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Self-Organization in Complex Media
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Reaction—diffusion dynamics in complex media is analyzed. The diffusion operator is decomposed into a deterministic and
a random part. In the absence of chemical reactions it is shown that randomness enhances the rate of spread of an initial
mha:wyandrdueulbemmrydlﬂum flux. When chemical reactions are included, an augmented reaction-diffusion
equation is derived, featuring an effective diffusion coefficient that depends explicitly on the chemical kinetics. The influence
of randomness in the onset of chemical instabilities leading to self-organization is discussed.

1. Introduction

Dick Noyes' classic study of the oscillatory behavior of the
Belousov—-Zhabotinski reagent has been instrumental in the de-
velopment of a new and active field of chemical science devoted
to self-organization and nonlinear phenomena. It is a privilege
and a pleasure to dedicate to him the present short communication
as a tribute 10 his brilliant contributions.

The typical framework within which self-organization phe-

nomena in chemistry have been studied is that of reaction-diffusion
systems'

ax,/at = F(IXJ\) + DX, (1)

Here X, and D, denote respectively the concentration and diffusion
coefficients of species i, |F,| the rate laws (generally nonlinear
functions of X;'s), and A the control parameters. It is usually
assumed that the medium is isothermal and ideal (no cross effects
and no concentration dependencies in D)), although some attempts
to relax this latter condition have been reported.? More to the
point for the purposes of our present discussion, it is also assumed
that the medium is homogeneous and isotropic or, equivalently,
that the diffusion coefficients D; and the rate functions F, have
no explicit space dependence.

Although the above assumptions are frequently fulfilled under
laboratory conditions, there is little doubt that they will in general
fail in real-world materials. A rough catalytic surface, a rock,
a piece of metal under load, contain inevitably some degree of
disorder, notably in the form of imperfections and defects. A
biclogical material, say a membrane on which Ca** ions are
diffusing, is far from being a perfect lattice. Even in the laboratory
scale experiments aiming to detect space patterns are currently
being developed,’* in which porous or dispersed materials play
a prominent role.

A chemical dynamics taking place in a medium of the above
kind will be affected by the spatial disorder in two respects: an
explicit space dependence of the distribution of the major chemicals
feeding the reactor and an explicit dependence on the spatial
location of the rate at which diffusion will take place. Our
principal objective in the present work is to study the new effects
arising from these phenomena in the limiting case in which space
dependencies are modeled as a random process.

In section 2 we describe the model adopted and discuss the
physical origin of the assumptions involved. In section 3 we study
the behavior in the absence of reactions, whose effect is considered
in section 4. We end with a short discussion on the role of random
diffusion in the onset of a chemical instability.

2. The Model

Let X be a passive scalar (concentration field) transported in
an heterogencous medium. Its instantaneous profile is given by
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the solution of the mass conservation law

ax/at = -VJ (2)
supplemented with the phenomenological relation
X, T,r)
= -Lv—‘(—r—— 3)

where L is the Onsager coefficient and iy the chemical potential
of X:

uy=pg+ RTIna

a being the activity. In an isothermal system (3) becomes
J= -gVa
a

Introducing the diffusion and activity coefficients D and y
respectively through

D=LR/X (4a)
a=vX (4b)
we can finally write (2) in the form
ax _
™ D(r)T—)'V‘v(m)X (5)

We have introduced an explicit space dependence of D and v in
order to account for the complexity of the medium. In what
follows we shall assume that the space dependence of the activity
coefficient is weaker than the dependence of D(r), in which case
y can be eliminated from the right-hand side.

Furthermore, we shall model the complexity of the medium by
introducing a fTuctuating part in the diffusion coefficient, which
will be assimilated to a random with continuous realiza-
tions. The scalar field X will then also become a random process
obeying

ax/at = V-D(r)VX (6a)
with
D =Dy + Di(r), (Dyr)) =0 (6b)

where the brackets denote ensemble average, i.c., an average over
the different realizations of the stochastic process Dy(r).

Disordered media are usually modeled by random walks on
regular lattices with random transition probabilities.™* In this
case, the scaling law of the mean-square displacement depends
ultimately on the type of probability distribution chosen for the
transition probabilities.® Classical diffusion is expected when the
average of the inverse of the transition probability exists; otherwise
anomalous diffusion may appear.

