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Abstract. The hydrogen molecular ion in a strong magnetic field is studied for

arbitrary orientations of the molecular axis. A gauge preserving the parity symmetry

and leading to real matrix elements for a class of basis states is introduced. The

calculations are performed in prolate spheroidal coordinates with the Lagrange-mesh

method. The simple resulting mesh equations provide a high accuracy with short

computing times for γ = 1 and 10. Less accurate results are obtained at γ = 100

where the size of the matrix becomes very large. At such field strengths, the rotational

motion becomes strongly hindered.
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1. Introduction

Ultrastrong magnetic fields occur in the atmospheres of magnetic white dwarfs and

neutron stars [1]. Unusual molecules that do not exist in the absence of magnetic fields

may appear in this environment [2]. These molecules are usually studied with variational

approximations whose accuracy is not well known. Since exotic molecules may be weakly

bound, their very existence may be in question if calculations are not accurate enough.

It is thus important to estimate the accuracy of variational calculations, and hence

the validity of variational wave functions, on test cases. The simplest molecule, the

hydrogen molecular ion H+
2 , allows studying its properties in strong magnetic fields with

high accuracy. However, even for this simplest molecule, many questions still remain

open.

Although purely quantal calculations are in principle possible, e.g. by combining

the techniques described in [3, 4, 5, 6], their accuracy is still strongly restricted by

computing time limitations. Studies based on the Born-Oppenheimer approximation,

i.e. where the nuclei are fixed at some distance R, are thus still very useful (see

[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17] and references therein). The validity of that

approximation has been discussed by Schmelcher et al [18].

In a first step, the molecular axis is usually aligned along the field axis. Different

works have considered the more general non aligned case [7, 9, 11, 13].

Recently we have performed an accurate study of the aligned case [16]. To this

end, we used the Lagrange-mesh method which is an approximate variational method

simplified by the use of a consistent Gauss quadrature [19, 20, 21, 22, 23]. This method

has provided accurate results for the hydrogen atom [24, 25] and the helium atom [6]

in a magnetic field. The advantages of the Lagrange-mesh method are simplicity and

accuracy. A high accuracy is obtained at the condition that the Hamiltonian does not

possess any singularity or that singularities are regularized [21, 22, 23]. For H+
2 , the

Coulomb singularities can be regularized in prolate spheroidal coordinates [16] (see also

[26]). The aim of the present work is to extend the method to the non-aligned case and

to provide highly accurate results under these assumptions at various field strengths. In

order to keep the same basis and coordinate system as in [16], we fix the molecule axis

and vary the field direction, contrary to most other works. We can then employ the

same basis as in the aligned case but the magnetic quantum number is not any more a

good quantum number.

In section 2, the Schrödinger equation for H+
2 at the Born-Oppenheimer

approximation is written for a magnetic field aligned in an arbitrary direction. The

gauge choice is discussed. In section 3, the Lagrange-mesh method is applied in the

system of prolate spheroidal coordinates. In section 4, accurate results are obtained

at selected fields and angles. Energy surfaces are obtained and discussed. Concluding

remarks are presented in section 5.
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2. Gauge choice for arbitrary field directions

2.1. Schrödinger equation

The hydrogen molecular ion is treated at the Born-Oppenheimer approximation. Let

R be the distance between the fixed protons, r1 and r2 the coordinates of the electron

with respect to protons 1 and 2 and r = (x, y, z) the coordinate of the electron with

respect to the centre of mass O of the protons.

-� ���������������:

�
�

�
�

�
�

�
�

�
�

���

�
�
�
�
�
�
�
�
�
�
���

A
A

A
A

A
A

A
A

A
A

AAK

e
−

−1

2
R 1

2
R1 O 2

r1 r2
r

zα

B

Figure 1. H+

2 molecular ion at the Born-Oppenheimer approximation.

