ) (21)

one recovers the even Legendre polynomial content of the density, although not reaching the

(2L = 6) limit Y6 0(ϑ, ϕ) of the exact density (13). However this limit will be attained when

extending the one-electron orbital active set to higher angular momentum values for building a

correlated wave function.
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Mixed contributions (p , q) may appear in (18) through off-diagonal matrix elements in

the CSF basis. For example, the interaction ofΦ(1s22p2( 3P)3d 4F+3,+3/2) with the angular

correlation componentΦ(1s22p3d(3F)4 f 4F+3,+3/2) , a single electron excitation 2p → 4 f ,

gives rise toY∗10Y30 andY∗1+1Y3+1 contributions. But these contributions are also limited toeven

Legendre polynomials, as appearing in equation (13). Indeed, starting from the Clebsch-Gordan

series [20]

Yl1m1(ϑ, ϕ)Yl2m2(ϑ, ϕ) =
l1+l2∑

l=|l1−l2|

l∑

m=−l

[
(2l1 + 1)(2l2 + 1)(2l + 1)

4π

]1/2
(−1)m


l1 l2 l

0 0 0




l1 l2 l

m1 m2 −m

Ylm(ϑ, ϕ)

(22)

and using

Yl−m(ϑ, ϕ) = (−1)mY∗lm(ϑ, ϕ) , (23)

one finds that any contribution of the typeY∗l1qYl2q arising from a single electron excitation|l1q〉 →

|l2q〉 preserving the parity, ie. (−1)l1 = (−1)l2, takes the form

Y∗l1q(ϑ, ϕ)Yl2q(ϑ, ϕ) = (−1)q
l1+l2∑

leven=|l1−l2|

[
(2l1 + 1)(2l2 + 1)(2l + 1)

4π

]1/2 
l1 l2 l

0 0 0




l1 l2 l

−q +q 0

Yl0(ϑ, ϕ) .

(24)

At this stage, we would like to stress that in an MCHF calculation the density never contains –

what Fertig and Kohn [17] called – “offending” spherical harmonic components, whatever the

maximuml-value of the orbital active space.

2.3. The spherical density function

A sphericallysymmetric density function can be obtained for an arbitraryCSFΦαLS ML MS by

averaging the (2L + 1)(2S+ 1) magnetic components of the spin-less density function

ρ(r )LS ≡ 1
(2L + 1)(2S+ 1)

∑

ML MS

ρ(r )LS ML MS , (25)

whereρ(r )LS ML MS is constructed according to eq. (18)

ρ(r )LS ML MS =
∑

pq

〈ΦαLS ML MS |a†paq|ΦαLS ML MS 〉 δmsp ,msq
ψ∗p(r )ψq(r ) . (26)

Applying equations (25) and (26) for the atomic term 1s22p2( 3P)3d 4F considered in the

previous section, we simply get

ρ(r )
4F =

1
4πr2

{
2P2

1s(r) + 2P2
2p(r) + P2

3d(r)
}
. (27)
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which is, in contrast to eq. (20), obviously spherically symmetric. The sum over (ML,MS)

performed in (25) guarantees, for anynl-subshell, the presence of all necessary components

{Ylml | ml = −l, . . . + l} with the same weight factor, which permits the application of Unsöld’s

theorem [21]
+l∑

ml=−l

|Ylml (ϑ, ϕ)|2 =
2l + 1

4π
(28)

and yields the spherical symmetry. This result is valid for any single CSF

ρ(r )LS =
1

4πr2

∑

nl

qnlP
2
nl(r) , (29)

whereqnl is the occupation number ofnl-subshell. Its sphericity explicitly appears by rewriting

(29) as

ρ(r ) = ρ(r) |Y00(ϑ, ϕ)|2 = D(r)
r2
|Y00(ϑ, ϕ)|2 , (30)

with

ρ(r) ≡ 1
r2

∑

nl

qnlP
2
nl(r) , (31)

and

D(r) ≡ r2ρ(r) =
∑

nl

qnlP
2
nl(r) =

∑

nl

qnl r2R2
nl(r) . (32)

The radial distribution function D(r) represents the probability of finding an electron between

the distancesr andr + dr from the nucleus, regardless of direction2. This radial density function

reveals the atomic shell structure when plotted as functionof r. Its integration overr gives the

total number of electrons of the system
∫ ∞

0
D(r) dr =

∫ ∞

0
r2ρ(r) dr =

∑

nl

qnl = N . (33)