We make now a possible connection between our continuous
formalism and a discretized lattice version. In the latter approach,
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Figure 1. Schematic representation of diffusion in a complex medium
viewed as the motion across a random distribution of potential barriers.

the probability P,(7) of a random walker to be at site » at time
! obeys a stochastic master equation:

dP(1)/dt = winjnt1) Py (t) + winjn-1) P,,(1) -
(w(n=1{n) + win+1|m)P (1) (7)

where w(njn+1) is the transition probability per unit time of a
random walker to jump from site n + | to site n and is itself a
random function of site n. If these transition probabilities are
related to the probability of hopping across a barrier between two
adjacent sites, we have (cf. Figure 1)

w, = winjn+1) = win+1|n) (8)
Equation 7 is then rewritten in the form
dP,(1)/dt = W (Pey (1) = P(1)) + wo (P (1) = PA))  (9)

Since the total mass of the transported quantity is conserved, the
concentration X(r.7) is proportional to the probability of a random
walker in a particular realization of D(r) to be at a position r at
time 1. Equation 9 is therefore a discretized version of (6). The
diffusion coefficient D(r) in (1) is the limit D(r) = lim;o w(r)P,
where / denotes the mesh size of the lattice.” The statistical
properties of D(r) are then related to those of the transition
probabilities of a particular lattice.

The above arguments can easily be extended to an isotropic
system undergoing chemical reactions, since for such a system
there is no phenomenological coupling between reaction rate and
diffusion flux. We thus obtain for such a medium the generalized
reaction—diffusion equation

axX/at = F(XA) + V-D(r)VX (10)

being understood that the diffusion coefficient D comprises again
a “deterministic” and a “random” part as in (6b).

3. Properties of the Stochastic Diffusion Operator

In this section we explore some properties of the solutions of
(10) in the absence of chemical reactions. We first study the
time-dependent behavior of the first nontrivial moment of the
concentration field.

Normalizing the total mass to unity, multiplying both sides of
(6a) by the square of the displacement r, integrating over space,
and assuming that X and dX/dr tend to zero sufficiently rapidly
for r — x=, we obtain in a one-dimensional infinite medium

d . a
a(rz) = J:.d! r E(X("‘))

- X "
--zf_dn(o(r)a;:')> (11)

The contribution to (11) arising from the deterministic part D,
of D is straightforward. Upon performing a second partial in-
tegration, it yields

d(r)ge/dt = 2D, (12)

To evaluate the contribution of the random part to the right-hand
side, we need to specify further the statistical properties of Dy(r).
We will assume that D,(r) defines a homogeneous Gaussian

(7) Gardiner, C. W. Handbook of Stochastic Methods; Springer: Berlin,
1983; Chapter 8.
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random process whose correlation function
g(r) = (D(0) Dy(r)) (13a)
behaves in the origin 7 = 0 in an exponential fashion. This implies,

in particular, that the second derivative at l.hc origin g"(0), is
positive, which allows us to introduce a correlation length / through

I = g"(0)/(0) (13b)

The evaluation of the random part of (11) will make use of the
Novikov theorem® stating that if F[d] is a functional of a Gaussian
random field d(r), then

§%(d]
oy 711y = f ""‘('""’(u(ro)

where 4/4d denotes functional differentiation. In our case (cf.
(11)) the field d(r) is the random part D,(r) of D, while the
functional ¥ is the space derivative of X, itself a functional of D,(r)
through (6). The details of the calculation are given in the Ap-
pendix, the final result being

d £(0)
— 'J | D) — 4
dl< dat P 5 9

Combining (13) and (14) and integrating over time, we finally
obtain

() = 2Dgt + (g(0)/ ) (15)

This result shows the appearance of anomalous diffusion induced
by the fluctuations of the diffusion coefficient and tending to
enhance the spreading of an initial inhomogeneity in comparison
to the classical case. This is to be contrasted to what is found
in fractal lattices or percolation clusters where a scaling law of
the form®

(PR) ~1¥4 d>2

is obtained, indicating the slowing down of diffusion.

It is interesting to remark that numerical simulations in a
three-dimensional random field system (cubic lattice) and Lan-
gevin equation analysis lead to a mean-square displacement® which
is asymptotically proportional to . Moreover, for short times
an interplay between classical and anomalous diffusion was ob-
served. Our result seems therefore in good agreement with these
studies.

On the other hand, in his study of random walk in a one-di-
mensional lattice with random transition probabilities p,, ¢, =
1 = Pus Pu = '/2 + €&, with £, taking at random the values +1
or -1, Sinai has found a subdiffusive behavior corresponding to
a logarithmic scaling law.'® We believe that the difference with
our results arises from the assumptions adopted on the statistical
properties of D(r), and most particularly from the existence, in
our model, of a spatial correlation function displaying a finite
characteristic length.

In a different context, anomalous diffusion has been predicted
in a heterogeneous porous medium'' when the correlation length
of the fluctuating permeability diverges. For a particular class
of spectra of the fluctuations, anomalous diffusion also occurs in
stratified porous media.'"'* These observations stress the fact
that, as in random lattices, the type of scaling law is very sensitive
to statistical properties of the fluctuating fields.