Contrary to other authors, we do not consider various directions of the molecule axis

with respect to a fixed magnetic field B (see figure 1). In order to exploit a convenient

coordinate system, we rather keep the molecule axis fixed and vary the field direction.

In other words, the calculations are performed in the intrinsic reference frame of the

molecule. This choice does not modify the values of energies. However wave functions

at different angles are obtained in different reference frames. Using them in matrix

elements requires performing a preliminary rotation in order to have a single direction

for the field.

The Schrödinger equation for the hydrogen molecular ion in a magnetic field reads

in atomic units
(

1

2
(p + A)2 + V (r)

)

ψ(r) = Eψ(r). (1)

In this equation, p is the momentum of the electron and A is the vector potential defined

in an arbitrary gauge by

B = ∇× A. (2)

We choose ∇ · A = 0. The Coulomb interaction

V (r) =
1

R
− 1

r1
− 1

r2
(3)

possesses a cylindrical symmetry along the molecular axis.
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2.2. Gauge choice

The probability density is symmetric with respect to the exchange of the protons. To

prove this, we first choose a gauge for which the Hamiltonian is invariant under the

parity operator Π with respect to the centre of mass of the protons,

ΠHΠ† = H. (4)

Since the potential is invariant and p is a polar vector, A must be polar too,

ΠAΠ† = −A. (5)

When (4) is satisfied, the eigenfunctions of H are either even or odd. Hence the

probability density is even. Since the symmetric gauge

AS = 1
2
B × r (6)

has property (5), the probability density is symmetric with respect to proton exchange

for that gauge choice. Therefore it must be symmetric for any gauge choice. This

property is not always satisfied by approximate wave functions [13]. Property (5) is

imposed to gauges in the following.

Let us now consider some general properties that can constrain the gauge to simplify

the numerical calculations. In a variational study of equation (1), it is convenient

to select a gauge for which the matrix elements are real. We assume that the basis

states satisfy some rather general properties, i.e. that they are eigenstates of the parity

operator

ΠFmπ
ij = πFmπ

ij (7)

and of the z component of the orbital momentum operator

LzF
mπ
ij = mFmπ

ij , (8)

where i and j are some label indices (see equation (38)). We also assume that their

phases satisfy

(Fmπ
ij )∗ = F−mπ

ij . (9)

Since the z-parity operator Πz can be decomposed as

Πz = Πe−iπLz , (10)

the z-parity of the basis functions depends on m,

πz = (−1)mπ. (11)

Let us choose axis z along the molecule axis and axis y such that

B · ŷ = 0. (12)

The y-parity operator Πy only changes the sign of the azimutal angle ϕ. Hence, with

(9) and a relation similar to (10) along the y axis, the conjugate of a basis function is

given by

(Fmπ
ij )∗ = Πe−iπLyFmπ

ij . (13)
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Since p is imaginary, the conjugate of a matrix element can be written as

〈Fmπ
ij |1

2
(p + A)2 + V (r)|Fm′π

i′j′ 〉∗

= 〈Fmπ
ij |eiπLy [1

2
(p − A)2 + V (r)]e−iπLy |Fm′π

i′j′ 〉. (14)

Hence the matrix elements are real if (p−A)2 transforms into (p+A)2 under a rotation

of angle π around the y axis, i.e. if A transforms as a pseudovector,

eiπLy(Ax, Ay, Az)e
−iπLy = (Ax,−Ay, Az). (15)

The most general divergenceless vector potential is

A = 1
2
B × r + ∇F (16)

with ∆F = 0. For simplicity, we restrict F to be quadratic in the coordinates. Then

the most general function F satisfying (5) and (15) is

F = 1
2
(λxy + µyz). (17)

With this choice, parity is a good quantum number and matrix elements are real in a

basis satisfying (7) to (9).