Where above the spherical symmetry of the average density (25) is demonstrated for a single

CSF thanks to Unsöld’s theorem, it can be demonstrated in the general case by combining (25),

(13) and the 3-j sum rule [15]

∑

ML

(−1)L−ML


L k L

−ML 0 ML

 = (2k+ 1)1/2 δk,0 (34)

2Note that, although denoted asD, this function (evaluated at ther = 0) is not the so-called “modified electron
density” used in the context of isotope shifts [22]. The latter is indeedρ(0) = 4πρ(0).
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for eachk = 2l contribution (14). However, the radial densityρ(r) will be more complicated

than (31), involving mixed contributions of the typePn′l(r)Pnl(r) = r2Rn′l(r)Rnl(r), as developed

below.

Instead of obtaining a spherically symmetric density function by averaging the magnetic

componentsρ(r )LS ML MS through eq. (25), one can build a radial density operator associated to

the function (32) which is spin- and angular-independent, i.e. independent of the spin (σ) and

angular (ϑ, ϕ) variables. Adopting the methodology used by Helgakeret al [13] for defining the

spin-less density operator, we write a general first quantization spin-freeradial operator

f =
N∑

i=1

f (r i) (35)

in second quantization as

f̂ =
∑

pq

fpq a†paq , (36)

where fpq is the one-electron integral

fpq =

∫
ψ∗p(x) f (r)ψq(x)r2 sinϑdrdϑdϕdσ . (37)

Applying this formalism to the radial density operator

δ(r) ≡
N∑

i=1

δ(r − r i) , (38)

and using the spin-orbital factorization (2) for bothp andq quartets, we obtain the second quan-

tization form

δ̂(r) =
∑

pq

dpq(r) a†paq , (39)

with

dpq(r) = δlplq δml pmlq
δmspmsq

R∗nplp
(r)Rnqlq(r)r

2 , (40)

where the Kronecker delta arises from the orthonormality property of the spherical harmonics

and spin functions. With real radial one-electron functions, the operator (39) becomes

δ̂(r) =
∑

n′,l′,m′l ,m
′
s,n,l,ml ,ms,

δl′l δm′l ml δm′sms a†n′ l′m′l m′s
anlmlms Rn′ l′ (r)Rnl(r)r2 (41)

=
∑

n′,n

∑

l,ml ,ms

a†n′ lmlms
anlmlms Rn′l(r)Rnl(r)r2 . (42)
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Its expectation value provides the radial density functionD(r) = r2ρ(r) = 4πr2ρ(r ) defined by

(30) and (32).

Building the coupled tensor of ranks (00) from the [2(2l+1)] components of the creation and

annihilation operators [23]

(
a†n′lanl

)(00)

00
= − 1
√

2(2l + 1)

∑

mlms

a†n′lmlms
anlmlms , (43)

the operator (41) becomes

δ̂(r) = −
∑

l

√
2(2l + 1)

∑

n′ ,n

(
a†n′lanl

)(00)

00
Rn′l(r)Rnl(r)r2 . (44)

The expectation value of this operator provides the spherical density function for any atomic

state. Note that, in contrast to (26), the tensorial ranks (00) garantee the diagonal character in

L,S,ML andMS, thanks to Wigner-Eckart theorem

〈αLS MLMS|T(00)
00 |α

′L′S′M′LM′S〉 = (−1)L+S−ML−MS


L 0 L′

−ML 0 M′L




S 0 S′

−MS 0 M′S

 〈αLS‖T(00)‖α′L′S′〉 .

(45)

Moreover, theML/MS independence emerges from the special 3j-symbol


j 0 j′

−mj 0 m′j

 = (−1) j−m(2 j + 1)−1/2δ j j ′δmjm′j
. (46)

In other words, where the non-spherical components are washed out by the averaging process

(25), they simply do not exist and will never appear for the density calculated from (44), for any

(ML,MS) magnetic component.

