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We study the growth of cosmological perturbations in the model of Lorentz-violating massive gravity.
The Friedmann equation in this model acquires an unconventional term due to the Lorentz-breaking
condensates which have the equation of state w � �1=�3�� with � being a free parameter taking values
outside of the range �0; 1=3�. Apart from the standard contributions, the perturbations above the
Friedmann background contain an extra piece which is proportional to an arbitrary function #�xi� of
the space coordinates. This function appears as an integration constant and corresponds to a non-
propagating scalar mode which may, however, become dynamical with the account of the higher-
derivative corrections. For �1< �< 0 and � � 1 the anomalous perturbations grow slower than the
standard ones and thus the model is compatible with observations. Whether the model is experimentally
acceptable at other values of � depends on the value of the function #�xi� at the beginning of the radiation-
dominated epoch.
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I. INTRODUCTION

The standard cosmological model is based on the as-
sumption that the gravitational interaction is correctly
described by general relativity (GR) at scales comparable
to the horizon size. This model is quite successful in
describing the bulk of the cosmological data: the anisotro-
pies of the cosmic microwave background radiation, the
primordial abundance of light elements and the structure
formation in the early Universe. The quantitative agree-
ment between the standard cosmological model and the
observations has an ever-growing precision [1]. The ques-
tion arises to what extent one should consider this agree-
ment as a confirmation of general relativity itself.

In order to address this question an alternative model is
needed whose predictions can be compared to those of GR.
Such a model should coincide with GR at scales from
�0:1 mm to the size of the solar system where GR has
been tested directly. Therefore, the modifications of the
gravitational interaction should occur in the infrared, at
distances much larger than the size of the solar system.

Interestingly, at these distances the predictions of GR
actually do not agree with the observations; only after the
introduction of the otherwise undetected dark matter and
dark energy is the agreement achieved. The necessity for
these new components is a major problem of the standard
cosmology. Hence, in parallel with the direct searches for
the dark components, the alternative models of gravity
should be explored which may eventually eliminate the
need (or provide alternative candidates) for dark matter and
shed new light on the nature of dark energy.

It is a challenging problem to modify the gravitational
interaction at large distances. An alternative model has to
be theoretically consistent, i.e., free from ghosts and in-
stabilities. In addition, it should be in agreement with the
existing experimental data and should, ideally, provide

testable predictions for the future experiments. It is not
obvious that such models exist, so it would be very im-
portant to construct an example.

There have been several attempts made in this direction
[2–10]. In this paper we concentrate on the massive gravity
model [11] which is minimal in the sense that in does not
contain new light propagating degrees of freedom as com-
pared to the Einstein gravity. In this model the graviton
acquires a mass due to the space-time dependent conden-
sates of the four ‘‘Goldstone’’ scalars �0�x�, �i�x�. The
action of the model reads [12]

 S �
Z

d4x
�������
�g
p

��M2
PlR��4F �Zij� �Lmatter�; (1)

where the first term is the standard Einstein-Hilbert action,
Lmatter stands for the minimally coupled ordinary matter,
and F �Zij� is a function of the derivatives of the four scalar
fields�0�x�,�i�x� which depends on a single argument Zij

constructed as follows:

 Zij � X�Wij; X � ��4g��@��0@��0;

Vi � ��4g��@��
0@��

i;

Wij � ��4g��@��
i@��

j �
ViVj

X
:

(2)

The constant � is a free parameter. The model possesses
meaningful cosmological solutions for � 	 1=3 and � < 0
[13].

The flat space vacuum solution is [14]

 �0 � �2t; �i � �2xi:

The ground state is translationally invariant due to the
derivative nature of the Goldstone coupling, but the
Lorentz symmetry is spontaneously broken. The particular
dependence of the action (1) on the derivatives of the
Goldstone fields through a single argument Zij ensures
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the nonpathological behavior of the perturbations about the
vacuum solution [11], namely, the absence of ghosts and
rapid instabilities. The tensor metric perturbations are, in
general, massive with the mass determined by the first and
the second derivatives of the function F . The low-energy
spectrum consists of the two propagating tensor modes.
The auxiliary scalars do not appear in the spectrum.

An interesting and peculiar feature of this model is that
the gravitational interaction between static sources is de-
scribed by the standard Newton’s law despite the nonzero
mass of the graviton [15]. Because of this feature the model
passes the terrestrial and solar system tests even for gravi-
ton masses as large as �1015 cm��1. Moreover, it admits the
standard Friedmann-Robertson-Walker (FRW) cosmologi-
cal solutions, the only trace of the Goldstone scalars being
two contributions to the energy density which behave as a
cosmological constant and as matter with the equation of
state w � ��3���1. The massive gravitons may be created
in cosmologically significant amounts and may play a role
of dark matter [12].

Given that the model passes the most obvious con-
straints one may wonder if it reproduces correctly more
subtle parts of modern cosmology, in particular, the theory
of structure formation. This is the question which we
address in this paper. The answer is not obvious a priori
since the vacuum in this model contains the condensates of
the Goldstone fields whose perturbations mix with the
matter density perturbations.