2.3. Prolate spheroidal coordinates

Equation (1) is best treated in the system of prolate spheroidal coordinates (ξ, η, ϕ)

where ϕ is the azimutal angle and ξ and η are defined by

ξ =
r1 + r2
R

− 1 (18)

and

η =
r1 − r2
R

. (19)

Coordinate ξ is shifted with respect to traditional definitions in order that its definition

interval be (0,∞). The volume element is given by

dV =
1

8
R3J(ξ, η)dξdηdϕ, (20)

where the dimensionless part of the Jacobian reads

J(ξ, η) = (ξ + 1)2 − η2. (21)

In this coordinate system, the Laplacian can be written as

∆ = − 4

R2J(ξ, η)
(Tξ + Tη) +

4

R2ξ(ξ + 1)(1 − η2)

∂2

∂ϕ2
, (22)

where the partial kinetic-energy operators are given by

Tξ = − ∂

∂ξ
ξ(ξ + 2)

∂

∂ξ
(23)

and

Tη = − ∂

∂η
(1 − η2)

∂

∂η
. (24)



Non aligned H+
2 in strong magnetic fields 6

The Coulomb potential becomes

V (ξ, η) =
1

R

(

1 − 4(ξ + 1)

(ξ + 1)2 − η2

)

. (25)

The singularities of the potential and of the first term of the Laplacian are canceled in

matrix elements by the J(ξ, η) factor of the volume element. A singularity still occurs

in the second term of the Laplacian.

2.4. Hamiltonian

With a field B = (Bx, 0, Bz) and gauge (16)-(17), the Hamiltonian takes the form

H = H0 +H1 +H2 (26)

with

H0 = −1

2
∆ + V +

1

2
BzLz +

1

8
B2

z (x
2 + y2) (27)

i.e., H0 is the Hamiltonian studied in [16], except for the replacement of B by Bz. The

other terms read

H1 =
1

2
λypx +

1

2
[λx+ (µ− Bx)z]py +

1

2
(µ+Bx)ypz (28)

and

H2 =
1

8

{

[λ(λ− 2Bz) + (µ+Bx)
2]y2

+[(λ+Bz)x+ (µ− Bx)z]
2 − B2

zx
2
}

. (29)

The simplest expression in prolate spheroidal coordinates is obtained with the choice

λ = 0 and µ = Bx, i.e.,

A = (−1
2
Bzy,

1
2
Bzx,Bxy). (30)

The different terms become

H0 = −1

2
∆ + V +

1

2
BzLz +

R2B2
z

32
ξ(ξ + 2)(1 − η2), (31)

H1 = − iBx
[ξ(ξ + 2)(1 − η2)]1/2

J(ξ, η)

×
[

ξ(ξ + 2)η
∂

∂ξ
+ (ξ + 1)(1 − η2)

∂

∂η

]

sinϕ, (32)

and

H2 =
1

8
R2B2

xξ(ξ + 2)(1 − η2) sin2 ϕ. (33)

The operators H0, H1 and H2 correspond to |∆m| = 0, 1 and 2 couplings, respectively.

The interest of the λ = 0 choice lies in the fact that |∆m| = 2 couplings do not occur

because of H1 and do thus not involve derivatives. With µ = Bx, derivatives with

respect to ϕ do not appear.
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3. Lagrange-mesh method

3.1. Lagrange mesh and Lagrange basis

In order to solve equation (1), we introduce a Lagrange basis and the corresponding

mesh [19, 20, 23].

The mesh contains NξNη mesh points (hxi, ηj) (i = 1, . . . , Nξ, j = 1, . . . , Nη). For

each coordinate, the mesh points are defined in increasing order by

LNξ
(xi) = 0 (34)

and

PNη
(ηj) = 0, (35)

where Ln and Pn are Laguerre and Legendre polynomials, respectively [27]. The

dimensionless parameter h allows scaling the Laguerre zeros in order to adapt the mesh

to the size of the physical system. To each of these one-dimensional meshes is associated

a Gauss quadrature formula

∫ ∞

0
F (ξ)dξ ≈ h

Nξ
∑

i=1

λiF (hxi) (36)

and
∫ +1

−1
G(η)dη ≈

Nη
∑

j=1

µjG(ηj), (37)

where the λi and µj are the corresponding weights [27].