Let us now turn to the stationary-state solution of (6), expected
to arise in a finite system subjected to suitable boundary conditions.
In all generality, the mean stationary flux (J) will be (cf. (2) and
(6))
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J) =-(D(nNVX) (16a)

The point that we would like to explore here is whether this relation
can be cast in the form'’

(J) = -DV(X) (16b)

where D is an effective diffusion coefficient. We would also like
1o relate D 1o the deterministic part Dy and to the statistical
properties of D,(r).

Contrary to the first part of this section in which no smallness
parameter had to be introduced, we shall now appeal to pertur-
bation theory. Specifically, we shall assume that the characteristic
correlation length / is much less then the characteristic length scale
L of variation of the mean concentration field

e=l/LK | (amn

Furthermore, we shall introduce a new length macroscale R and
expand the various fields present in powers of ¢ (ref 14)

V, =V, + eV, (18a)
D, = ed\(r) (18b)

X = (X(R)) + x(r.R) (18¢c)
x=ex; +Exy+ .. (18d)

We insert these expansions into (16a) and note that (x) =0. We
obtain in this way an expression for the mean flux:

(J) = €DV p(X) = eld(r)V x) (19)

To compute the mean value (4,V,x) in the right-hand side we
need to evaluate x. Expanding (6a) in powers of ¢, we have in
the stationary state the first-order equation

Do¥,%x, = 0 (20a)

Using the subsidiary condition (x,) = 0 and (20a) yields x, =
0. To the second order in ¢ (6a) then becomes

DoV 2xy + V,d\Va(X) + DyVRHX) =0 (20b)
The subsidiary condition (x;) = 0 requires
DoV X) =0

Equation 20b can now be solved by Fourier transform methods,
and we obtain in a three-dimensional system
1 #0)

(d\V.x;3) = -3 TO'VAX) (21)
with notation g(0) = €#(0). Comparing with (16a) and (16b),
we are led to identify the effective diffusion coefficient

& ¥0)
D =Dy~ 3 D, (22)
This relation shows that fluctuations in the diffusion coefficient
decrease the stationary flux of diffusion.” Fluctuations act

therefore in an opposite way to fluctuations of a convection field,
which enhance diffusion.'>'¢

4. Reaction-Diffusion Dynamics in a Complex Medium

In this section we report on a first approach aiming to include
the effect of chemical reactions (or more generally of source or
sink terms) in the stochastic diffusion. For technical simplicity
much of our discussion will be limited to the search of station-
ary-state solutions of (10) in a one-dimensional infinite system
involving a single variable. Equation 10 takes then the form

d dx
F(X) + d—’D(') = 0 (23)
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Introducing the decomposition of X into an average and a
fluctuating part ((18c)) one obtains from (23) the equations'®

(F(X)) + d—’(D(r) ;) =0 (24a)

d _ dX) d dx
;D' dr +5'dr

4/, dx N =
dr(o, =] +0(x') =0 (24b)

| T 3 dix
’, - - {3 + — -
F'x + 2F’(x (x*)) + Dy —

where

, o dF
N dX Lywixy
It will be assumed that F'> 0, in order to ensure that the sta-
tionary solution is stable.
To obtain a closed equation for the mean concentration (X)
from (24a), we insert the multiple scale expansion (18a-d) into
(24a). We have to lowest order

| ” - Y- 2N — =
F({(X)) + EF (x?) + Dge de(X) +é (d.a,x> 0 (25)
The terms (x*) and (d,d,.x) are evaluated from (24b) in an

analogous manner as in the preceding section. The first nontrivial
contribution obeys

X4 ™ 3 d(X)
;»+a—'d.(r) iR 0 (26)

This equation can be solved by Fourier transform methods. The
result is

FX:+D°

)

K ) 0 @

IF] + Dok

For the sake of concreteness, we consider the case where the spatial
correlation function of the field d,(r) is exponential

g(r) = g(0)e/! (28)
We obtain finally for small /

(«:r.(r)ﬁ --“—0)[ /(W) d—"ﬁ (29)

x,(r)-;—'fdr'fdkt‘“""

and
1 #0) 1 1| d
o= 3 o ((m)'/* )= lageo] oo
pl— + -
Dy !
Substituting these expressions into (25) yields the desired closed

equation involving solely the mean value X
d(X)
F((X)) + D.zF"((X))‘(O’((lF1) )2 ’

£(0) 1F1 d*(X)
Ao ()2

We see that the fluctuations give rise to an effective diffusion

coefficient
0 F1\'"?
el A)) oo

which now depends explicitly on chemical kinetics. The effective
diffusion coefficient is now larger than the effective diffusion in
the absence of reactions: in other words, chemical reactions in-
crease the mean diffusion flux. A second type of correction due
to the fluctuations in the diffusion coefficient is the presence in
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the balance equation of a term proportional to the square of the
gradient of the mean concentration.