The radial distribution functionD(r) ≡ r2ρ(r) can be calculated from the expectation value

of the operator (44), using the wave function (1) or (3). In the most general case (expansion (3)),

using the (LS)J-coupled form of the excitation operator,

(
a†n′ lanl

)(00)0

0
=
(
a†n′lanl

)(00)

00
, (47)

one obtains

〈ΨαJM|δ̂(r)|ΨαJM〉 = (−1)J−M


J 0 J

−M 0 M

 〈ΨαJ‖F̂(00)0
ρ ‖ΨαJ〉 (48)
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with

F̂(00)0
ρ,0 = −

∑

l=1

√
2(2l + 1)

∑

n,n′

(
a†n′lanl

)(00)0

0
Iρ
(
n′l, nl

)
, (49)

and

Iρ
(
n′l, nl

)
(r) ≡ Rn′ l(r)Rnl(r)r2 . (50)

The diagonal reduced matrix element (RME) evanuated with the Breit-Pauli eigenvector (3) has

the following form

〈ΨαJ‖F̂(00)0
ρ ‖ΨαJ〉 =

∑

i, j

a∗i a j 〈Φ(αiLiSi J)‖F̂(00)0
ρ ‖Φ(α jL jS j J)〉 (51)

where the RME in the (LS)J coupled basis reduces to

〈Φ(αiLiSi JM)‖F̂(00)0
ρ ‖Φ(α jL jS j JM)〉 =

√
2J + 1

(2Li + 1)(2Si + 1)
〈Φ(αiLiSi)‖F̂(00)

ρ ‖Φ(α jL jS j)〉δLi ,L j δSi ,S j

(52)

and

F̂(00)
ρ,00 = −

∑

l=1

√
2(2l + 1)

∑

n,n′

(
a†n′ lanl

)(00)

00
Iρ
(
n′l, nl

)
. (53)

From the analogy of the operator (53) and the non-relativistic one-body Hamiltonian op-

erator (see eq. (A5) of [24]), one observes that the angular coefficients of the radial functions

Iρ (n′l, nl) (r) are identical to those of the one-electron Hamiltonian radial integralsIn′ l,nl , as an-

ticipated from McWeeny analysis [3]. These angular coefficients can be derived by working out

the matrix elements of a one–particle scalar operatorF̂(00)
ρ between configuration state functions

with u open shells, as explicitly derived by Gaigalaset al [25] who expressed them as a sum over

one–electron contributions

〈Φ(αLS)
∥∥∥∥F̂(00)

ρ

∥∥∥∥Φ(α′LS)〉 =
∑

ni l i ,nj l j

〈Φ(αLS)
∥∥∥∥F̂ρ(ni l i , n j l j)

∥∥∥∥Φ(α′LS)〉 (54)

where

〈Φ(αLS)
∥∥∥∥F̂ρ(ni l i , n j l j)

∥∥∥∥Φ(α′LS)〉

= (−1)∆+1
√

2(2l i + 1) R
(
λi , λ j,Λ

bra,Λket
)
δl i ,l j Iρ

(
ni l i , n j l j

)

×
{
δ(ni, n j)

(
ni l

Ni
i αiQi LiSi

∥∥∥∥∥
[
a(q li s)

1/2 × a(q li s)
−1/2

](0 0)
∥∥∥∥∥ni l

Ni
i αiQi LiSi

)

+(1− δ(ni, n j))
(
ni l

Ni
i αi QiLiSi

∥∥∥∥a(q li s)
1/2

∥∥∥∥ni l
N′i
i αi QiLiSi

)

×
(
n j l

N j

j α jQ jL jS j

∥∥∥∥a(q l j s)
−1/2

∥∥∥∥n j l
N′j
j α jQ jL jS j

)}
. (55)
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In this last expression,λ ≡ l or s, 〈Φ(αLS)| and|Φ(α′LS)〉 are respectively bra and ket functions

with u open subshells,

Λbra ≡
(
LiSi , L jS j , Li′Si′ , L j′S j′

)bra
andΛket ≡

(
LiSi , L jS j , Li′Si′ , L j′S j′

)ket
denote the respec-

tive sets of active subshell angular momenta. The operatorsa(q ls)
mq

are second quantization op-

erators in quasispin space of rankq = 1/2. The operatora(q ls)
1/2 ml ms

= a(l s)+
ml ms

creates electrons

with angular momentum quantum numbersl,ml , s,ms and its conjugatea(q l s)
−1/2ml ms

= ã(l s)
mlms

=

(−1)l+s−ml−msa(l s)
−ml ms

annihilates electrons with the same quantum numbersl,ml , s,ms in a given

subshell. The coefficientR
(
λi , λ j,Λ

bra,Λket
)

is the recoupling matrices inl- ands- spaces and∆

is a phase factor.