The infinitely differentiable three-dimensional basis functions are defined as the

products

Fmπ
ij (ξ, η, ϕ) = 2[πJijR

3]−1/2f
(ν)
i (ξ)g

(ν)
jπz

(η)eimϕ, (38)

where

Jij = (hxi + 1)2 − η2
j (39)

is the value of Jacobian (21) calculated at a mesh point, πz = ±1 is the z-parity

quantum number given by (11) and ν is a positive integer hereafter called ‘regularization

parameter’. Functions f
(ν)
i are regularized Lagrange-Laguerre functions [21, 22] defined

as [16]

f
(ν)
i (ξ) = (−1)i(hxi)

1/2

(

ξ(ξ + 2)

hxi(hxi + 2)

)

ν
2 LNξ

(ξ/h)

ξ − hxi

e−ξ/2h

i = 1, . . . , 1
2
Nξ. (40)

The factor depending on ν may correct the behaviour of the Lagrange function at small

ξ values. Similarly, assuming Nη even for simplicity, regularized Lagrange-Legendre

functions are defined as [21]

g
(ν)
jπz

(η) =
1√
2
[g

(ν)
j (η) + πzg

(ν)
Nη−j+1(η)] j = 1, . . . , 1

2
Nη, (41)
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where functions g
(ν)
j are defined as

g
(ν)
j (η) = (−1)Nη−j

√

1 − η2
j

2

(

1 − η2

1 − η2
j

)

ν
2 PNη

(η)

η − ηj
. (42)

Here the regularization factor modifies the Lagrange functions at ±1. Together, the

regularization factors in (40) and (42) compensate the singularity in the second term of

Laplacian (22).

The one-dimensional Lagrange functions verify the simple properties

f
(ν)
i (hxi′) = (hλi)

−1/2δii′ (43)

and

g
(ν)
jπz

(ηj′) = µ
−1/2
j δjj′. (44)

These continuous functions vanish at all mesh points but one. Moreover they are

orthonormal when overlaps are calculated with the appropriate Gauss quadrature [16].

This orthonormality may even be exact for low values of the regularization parameter

ν. Hence the basis functions Fmπ
ij are also orthonormal when the integration over ϕ is

performed analytically and the integrals over ξ and η are approximated with the Gauss

quadrature.

3.2. Mesh equations

A wave function with parity π is expanded as

ψπ(ξ, η, ϕ) =
mmax
∑

m=mmin

Nξ
∑

i=1

1
2

Nη
∑

j=1

cmπ
ij Fmπ

ij (ξ, η, ϕ) (45)

where the cmπ
ij are variational coefficients. When the integrals over ξ and η in the matrix

elements are calculated with the Gauss-quadrature approximations (36) and (37), the

variational equations take the form of mesh equations, similar to collocation equations.

The system of 1
2
NξNη(mmax −mmin + 1) Lagrange-mesh equations reads

mmax
∑

m′=mmin

Nξ
∑

i′=1

Nη
∑

j′=1

(Hπ
ijm,i′j′m′ − Eδii′δjj′δmm′)cm

′π
i′j′ = 0. (46)

Because of the Gauss approximation, the matrix elements of the Hamiltonian are rather

easy to establish and their computation is very fast. Different types of approximation

are possible depending on the choice of the regularization power ν. As shown in [16], ν

should be chosen even for even m values and odd for odd m values. For this reason, the

square root in expression (32) of H1 does not cause problems because all integrands

encountered in the calculations are polynomials multiplied by the Laguerre weight

exp(−ξ/h). Hence the Gauss quadrature is always a good approximation. Notice that

as in other Lagrange-mesh calculations [22, 23], the accuracy on energies will be much

better than the accuracy of the Gauss quadrature for individual matrix elements.

