LETTERS
edited by Etta Kavanagh

Editorial Expression of Concern

THE REPORT ENTITLED “PATIENT-SPECIFIC EMBRYONIC STEM CELLS DERIVED FROM HUMAN SCNT blastocysts” by W. S. Hwang et al. (1) reported the establishment of 11 human embryonic stem cell lines by somatic cell nuclear transfer of skin cells from patients with disease or injury into donated oocytes. Hwang and G. Schatten, the corresponding authors of the paper, have notified Science of their intention to retract the paper. Hwang has sent us some language that he intends to use in the retraction. We have requested more information from the authors as well as agreement from all the co-authors to retract the paper.

On 23 December 2005, the Seoul National University Investigation Committee provided an interim report on their investigation of Woo Suk Hwang’s research. The report (2) stated that “the experimental data submitted to Science in support of 11 stem cell lines (DNA fingerprinting, microscopic photos, confirmation of teratomas, etc.) were all derived from 2 cell lines” and that “the Committee finds that the experimental data published in the 2005 Science paper were based on a deliberate manipulation, in other words a fabrication of research results.” The report also states that “The Investigation Committee has submitted samples of cell lines 2 and 3 for DNA testing in order to determine their authenticity.”

An earlier paper by Hwang and colleagues (3) attracted much attention as the first demonstration of the derivation of a pluripotent embryonic stem cell line from a cloned human blastocyst. Given the concerns raised about the 2005 paper, we are undertaking a careful review of the 2004 paper as well and expect to consult with outside advisers as needed. The SNU Investigation Committee announced that it has begun an investigation of this paper and of other work from the Hwang lab.

Science is publishing this expression of concern to alert our readers that serious concerns have been raised about the validity of the findings in these two papers. We are working with the authors and SNU to proceed with the retraction of the 2005 paper (1). We will provide more information on the 2004 paper as it becomes available.

DONALD KENNEDY
Editor-in-Chief

References

Revamping NIH Study Sections

ANTONIO SCARPA, DIRECTOR OF NIH’S CENTER for Scientific Review, has stated his intention to enhance efficiency and recruit excellent reviewers for NIH peer review. As an NIH grant holder for 30-odd years and former study section member, I propose the following.

Every NIH grant holder above the rank of assistant professor should be required to serve on an NIH study section once a year. It would be a responsibility, like jury duty; those too busy to serve would be presumed incapable of effectively administering a grant. Actual service time would likely be considerably less. A normal study section load of 10 to 12 grants would thus require service only every other year.

Advantages would be the following:
1) Experienced senior scientists would be brought back into the system. Inexperienced assistant professors would be removed, to their own great benefit. The quality of scientific review would immediately improve.
2) The onerous workload of a full-time study section member would be eliminated.
3) Peer review would become less political.

Each study section tends to develop its own subculture, but this is not necessarily a good thing. A study section’s task is to identify for NIH those projects of greatest scientific merit. A fresh look at a revised proposal by a new panel of peers will maintain focus on its fundamental significance and avoid overemphasis on subculture-sensitive details.

One frequently voiced objection is that such required service will be performed grudgingly and therefore badly. But most of us will adhere to accepted professional standards, even when performing an onerous task. Further, the study section acts as its own peer reviewer; nobody wants to present an incompetent critique before peers.

Such “full participation” would correct some of the distortions that threaten to overwhelm this basically admirable process.

JOHN LENARD
Department of Physiology and Biophysics, UMDNJ—Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
E-mail: lenard@umdnj.edu

Clarifications on miRNA and Cancer

THE NEWS FOCUS ARTICLE “A NEW CANCER player takes the stage” (4 Nov. 2005, p. 766) by J. Couzin on miRNAs and cancer has a quote from me that has been taken out of context and conveys exactly the opposite meaning of my unedited comments.

To clarify, some of the miRNAs induced during cell differentiation may down-regulate cell division programs. Because miRNAs down-regulate target miRNA genes through complementary sites in their 3’UTRs, oncogene targets with mutations in miRNA-complementary sites might escape miRNA regulation to generate dominant activating oncogene mutations. Such gain-of-function mutations are seen in plant genes that regulate cell division at the meristem.

Other miRNAs are overexpressed or amplified in animal tumors, suggesting that these miRNAs negatively regulate tumor suppressor or proapoptotic genes.

Many dominant oncogenes have been revealed by cell transformation assays over the past 30 years. If miRNA negative regulation of oncogenes is a key element in cancer etiology, I am surprised that 3’UTR mutations in oncogenes were not detected in such transfection experi-
ments. In addition, I would have expected the miRNA genes that target tumor suppressor genes to have been recovered in such transformation experiments. These RNA genes may not have been recognized as encoding miRNAs and the oncogene 3’UTRs may not have been recognized as miRNA targets, but I would have expected the oncogene canon of today to have included more regulatory RNAs and mention the importance of 3’UTRs as sites of oncogene regulation.