3. Density matrix and natural orbitals

Using (48), (51), (52) and (55), the radial distribution function gets the following form

D(r) = r2ρ(r) =
∑

i j

a∗i Di j (r)a j =
∑

i j

a∗i


∑

l

∑

n′n

vi j
nn′ l Iρ(n

′l, nl)

a j , (56)

which can be rewritten in a compact form

D(r) =
∑

l

∑

n′n

ρl
n′nIρ(n′l, nl) , (57)

with

ρl
n′n =

∑

i j

a∗i vi j
nn′l a j . (58)

Theδl i ,l j Kronecker appearing in (55) assures the block-structure ofthe density matrixρ whose

elements are defined by (58) for thel-angular symmetry.

The natural orbitals (NO) are defined as the one-electron functions that diagonalize the den-

sity matrixρ

C†ρ C = ρ̃ . (59)

Within a specific angularl-symmetry, the eigenvalue problem for the relevantl-block

ρ
lCl = Cl

ρ̃
l (60)

defines the natural radial orbitals through the following transformation

R̃kl(r) =
∑

n

cl
n,kRnl(r) . (61)

The eigenvalues{λl
k = ρ̃

l
kk} are interpreted as the occupation numbers of the NOs{R̃kl(r)}.
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4. Algorithm description

To calculate the radial density function and the natural orbitals from an arbitraryN-electron

wavefunctionΨαJM, we wrote a FORTRAN implementation of equation (48), as an extension of

theatsp2K package. The essential part in the calculation of the density function, is the evaluation

of the reduced matrix element (51). In pseudo-code, the reduced matrix element (51) is written

as

〈ΨαJ || F̂(00)0
ρ ||ΨαJ 〉 =

∑

i

∑

j

aia j

∑

µ

∑

ν

Iρ(µ, ν) UNITELEMENT (µ, ν)

SPIN ANGULAR DENSITY (CSFi , µ; CSFj , ν; 00). (62)

where

UNITELEMENT (µ, ν) = −[lµ, sµ]
1
2 δ(lµ, lν) . (63)

The routine SPINANGULAR DENSITY, is inspired by the routine NONHIPER of thehfs hy-

perfine structures program of ATSP2K. It organizes the calculation of the spin-angular part of

(55) by calling the subroutine ONEPARTICLE1 or ONEPARTICLE2 from [6]. ONEPARTI-

CLE1 performs the calculation of the spin-angular part whenthe one-electron operator acts on

one open shell and ONEPARTICLE2 performs the calculation when the operator acts on two

open shells. Both calculate the spin-angular part using theexpresion (55) in whichIρ(ni l i , n j l j) =

1. The products of the weight factors with the correspondingspin-angular part are stored and

accumulated in the two dimensional array FACTORMATRIX(µ, ν) where the rows and columns

are defined by the (nl) subshell quantum numbers of the bra and ket, respectively.FACTORMA-

TRIX is the precursor of the density matrix (58). The products of the array elements with their

corresponding radial partIρ (n′l, nl) are accumulated to build the radial distribution function (57).

The reader is referred to the flowchart in figure 1 for a schematic overview of the calculation of

the density function.

The NOs are obtained by diagonalizing this matrix and using the eigenvectors to construct the

orbitals. The diagonalization of the density matrix (59) isperformed using theDSYEV subroutine

from the Lapack [26] library. This routine computes all eigenvalues and eigenvectors for a given

real symmetric matrix. The NOs are ordered and labelled according to their occupation numbers

{λl
k = ρ̃

l
kk}.
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Most of the subroutines needed fordensity exist inhfs of ATSP2K, besides the routines

from the ATSP2K libraries. The new modules aredensity.f, spin angular density.f and

unitelement.f. The codereadwfn.f that reads in the wave functions differs from the one

encountered inhfs by theCOMMON/ADATA2/AT,TT,ELNAME(NWD) needed to store the ATOM,

TERM and ELNAME variables.