The expression of the H0 part in (46) is given in [16], after multiplication by δmm′ .

The expressions of the H1 and H2 parts are given in the appendix.
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4. Results

The magnetic induction is expressed as γ = B/B0 where B0 ≈ 2.35 × 105 T. For the

regularization parameter, we use ν = 0 for m = 0, ν = 2 for even m values and

ν = 1 for odd m values. These choices allow to better simulate the behaviour of the

wave function in the vicinity of singular points. Selected eigenvalues of the large sparse

symmetric matrix appearing in system (46) are searched for with the Jacobi-Davidson

technique [28].

As usually in the Lagrange-mesh method, some parameters must be rather roughly

optimized. The scaling parameter h is fixed at 0.2. Small variations around this value

lead to insignificant modifications on the displayed energies. The numbers of mesh

points Nξ and Nη increase with the field strength. Equal or close values can be used

for γ = 1 and 10 but Nη must be larger than Nξ at higher fields. A new aspect here

is that m is not a good quantum number for α 6= 0. The bounds mmin and mmax in

equation (45) vary with the angle. For small angles, the weak deviation with respect to

the cylindrical symmetry allows rather small values of |mmin|. The value of mmax may

be smaller than |mmin| because positive m values have higher Landau thresholds and

the contribution of the corresponding components is weaker. For angles close to 90◦,

a new symmetry imposes mmax = |mmin|. These values must thus be adapted to each

angle.

Results for γ = 1 are given in Table 1. Here and below, all displayed digits are

believed to be correct except the last one where an error of a few units is possible.

Our energies are compared with the most accurate available results obtained by Larsen

with the variational method and elaborate trial functions [17], for a fixed distance

corresponding to the equilibrium distance at α = 0. At this field, our results are

significantly more accurate since we obtain about 10 significant digits. Larsen’s results

have an accuracy varying between 3 × 10−5 and 8 × 10−5 for α increasing from 15◦ to

90◦. For each angle, the equilibrium distance varies. We also give their values in Table

1 together with the corresponding energies. The values 1.690 and 1.642 at 45◦ and 90◦

are slightly larger than those obtained in [13] by Turbiner and López Vieyra (1.667 and

1.635). The location of the energy minimum slightly decreases with increasing angle as

expected from the fact that the magnetic field squeezes the electron wave function.

The corresponding energy surface is displayed as a function of R and α in figure 2.

One observes that the valley is rather shallow and becomes narrower when α increases.

Its shape does not vary much with the field angle except for the decrease of the minimum

location already mentioned. The minimal energy progressively increases with angle α.

Similar results can be found in Fig. 3 of [11].

Results for γ = 10 are displayed in Table 2. They are also compared with Larsen’s

variational results at R = 0.958. When the field strength increases, the number of

stable digits decreases in the Lagrange-mesh method because of the increasing size of

the matrix due to larger mmax − mmin. The physical eigenvalue corresponding to the

ground state is not always the lowest one since the method is not purely variational
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α (◦) mmin mmax R (a0) E (Hartree) Ref. [17]

0 0 0 1.752 −0.474 988 244 647

1.75208 −0.474 988 245 274

15 −12 6 1.752 −0.473 206 032 719 −0.473 17

1.74268 −0.473 213 991 744

30 −12 12 1.752 −0.468 385 599 03 −0.468 35

1.71889 −0.468 490 782 84

45 −20 12 1.752 −0.461 914 907 7 −0.461 86

1.69015 −0.462 302 576 9

60 −20 12 1.752 −0.455 574 447 6 −0.455 51

1.66485 −0.456 380 746 1

75 −20 16 1.752 −0.451 014 467 6 −0.450 94

1.64810 −0.452 195 150 3

90 −20 20 1.752 −0.449 362 477 9

1.64229 −0.450 692 199 5

Table 1. Energies E at γ = 1 and R = 1.752 compared with the results of Larsen [17]

as a function of angle α (upper line). Equilibrium distances Re and energies E (lower

line). Calculations are performed with Nξ = Nη = 20 and h = 0.2.
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α (°)
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Figure 2. Ground-state energy surface of H+