I expressed to Couzin my belief that “I just find it hard to believe that the cancer people were that lame” to have missed such mutations in 3’UTRs by only sequencing open reading frames of oncogenes, or to have missed regulatory RNA genes because they dropped the study of oncogenes without open reading frames. The quote in this context has precisely the opposite meaning to its use in the article. The more likely reason why so little evidence for miRNAs emerged from previous oncogene genetics is that the fibroblast cell transformation techniques used to detect dominant oncogenes systematically failed to detect miRNA-based regulatory defects, for example, because the 3’UT3 fibroblasts may be deficient in components essential for miRNA-based regulation, because the miRNA-based gene activations are not strong enough to bypass other cell cycle controls, or because miRNAs are modulatory to oncogenes but are not central to tumor initiation or progression.

GARY RUVKUN
Department of Molecular Biology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA.

Coastal Vegetation and the Asian Tsunami

THE BARRIER FUNCTION OF COASTAL VEGETATION during the recent tsunami disaster has been highlighted by the results of F. Danielsen et al. (“The Asian tsunami: a protective role for coastal vegetation,” Brevia, 28 Oct., p. 643). Their conclusions confirm assumptions made earlier by Pearce (1), Williams (2), and many others. Although the authors used a limited analytical approach on a single Indian lagoon, there are some caveats they did not address.

First, the authors assessed pre-tsunami vegetation cover using remotely sensed data and categorized vegetation as dense, open, and no trees. However, as highlighted by Dahdouh-Guebas et al. (3), “cryptic ecological degradation” in the field may be masked on remotely sensed imagery, and mangroves that appear healthy by species composition and density on remote sensing imagery may in fact be subject to strong qualitative degradation. The concept of cryptic ecological degradation in mangrove forests is even more important in light of these forests having provided less protection during the recent tsunami than 24 other Sri Lankan lagoons, as evident from cluster analyses (4). Considering the ability to extract such important qualitative information at a resolution of species and even individuals (5), the very high resolution IKONOS and QuickBird satellite imagery, to which the authors had access, has not been used to its full potential.

Second, the authors do not identify variation in house construction or variation in mangrove settings as possible factors influencing damage to the villages. The image of the mosque as the only building left standing in Banda Aceh after the tsunami hit (6) suggests that the architecture of buildings or the materials that are used for their construction may have been a determining factor in withstanding the tsunami wave. Their fig. 1 suggests that there are at least two different types of mangrove settings: fringing forests and riverine forests (7). This may have influenced the impact of the tsunami as well.

Finally, only three of the villages analyzed are located behind a potential barrier. Most of the villages were very close to the ocean (see Danielsen et al.’s fig. 1), in which tsunami destruction, somehow attenuated by beach-front Casuarina plantations, is evident. A comparison between villages located at a (similar) distance from the coastline but protected to various extents by different types of barriers or no barriers at all is not made. Such a comparison could have accounted for the variation in distance to the coast.

FARID DAHDOUH-GUEBAS AND NICO KOEDAM
Biocomplexity Research Team c/o Laboratory of General Botany and Nature Management, Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium.

References

Response
WE AGREE WITH DAHDOUH-GUEBAS AND KOEDAM on the need for better understanding of the tsunami mangrove shelter. However, we believe the relatively homogeneous coastal characteristics of our study site minimized intrasite differences in the energy of the incoming tsunami and allowed the benefits of a tsunami tree shield to be studied.

The few (1) field-based and quantitative studies of the shielding function of mangroves against wind-induced waves (2, 3) cannot be generalized to tsunamis. The hydraulic resistance of mangroves to tidal flow (4, 5) differs substantially from their resistance to wind-induced waves (3), suggesting that the protective capacity of mangroves varies according to the time scale of the waves (6). Tsunami waves have a period of 1 to 2 hours (7), compared with wind-induced waves (<20 s) and tidal flow (diurnal and semidiurnal). As tsunami waves behave differently from other waves (8), their hydraulic properties cannot be estimated by interpolation.

Analysis of QuickBird (0.6-m pansharpened pre-tsunami) and IKONOS (4-m multispectral post-tsunami) images and ground surveys by scientists with 13 years of experience in the study area demonstrated quantitatively

Tsunami-stricken areas near the coastal outskirts of Banda Aceh, Indonesia, on 27 December 2004.
Looking for a great science career?

Get the experts behind you. Visit www.ScienceCareers.org

Your career is too important to leave to chance. So for the right job or career advice, turn to the experts. At ScienceCareers.org we know science. Our knowledge is founded on the expertise of Science and AAAS. Put yourself in the picture. Visit www.ScienceCareers.org.