As an illustration, an interactive session is described in appendix A, for an = 3 CAS-MCHF

expansion of the beryllium ground state (63 CSFs). Upon execution of density, the user is

asked to specify the name of the data files, which were obtained from an ATSP2K run.density

then reads the CSF weights ({ci} and{ai} for the non-relativisic and Breit-Pauli expansions, re-

spectively), the configuration state functions quantum numbers and the radial functions from the

files. The conventions of the data and the file types, summarized in table 1, were adopted from

ATSP2K. However, for a relativistic calculation, the.j should be renamed file.l and edited to

extract the selected relativisticJ-eigenvector of interest.

In an interactive session,density asks the user a few questions concerning the output and

wether the NOs should be evaluated. In table 2 we list and comment the questions. Most of the

output, however, is written to disk. The output files produced by the program are summarized

in table 3. Thename.d file, which is always generated, contains the radial distribution D(r) and

densityρ(r) functions. Thedensity program by default generates some output to the standard

out: the “modified electron density” [22] at the nucleus (ρ(0) = 4πρ(0)), the occupation numbers

of the natural orbitals, with their composition in terms of the original orbitals, and as a final

check, the integral of the density function that should givethe total number of electrons accord-

ing to (33). ThePnl(ρ) = r−1/2Pnl(r) functions appearing in the filesname.plt andname.n

are defined in the logaritmic variableρ = loge(Zr) [11] for the original and natural orbitals re-

spectively. If the user asks for more details (‘yes’ to the questionPRINT ALL DATA (y/*)),

density prints out the contributions to the reduced matrix element (62), providing for each pair

(i, j) of CSFs, the labels (µ, ν) of the orbitals involved, the corresponding spin-angularcoeffi-

cient, together with the relevant weights product (aia j). Using this option, the user also gets the

contributions to the modified density at the nucleus, the norm of the input orbitals, the matrix

elements of the density matrix, and the natural orbitals (before they are sorted according to their

occupation number), with their complete eigenvector composition.

To install the program (FORTRAN 90 compilation and linking with the ATSP2K libraries),

15



the provided Install script should be edited to set the appropriate path and environment variables.

5. Applications and examples

To illustrate the data in the output files, we plotted in figure2 the radial density distribution

D(r) = r2ρ(r) from the.d output file calculated for a CAS-MCHF wave function of the beryllium

ground state (Be 1s22s2 1S), using an = 9 orbital active set. In the same figure, the Hartree-Fock

radial density is compared with the one obtained with two correlation models: i) then = 2 CAS-

MCHF expansion, largely dominated by the near-degeneracy mixing associated to the Layzer

complex 1s2{2s2 + 2p2} and ii) then = 9 CAS-MCHF. From the plotted results we notice that

the density of then = 2 calculation already contains the major correlation effects, compared to

then = 9 calculation. Indeed, the density does not seem to change a lot by going from then = 2

to then = 9 orbital basis, the valence double excitation 1s22p2 contributing for 9.7% of the wave

function. From the energy point of view however, this observation is somewhat surprising (see

table 4): the correlation energy associated to then = 2 CAS-MCHF solution “only” represents

47% of then = 9 correlation energy.

In a separated pair-MCHF approach, the reduced forms of the CSF expansions are often used

to get a compact multiconfiguration representation of the state and to avoid possible variational

redundancies between orbital rotations and mixing coefficients transformations. For some spe-

cific cases, the so-produced MCHF one-electron functions are nothing else than the natural or-

bitals [11]. For expansions closed under orbital rotations, one can test our density computational

tool by: 1) perfoming an (unreduced) MCHF calculation, 2) obtain the natural orbitals from the

diagonalization of the density matrix and 3) making a CI calculation in the resulting NO basis.

Both calculations should yield the same total energy for tworather different representations of

the same total wave function. Amongst the two, the NO-CSF expansion is naturally condensed.

This is illustrated in table 5 for an = 5 SD-MCHF valence correlation calculation on the ground

state of Be (E = −14.619 083 a.u., using a Hartree-Fock frozen core). The eigenvectors calcu-

lated in both MCHF and NO one-electron bases are reported andcompared to each other. Note

that, in this specific case (a pair of1Se symmetry), the transformation that diagonalizes the den-

sity matrix eliminates the off-diagonal (n , n′) contributions 1s2nln′l [27]. The reduction in the

number of CSFs (30→ 15) through the use of NOs is quite impressive. For an = 6 SD-MCHF

valence correlation calculation the CI-NO approach yieldsa CSF expansion with 29 terms less
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and for a CAS-MCHFn = 9 wave function (271 733 CSFs), the NO basis leads to a reduction of

15 695 CSFs.