2
at γ = 1 as a function of the interproton

distance R and of the field angle α.

because of the Gauss quadrature. The ground-state eigenvalue can be identified because

its digits are stable. At this field, we obtain about 7 significant digits. Larsen’s results

have an accuracy varying between 1.5× 10−4 and 6× 10−4 for α increasing from 15◦ to

90◦. We also give for each angle in Table 2 an accurate equilibrium distance and the

corresponding energy. The values 0.834 and 0.780 at 45◦ and 90◦ are also slightly larger
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α (◦) mmin mmax R (a0) E (Hartree) Ref. [17]

0 0 0 0.958 2.825 014 661

0.95702 2.825 013 965

15 −20 8 0.958 2.851 849 78 2.852 02

0.93117 2.851 280 65

30 −24 8 0.958 2.920 713 3 2.921 00

0.87981 2.915 153 5

45 −36 8 0.958 3.004 869 7 3.005 24

0.83394 2.989 554 8

60 −46 12 0.958 3.078 507 9 3.078 95

0.80260 3.053 937 8

75 −40 18 0.958 3.126 301 8 3.126 86

0.78527 3.096 388 6

90 −30 30 0.958 3.142 585 8

0.77982 3.111 105 1

Table 2. Energies E at γ = 10 and R = 0.958 compared with the results of Larsen

[17] as a function of angle α (upper line). Equilibrium distances Re and energies E

(lower line). Calculations are performed with Nξ = 24, Nη = 28 and h = 0.2.

than those obtained by Turbiner and López Vieyra (0.812 and 0.772).

The energy surface at γ = 10 is presented in figure 3. With respect to γ = 1, the

valley is narrower and displays a steeper increase of the minimum. Its shape varies more

with the field angle.
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Figure 3. Ground-state energy surface of H+

2 at γ = 10 as a function of the interproton

distance R and of the field angle α.
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For γ = 100, the situation is more difficult. The size of the matrix becomes very

large. The worst difficulty is due to the occurrence of many unphysical eigenvalues

below and around the physical eigenvalue corresponding to the ground state. When

convergence is good enough, the ground-state energy can anyway be identified among

the other ones by its stability. Results displaying the significant digits are presented in

Table 3. They are obtained with Nη ≈ 2Nξ. Since the size of the matrix increases with

angle α, only the first values of this angle could be accurately studied. Beyond 15◦,

fewer digits are stable. Our results still improve those of Larsen by about 3 × 10−3 to

6×10−3. An accurate equilibrium distance and the corresponding energy are also given

in Table 3. The values 0.346 and 0.336 at 45◦ and 90◦ are also slightly larger than the

values 0.337 and 0.320 obtained in [13].

α (◦) mmin mmax R (a0) E (Hartree) Ref. [17]

0 0 0 0.448 44.853 918 878

0.44779 44.853 918 538

15 −28 8 0.448 45.043 794 45.046 6

0.4174 45.034 863

30 −40 8 0.448 45.477 1 45.480 8

0.3747 45.416 0

45 −62 8 0.448 45.906 1 45.909 3

0.346 45.800 7

60 −68 10 0.448 46.191 9 46.196 1

0.336 46.099 0

75 −68 20 0.448 46.333 4 46.340 0

0.335 46.280 0

90 −48 48 0.448 46.374 4

0.336 46.339 7

Table 3. Energies E at γ = 100 and R = 0.448 compared with the results of Larsen

[17] as a function of angle α (upper line). Equilibrium distances Re and energies E

(lower line). Calculations are performed with Nξ = 20 or 24, Nη = 40 or 44 and

h = 0.2.