We are now in the position to specify more sharply the role of
random diffusion in the onset of instabilities and self-organization.
We first derive the time-dependent version of (23) or (29). Let
Xy be a spatially uniform stationary solution used as “reference”
state. Suppose, furthermore, that the system operates in a pa-
rameter range for which this state is about to lose its stability and
give rise to new branches of solutions. Setting

(X) =Xo+ u
one can write to the first order
F((X)) = F(Xy) + F(Xou
= F{Xp)u = -Au

wherein F{X;) = —A plays the role of bifurcation parameter. We
express the slowing down of the dynamics expected to arise for
values of A\ near zero by introducing the slow time scale r:

ad a

LALLM

at ar
with
A=) (33)

The lincarized, time-dependent version of (31) around the ref-
erence state X; becomes

du = Fu
3 Au+ D PP (34)

This equation entails that one may expect bifurcation of new
branches of solutions at exactly the same transition point, A, =
0, independent of the value of 2. On the other hand, the properties
of the bifurcating branches and the time-dependent behavior of
the system will be strongly affected. For instance, it is well-known
that the stability of a solution in a region of hysteretic behavior
is favored by an enhancement of D or, on the contrary, com-
promized by a reduction of D,

One kind of transition likely to be affected more drastically
by fluctuating diffusion are symmetry-breaking instabilities. These
phenomena involve at least two coupled variables and, in an infinite
system or a system subjected to periodic or zero flux boundary
conditions, require that the diffusion coefficients of the two species
be unequal. Now, since the effective diffusion coefficient depends
on the kinetics (cf. (32)), we may expect that two species having
identical diffusivities in a uniform medium may well be governed
by different effective diffusivities in a random medium. This
possibility of fluctuation-induced symmetry breaking will be taken
up in a forthcoming publication,

Finally, it is clear from (26) that in the presence of randomness
there will be a dispersion of the concentration field around the
average profile given by (31), which will increase with the cor-
relation length [ and the mean gradient d(X)/dR. Self-organi-
zation in a random medium will therefore be characterized by

patterns displaying an overall order and a superimposed local
disorder.

5. Concluding Remarks

In many instances a physicochemical system evoives in a com-
plex medium whose properties are distributed in space in a non-
uniform fashion. We have explored some consequences of this
complexity on reaction-diffusion dynamics leading to self-or-
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ganization, by modeling the diffusion coefficient within the me-
dium as a random process. We have shown that in the absence
of chemical reactions diffusion is affected in two quite different
ways. In an infinite medium the spreading of an initial inho-
mogeneity is enhanced. and in a finite medium subjected to
boundary conditions the mean stationary diffusion flux is reduced,
in the limit in which the correlation length of inhomogeneities of
the medium is much less than the system size. When chemical
reactions are included, the diffusion flux becomes explicitly de-
pendent on the kinetics. Bifurcations to new branches of solutions
may or may not be affected, depending on the number of variables
and the type of instability involved.

We believe that the resuits reported in the present work should
be useful in the study of self-organization and nonlinear dynamics
in real-world materials. In our view an especially promising field
is geology.'® where one deals with materials with highly variable
properties.

Finally, in parallel to the study initiated in this paper it would
be useful to pursue work in which the nonuniformity of the me-
dium can be accounted for by a systematic external gradient.! This
may be a particularly adequate way to model the recent exper-
iments of Noszticzius et al.> An interesting attempt in this di-
rection is reported in ref 19.
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Appendix

We give here a derivation of (14) of section 3. Let Xy(r) denote
the initial condition of the problem defined by (6a) in an infinite
system. The formal solution of the equation can be written

d d
X(rp) = exp(zb(r) a-’l)Xo(r) (A1)
The exponential operator has to be understood as an infinite series

d d d _d 1d_d& d
Dt —t| = e TP s - ) —D =1 4 .
exp(dro(r) d’:) 1+ —D I ¢+ D —D : 2 )
(A2

We are now in a position to evaluate the term (D(r) dX/dr)
appearing in (11), Since D(r) = Dy + D,(r), we have two con-
tributions. The deterministic part leads trivially to

I B

To compute the second contribution, we make use of Novikov's
theorem already quoted in section 3. From (Al), we get

(D.(r) %) = fdr' g(r-r) Sa; ‘:—’é(r-r') %l(/\’(m)) (Ad)

where we used the standard techniques of functional derivation.!?
Integrating (A4) twice by parts leads to

(Dn(f) %‘f) ~ g"(O)r%(X(m)) (AS)
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