As a third example, we illustrate the influence of relativistic effects – in the Breit-Pauli ap-

proximation – on the density function of the Be-like O+4 atom, by comparing the densities of

the fine-structure states 1s22s2p 3P◦0, 3P◦1 and3P◦2. From the plots in figure 3 and the data given

in table 6 we observe that the largest energy difference corresponds to the largest difference in

density function. More bound is the level, higher is the electron density in the inner region.

When studying the electron affinities, it is often interesting to investigate the differential

correlation effects between the negative ion and the neutral system [28]. Figure 4 displays the

density functionsD(r) of both the [Ne]3s23p4 3P ground state of neutral Sulphur (S) and the

[Ne]3s23p5 2P◦ ground state of the negative ion S−, evaluated with elaborate correlation models

[29], together with their difference∆D(r). The latter reveals where the “extra” electron lies and

its integration gives one, as it should.
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A. An interactive session

$cat n3.c

1s( 2) 2s( 2)

1S0 1S0 1S
1s( 2) 2s( 1) 3s( 1)

1S0 2S1 2S1 2S 1S
1s( 2) 2p( 2)

1S0 1S0 1S

1s( 2) 2p( 1) 3p( 1)
1S0 2P1 2P1 2P 1S

1s( 2) 3s( 2)
1S0 1S0 1S
1s( 2) 3p( 2)

1S0 1S0 1S
1s( 2) 3d( 2)

1S0 1S0 1S
1s( 1) 2s( 2) 3s( 1)

...
3p( 4)

1S0

3p( 2) 3d( 2)
1S0 1S0 1S

3p( 2) 3d( 2)
1D2 1D2 1S
3p( 2) 3d( 2)

3P2 3P2 1S
3d( 4)

1S0
3d( 4)

1S4
*

$cat n3.l
Be Z = 4.0 NEL = 0 NCFG = 63

2*J = 0 NUMBER = 1

Ssms = 0.484179758
1 -14.654414586 1s(2).2s(2)_1S

0.95181933 0.00029779 0.30027819 0.00037936-0.00118903-0.00023749-0.01763502
0.00019391-0.04365498 0.00316223-0.00663489 0.00377678-0.00043175 0.00173694

-0.00032836-0.00086628 0.00002903 0.00159570-0.00108079-0.00181964 0.00002085
-0.00001498-0.00000941 0.00415462 0.00703251-0.02349037 0.02848932-0.00012045
-0.00265663 0.00007304-0.00016224-0.00019179 0.00009463 0.00016368 0.00001426

0.00011178-0.00003997 0.00061770 0.00194285-0.00725367-0.00004543 0.00897260
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0.00000543-0.00001468-0.00005233-0.00000271-0.00000675-0.00000998-0.00002343
0.00003445 0.00000814-0.00013590-0.00000014-0.00000679-0.00002475 0.00042840

0.00000708-0.00000844-0.00052396 0.00000473 0.00000004 0.00000119 0.00000002

$density
Density calculation, Summer 2009
Give <name> of the <name>.c, <name>.l <name>.w files:

n3
Files: n3

PRINT THE ORBITALS (*/n)

Printout orbitals

PRINT THE MATRIX (*/n)

Printout the matrix

CALCULATE NATURAL ORBITALS (*/n)

Calculate natural orbitals

PRINT ALL DATA (y/*)

Do not print all informations

ANALYSING THE CALCULATION

=========================

ACCURACY IS SET TO 1.0000000000000007E-016

STATE (WITH 63 CONFIGURATIONS):
------------------------------------

THERE ARE 6 ORBITALS AS FOLLOWS:

1s 2s 2p 3s 3p 3d

THERE ARE 0 CLOSED SUBSHELLS COMMON TO ALL CONFIGURATIONS AS FOLLOWS:

NORM OF WEIGHTS = 1.000000004562740

ATOM Be TERM 1Se

ALL WAVEFUNCTIONS EXIST.