The energy surface at γ = 100 is presented in figure 4. It is completely different

from the γ = 1 case. The valley is now aligned along the field axis. The rotation of the

molecular axis is almost totally hindered.

The behaviour with respect to rotations has been parametrized by Larsen as [7, 17]

E(Re, α) = E(Re, 0) + ARe
sin2 α. (47)

Values for ARe
are given in Table 4. They are very close to those of Larsen [17].

The agreement improves with increasing field strength. The limit α1% of the domain

where this approximation is valid within 1 % is also displayed. Approximation (47) is

particularly good at γ = 1 where its accuracy is still better than 2 % at α = 45◦.
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Figure 4. Ground-state energy surface of H+

2 at γ = 100 as a function of the

interproton distance R and of the field angle α.

γ Re ARe
α1% (◦) ARe

[17]

1 1.75208 0.026 679 30 0.0285

10 0.95702 0.406 70 11 0.409

100 0.44779 2.969 7 2.96

Table 4. Equilibrium distances Re and coefficients ARe
of approximation (47) as a

function of γ, compared with the results of Larsen [17].

5. Conclusions

The hydrogen molecular ion in a strong magnetic field has been studied for arbitrary

orientations of the molecular axis. Rather than rotating the molecule axis, we change

the field direction to allow the use of the same prolate spheroidal coordinates at each

angle. A coupling then appears between different magnetic quantum numbers which

strongly increases the basis size.

The Lagrange-mesh method simplifies the calculation while allowing to obtain

highly accurate results. To simplify its use, we have introduced a gauge leading to

the simplest forms for the couplings between different m values. For the field strengths

γ = 1 and γ = 10, we obtain very accurate results with short computing times. At

γ = 100 and higher fields, the size of the matrix becomes very large and the occurrence

of unphysical eigenvalues due to the Gauss approximation inherent in the Lagrange-mesh

method makes the search for physical eigenvalues much more tedious.

Energy surfaces display the progressive disparition of the rotation degree of freedom

of the molecule with increasing magnetic fields. From γ = 1 to γ = 100, the valley of

local minima of the energy rotates. It evolves from a rather weak angular dependence to
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an alignment along the field axis. At γ = 100, the rotational motion is already strongly

hindered. The aligned approximation should be quite valid beyond that field.
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Appendix A. Matrix elements of H1 and H2

The matrix elements ofH0 are given in [16]. Different options are available: symmetrized

(equations (41) to (45)) or integrated by parts (equations (46) to (51)). Here we give

the matrix elements of H1 and H2.

Let us start with the first term of equation (32), i.e. the term containing the

derivative with respect to ξ, hereafter called H1a. By using the Gauss quadrature and

the expresssions

f
(ν)′
i′ (hxi) = (hλi′)

−1/2 (−1)i−i′

h(xi − xi′)

√

xi′

xi

[

xi(hxi + 2)

xi′(hxi′ + 2)

]ν/2

(A.1)

for i 6= i′ and

f
(ν)′
i (hxi) = (hλi)

−1/2 1

2hxi

(

2ν − 1 − 2ν

hxi + 2

)

, (A.2)

one obtains for i 6= i′

〈Fmπ
ij |H1a|Fm′π

i′j′ 〉 = − 1

2
(δm,m′−1 − δm,m′+1)ηj

√

1 − η2
j δjj′(JijJi′j)

−1/2

× (−1)i−i′

h(xi − xi′)

√

xi′

xi

[hxi(hxi + 2)](ν
′+3)/2

[hxi′(hxi′ + 2)]ν′/2
(A.3)

and for i = i′

〈Fmπ
ij |H1a|Fm′π

ij′ 〉 = − 1

2
(δm,m′−1 − δm,m′+1)ηj

√

1 − η2
j δjj′J

−1
ij

×
[

(ν ′ − 1
2
)(hxi + 2) − ν ′

]

[hxi(hxi + 2)]1/2. (A.4)

Let us turn to the second term H1b of equation (32), i.e. the term containing the

derivative with respect to η. By using the Gauss quadrature and the expresssions

g
(ν)′
j′ (ηj) = µ

−1/2
j′

(−1)j−j′

ηj − ηj′

(

1 − η2
j

1 − η2
j′

)(ν−1)/2

(A.5)

for j 6= j′ and

g
(ν)′
j (ηj) = µ

−1/2
j (1 − ν)

ηj

1 − η2
j

, (A.6)

one obtains for j 6= j′

〈Fmπ
ij |H1b|Fm′π

i′j′ 〉 = − 1

2
(δm,m′−1 − δm,m′+1)(hxi + 1)[hxi(hxi + 2)]1/2
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× δii′(JijJij′)
−1/2(−1)j−j′

(

1

ηj − ηj′
− πz

ηj + ηj′

)

× (1 − η2
j )

(ν′+2)/2

(1 − η2
j′)

(ν′−1)/2
(A.7)

and for j = j′

〈Fmπ
ij |H1b|Fm′π

i′j 〉 = − 1

2
(δm,m′−1 − δm,m′+1)(hxi + 1)[hxi(hxi + 2)]1/2

× δii′J
−1
ij

[

(1 − ν ′)ηj − πz

1 − η2
j

2ηj

]

(1 − η2
j )

1/2. (A.8)

Now we can calculate the matrix elements of H1 = H1a +H1b. The expressions we

have obtained are however not symmetrical with respect to transposition, i.e. the matrix

element and its transposed are not equal at the Gauss approximation. This drawback

is solved by applying the Gauss approximation to the average of each matrix element

and of its transposed. In other words, we have to symmetrize expressions (A.3), (A.7)

and the sum of (A.4) and (A.8).

For i 6= i′, only the ξ-dependent part is modified and the matrix element (A.3)

provides

〈Fmπ
ij |H1|Fm′π

i′j′ 〉 = − 1

4
(δm,m′−1 − δm,m′+1)ηj

√

1 − η2
j δjj′(JijJi′j)

−1/2

× (−1)i−i′

h(xi − xi′)

{√

xi′

xi

[hxi(hxi + 2)](ν
′+3)/2

[hxi′(hxi′ + 2)]ν′/2

+

√

xi

xi′

[hxi′(hxi′ + 2)](ν+3)/2

[hxi(hxi + 2)]ν/2

}

. (A.9)

For j 6= j′, only the η-dependent part is modified and the matrix element (A.7) provides

〈Fmπ
ij |H1|Fm′π

i′j′ 〉 = − 1

4
(δm,m′−1 − δm,m′+1)(hxi + 1)[hxi(hxi + 2)]1/2

× δii′(JijJij′)
−1/2(−1)j−j′

(

1

ηj − ηj′
− πz

ηj + ηj′

)

×
[

(1 − η2
j )

(ν′+2)/2

(1 − η2
j′)

(ν′−1)/2
+

(1 − η2
j′)

(ν+2)/2

(1 − η2
j )

(ν−1)/2

]

. (A.10)

For i = i′ and j = j′, the symmetrized sum of (A.4) and (A.8) is

〈Fmπ
ij |H1|Fm′π

ij 〉 =
1

4
(δm,m′−1 − δm,m′+1)(hxi + 1)[hxi(hxi + 2)]1/2

× δii′J
−1
ij πzη

−1
j (1 − η2

j )
3/2. (A.11)

Though heavy, expressions (A.9) and (A.10) are easily programmed and are computed

in a very short time.

The matrix elements of H2 are very simple,

〈Fmπ
ij |H2|Fm′π

ij′ 〉 =
R2B2

x

32
(2δmm′ − δm,m′−2 − δm,m′+2)

× hxi(hxi + 2)(1 − η2
j )δii′δjj′. (A.12)

The |∆m| = 2 blocks are diagonal.
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