START OF THE DENSITY CALCULATION
================================

MODIFIED ELECTRON DENSITY AT THE NUCLEUS:

O = 444.31734212383130000

EIGENVECTOR:

1 = Eigenvalue 6 : 0.19968595313710157E+01

1s ’=
-0.99450714610441153E+00 1s AZ= 0.14887071657598840E+02

0.10466865508139691E+00 2s AZ= 0.10194455194727872E+01
-0.94819357413400507E-04 3s AZ= 0.23772474518338814E+02

2 = Eigenvalue 5 : 0.18147702141513149E+01
2s ’=

0.99450712354440736E+00 2s AZ= 0.10194455194727872E+01
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0.10466862950576727E+00 1s AZ= 0.14887071657598840E+02
0.24334504925053317E-03 3s AZ= 0.23772474518338814E+02

3 = Eigenvalue 2 : 0.12503444827533565E-02

3s ’=
0.99999996589623770E+00 3s AZ= 0.23772474518338814E+02

-0.11976912542329965E-03 1s AZ= 0.14887071657598840E+02

-0.23208377825771107E-03 2s AZ= 0.10194455194727872E+01

4 = Eigenvalue 4 : 0.18458626963217419E+00
2p ’=

-0.99999853877956664E+00 2p AZ= 0.15057313981228271E+01
-0.17095141798808027E-02 3p AZ= 0.51881186928943286E+02

5 = Eigenvalue 3 : 0.18993473382529018E-02
3p ’=

-0.99999853877956664E+00 3p AZ= 0.51881186928943286E+02
0.17095141798808027E-02 2p AZ= 0.15057313981228271E+01

6 = Eigenvalue 1 : 0.63431127544789989E-03
3d ’=

0.10000000000000000E+01 3d AZ= 0.31738718272621771E+00

SUM OF EIGENVALUES 4.000000018250959

INTEGRAL OF THE DENSITY FUNCTION:

N = 4.00000001825096200

DENSITY FUNCTION IS IN FILE n3.d
END.
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extension data in the file
.c configuration state function (CSF) expansion
.w radial wave functions (numerical values in binary form)
.l expansion coefficients from a non-relativistic (LS) calculation
.j expansion coefficients from a Breit-Pauli (LS J) calculation

Table 1: File convention

Question Answer Implication
PRINT THE ORBITALS (*/n) y The input radial functions will be written to.plt .
PRINT THE MATRIX (*/n) y The density matrix will be written to.matrix .
CALCULATE NATURAL ORBITALS (*/n) y Calculate the NOs and write them on.n (formatted)

and.nw (unformatted) files.
PRINT ALL DATA (y/*) y Detailed output written to std out:

MODIFIED DENSITY AT THE NUCLEUS

NORM OF THE ORBITALS

DENSITY MATRIX

EIGENVALUES AND EIGENVECTORS

Table 2: Questionsdensity asks the user. “*” indicates the default answer.

extension data in the file
.plt r i , Rnl(r i), Pnl(r i) = r iRnl(r i), Pnl(ρi) = r−1/2

i Pnl(r i)
.d r i , ρ(r i), D(r i) = r2

i ρ(r i)

.n r i , R̃nl(r i), P̃nl(r i) = r iR̃nl(r i), P̃nl(ρi) for Natural Orbitals

.nw analogue of.w for the Natural Orbitals (contains̃Pnl(ρi))

Table 3: Output files created bydensity

model energy (a.u.) correlation energy (a.u.)
HF -14.573 023

n = 2-CAS -14.616 856 En=2 − EHF = 0.043 832
n = 9-CAS -14.667 013 En=9 − EHF = 0.093 986

Table 4: Total energy for the ground state of Be with different correlation models.
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CSF MCHF basis Natural orbital basis
1s( 2) 2s( 2) 0.95282855 0.95370264
1S0 1S0 1S

1s( 2) 2s( 1) 3s( 1) 0.03858929 0.00000000
1S0 2S1 2S1 2S 1S
1s( 2) 2s( 1) 4s( 1) -0.01524193 0.00000000
1S0 2S1 2S1 2S 1S
1s( 2) 2s( 1) 5s( 1) 0.00133387 -0.00000001
1S0 2S1 2S1 2S 1S
1s( 2) 2p( 2) 0.00133387 0.29736974
1S0 1S0 1S
1s( 2) 2p( 1) 3p( 1) -0.00032489 0.00000000
1S0 2P1 2P1 2P 1S

1s( 2) 2p( 1) 4p( 1) -0.00019862 0.00000000
1S0 2P1 2P1 2P 1S

1s( 2) 2p( 1) 5p( 1) 0.00089172 -0.00000001
1S0 2P1 2P1 2P 1S
1s( 2) 3s( 2) -0.03930620 -0.04031077
1S0 1S0 1S
1s( 2) 3s( 1) 4s( 1) -0.00463218 0.00000000
1S0 2S1 2S1 2S 1S
1s( 2) 3s( 1) 5s( 1) 0.00091733 0.00000000
1S0 2S1 2S1 2S 1S
1s( 2) 3p( 2) 0.29736945 0.00532117
1S0 1S0 1S

1s( 2) 3p( 1) 4p( 1) -0.00003969 0.00000000
1S0 2P1 2P1 2P 1S

1s( 2) 3p( 1) 5p( 1) 0.00024549 0.00000000
1S0 2P1 2P1 2P 1S
1s( 2) 3d( 2) -0.01669194 -0.01669247
1S0 1S0 1S
1s( 2) 3d( 1) 4d( 1) 0.00005217 0.00000000
1S0 2D1 2D1 2D 1S
1s( 2) 3d( 1) 5d( 1) -0.00011379 0.00000000
1S0 2D1 2D1 2D 1S
1s( 2) 4s( 2) -0.00422002 -0.00432946
1S0 1S0 1S

1s( 2) 4s( 1) 5s( 1) -0.00107435 0.00000000
1S0 2S1 2S1 2S 1S

1s( 2) 4p( 2) 0.00182955 0.00184355
1S0 1S0 1S
1s( 2) 4p( 1) 5p( 1) 0.00032865 0.00000000
1S0 2P1 2P1 2P 1S
1s( 2) 4d( 2) -0.00361419 -0.00363174
1S0 1S0 1S
1s( 2) 4d( 1) 5d( 1) 0.00030308 0.00000000
1S0 2D1 2D1 2D 1S
1s( 2) 4f( 2) 0.00618640 0.00621375
1S0 1S0 1S

1s( 2) 4f( 1) 5f( 1) -0.00048678 0.00000000
1S0 2F1 2F1 2F 1S

1s( 2) 5s( 2) -0.00160546 -0.00136552
1S0 1S0 1S
1s( 2) 5p( 2) -0.00141498 -0.00149216
1S0 1S0 1S
1s( 2) 5d( 2) -0.00103723 -0.00101914
1S0 1S0 1S
1s( 2) 5f( 2) 0.00188266 0.00185530
1S0 1S0 1S
1s( 2) 5g( 2) -0.00284386 -0.00284386
1S0 1S0 1S

*

Table 5: Comparison of Ben = 5-valence eigenvectors in the MCHF and NO bases.
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model energy (a.u.) energy difference (a.u.)
1s22s2p 3P◦0 -68.032 086

3P◦1 -68.031 473 ∆E10 = 0.000 613
3P◦2 -68.030 102 ∆E21 = 0.001 370

Table 6: Fine structure total energies of O+4 1s22s2p 3P◦

Read and parse the configuration state functionname.c

Read and parse the mixing coefficientsname.l
Read and parse the wavefunctionname.w

For each CSF in the Bra〈ΨαJM|

For each CSF in the Bra|ΨαJM〉

Calculate the weight productaia j

and the spin-angular part.
Store the product in the FACTORMATRIX,

entry (ni l i , n j l j).

For each entry in the FACTORMATRIX

Add to the density the product of
the factor matrix entry times the

radial functionsIρ(µ, ν)

Write density function toname.d

Figure 1: Flowchart of the Density program
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Figure 2: Density of Be1S ground state for different CAS-MCHF wave functions. Density differences have been scaled
by a factor 100.
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Figure 3: Comparison of the 1s22s2p 3P◦0, 3P◦1 and3P◦2 radial density functions of O+4. Density differences have been
scaled by a factor 10 000.
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Figure 4: Ground state S and S− density functions [29]. Density differences have been scaled by a factor 30.
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