We find that cosmological perturbations in the model (1)
consist of two parts. The first part behaves identically to the
perturbations in GR and is, therefore, compatible with
observations. The second, ‘‘anomalous’’ part is propor-
tional to an unknown function #�xi� of the space coordi-
nates which arises as an integration constant.

The appearance of this function reflects the existence of
the nondynamical mode with the dispersion relation !2 �
0, much in common with the ghost condensate model [9].
In the model (1) the value of #�xi� is determined by the
initial conditions. Note, however, that the action (1) is no
more than the low-energy effective action. One should
expect the higher-derivative corrections to Eq. (1) to be
present. In general, these corrections make #�xi� a slowly
changing dynamical variable. In this case the initial value
of #�xi� may be determined by its evolution at the infla-
tionary epoch.

As we show below, the growth of the anomalous pertur-
bations depends on the value of �. For �1< �< 0 they
grow slower than the standard ones, so that the latter
dominate. At � � 1 the anomalous contributions to per-
turbations cancel out. Thus, at least in these two cases the
perturbations behave in a standard way and the model (1) is
consistent with the structure formation in the Universe.
This is the main result of the paper.

For other values of � (in particular, for the cosmologi-
cally interesting case 1=3< �< 1 which corresponds to

the equation of state of the condensate �1<w<�1=3)
the anomalous perturbations grow at the radiation-
dominated epoch, and may or may not grow faster than
the standard perturbations at the matter-dominated stage,
depending on the particular value of � (see Sec. III for
details). Whether this leads to a contradiction with obser-
vations depends on the function #�xi� at the beginning of
the radiation-dominated era. To address this question one
needs to consider the higher-derivative corrections to the
action (1). This will be done elsewhere.

The paper is organized as follows. In Sec. II we review
the cosmological solutions in massive gravity. In Sec. III
we calculate the growth of perturbations in the FRW
background. Sec. IV contains the summary of the results
and their discussion. The details of the calculations are
given in the appendix.

II. FRW SOLUTION

In the absence of matter the model described by the
action (1) admits the standard FRW solutions [13]. The
spatially-flat homogeneous and isotropic ansatz [16] for
the metric and Goldstone fields reads

 ds2 � a2����d�2 � �ijdxidxj�;

�0 � �2����; �i � �2xi;
(3)

which implies

 Z � �02�=a2��2;

where Z � ��ijZij=3 and where prime denotes the de-
rivative with respect to the conformal time �. Assuming
the ordinary matter is homogeneous and isotropic, the
equations of motion (the Friedmann equation and the field
equation for �0) take the form

 H 2 �
a2

3M2
Pl

��m � �� � ���; (4)

 0 � @0�a
3�1=�Z1�1=2�F Z�; (5)

where H � a0=a, so that H =a is the Hubble constant,
and 3F Z � �ijdF =dZij. The matter energy density �m
has the standard form, while the two contributions of the
Goldstone fields to the energy density read

 �� � ��4F =2; �� � �3��4ZF Z:

The first of these terms behaves like a cosmological con-
stant, while the second contribution corresponds to matter
with the equation of state w � �1=�3��. Thus, the
Friedmann Eq. (4) reduces to the standard one, the only
trace of the Goldstone field being the energy densities ��
and ��.

For a given function F Eq. (5) determines the depen-
dence of the variable Z on the scale factor. For � > 1=3 or
� < 0 this equation implies
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 Z1�1=2�F Z ! 0 as a!1:

The case of interest (which occurs generically for an
algebraic function F [13]) is when in this limit Z! Z0 �
const such that F Z�Z0� � 0. In this case the graviton mass
remains finite at a! 1 (see Appendix A 2 for details).

In the special case � � 1=3, the field Eq. (5) implies
Z � const. Then F Z is not driven to zero by the cosmo-
logical evolution and �� behaves as the cosmological
constant. The value of the total cosmological constant
�� � �� is determined by the initial conditions.

In what follows we neglect where possible the deviations
from the point Z � Z0 (note that in this point �� � 0). We
also assume that the value of �� is of the order of the
present-day cosmological constant, and thus its contribu-
tion to the Friedmann equation at the epoch of structure
formation is negligible.

III. COSMOLOGICAL PERTURBATIONS

As in the standard analysis of the cosmological pertur-
bations [17], it is convenient to separate space and time
components. The metric perturbations can be parametrized
in the following way:

 �g00 � 2a2’; �gi0 � a2�vi � @iB�;

�gij � a2�2 �ij � @iFj � @jFi � 2@i@jE� hij�;
(6)

where the vector perturbations vi and Fi are transverse,
while the tensor perturbation hij is transverse and traceless.
A similar parametrization can be used for the perturbations
of the Goldstone fields,

 ��0 � �2�0; ��i � �2��i � @i��; (7)

where �i is transverse. Finally, the perturbations of the
ordinary matter are parametrized in the following way:

 �T m
�� � ���m � �pm�u�u� � g���pm � pm�g��

� ��m � pm��u��u� � u��u��; (8)

where ��m and �pm are related by the matter equation of
state and the perturbations of the velocity �u� are ex-
pressed in terms of the scalar 	 and the transverse vector
	i as follows:

 �ui � a�	i � @i	�; �u0 � a’:

Therefore, in total there is one tensor perturbation hij
consisting of two components, four vectors vi, Fi, �i,
and 	i, consisting of two components each, and 9 scalars
’, B,  , E, �0, �, 	 , �pm, and ��m. One vector and two
scalar perturbations are gauge degrees of freedom; they can
be eliminated by imposing a gauge condition. As a con-
sequence, there are only three gauge-invariant vector fields

 $i � vi � F0i; 
i � �i � Fi; (9)

and 	i, and seven scalar gauge-invariant fields

 � � ’� a�1�a�E0 � B��0; � �  �H �E0 � B�;

� � �� E; B � B� E0 � �0=�0;

�� � ���m � �
0
m�E

0 � B��=�m;

�p � ��pm � p0m�E0 � B��=pm; �	 � 	 � �E0 � B�:

(10)

The tensor perturbation hij is also gauge invariant.

A. The tensor perturbations

The equation for the tensor perturbation is

 h00ij � 2Hh0ij � @
2
i hij � a

2m2
2hij � 0; (11)

where m2 is the graviton mass which has the scale m2 /
�2=MPl and whose precise expression in terms of the
function F �Zij� and its derivatives is given in
Appendix A 2.

This equation is identical to the equation for a free
massive scalar field in the FRW background. If the mass
of the graviton is larger than the Hubble constant, m2 

H =a, which we assume to be the case in what follows,
Eq. (11) describes massive gravitational waves with the
amplitude scaling like hij / a�1 and hij / a�3=2 in the
relativistic and nonrelativistic limits, respectively.

B. The vector perturbations

In the longitudinal gauge the three equations describing
vector perturbations are

 @2
j$i � 2a2�mM�2

Pl �1� w�	i � 0; (12)

 $0i � 2H$i � a
2m2

2
i � 0; (13)

 m2
2@

2
j
i � 0; (14)

where w is the parameter entering the equation of state of
the ordinary matter, pm � w�m.

The first of these equations allows us to express 	i in
terms of $i, while the third equation gives 
i � 0.
Therefore, the only nontrivial equation is Eq. (13). It
differs from the conventional one by the term proportional
to the graviton massm2

2 which cancels at
i � 0. Thus, this
equation is the conventional one and describes a field with
the amplitude decreasing as $i / a

�2.

C. The scalar perturbations

The perturbation �p can be expressed in terms of �� by
means of the matter equation of state. In the case of the
adiabatic perturbations one has

 �p �
c2
s

w
��;

where cs is the sound velocity (c2
s � w for the ideal fluid).

The behavior of the remaining six perturbations is gov-
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erned by the following equations:

 0 � ���� a2m2
2�; (15)

 0 � 2��0 �H�� � a2 �m
M2

Pl

�1� w!��	; (16)

 

0 � �2@2
j�� 6H �H���0� � a2m2

4�@
2
j�� 3��

� a2 �m
M2

Pl

�� � a
2m2

0

�
�00

�0
B�B0 ��

�
; (17)

 

0 � �2�00 � 2��H 2 � 2H 0� � @2
j �����

� 2H �2����0 � a2

�
pm
M2

Pl

�p �m
2
3@

2
j�

�m2
4

�
��

�00

�0
B�B0 ��=�

��
; (18)

 0 � @0

�
a4m2

4

�0

�
3�
�
��B0 �

�00

�0
B

�
� �3�� @2

i��
��
;

(19)

 0 � m2
4

�
�=��

�00

�0
B�B0 ��

�
� �m2

3 �m
2
2�@

2
j�:

(20)

Here mi are the graviton mass parameters defined in
Appendix A 2. We assume that they are of the order of
�2=MPl.

This system of equations can be solved as follows. At
m2

4 � 0 Eq. (20) can be used to express �00=�0B�B0 �
�. Then Eq. (19) becomes a closed equation for �,

 0 � @2
i

�
�0 �

�
3�

1

�

�
H�

�
:

The solution of this equation which does not grow at spatial
infinity reads

 m2
2� � �#�xi�a1=��3; (21)

where #�xi� is an integration constant depending only on
spatial coordinates. Then Eqs. (16), (17), and (20) can be
used to express �	 , ��, and B in terms of � and � while
Eq. (15) reads

 ��� � #�xi�a1=��1: (22)

With the account of all these relations, the remaining
Eq. (18) becomes a closed inhomogeneous equation for �,

 

0 � @2
a��

1

a

�
4� 3c2

s �
H 0

H 2

�
@a�

�
1

a2

�
�1� 3c2

s� � 2
H 0

H 2
�
c2
s@2

i

H 2

�
�

�

�
�c2

s@
2
i

H 2
�

�
3c2

s �
1

�
� 2

H 0

H 2

��
#a1=��3: (23)

Once the solution to this equation is found, the other
variables are determined by Eqs. (16), (17), (20), and
(22). In particular, one finds
 

�� �
2M2

Pl

�m
��@2

i � 3H 2�a1=��3#

�
2M2

Pl

a2�m

�
3H 2

�
1� a

@
@a

�
� @2

i

�
�; (24)

where � is a solution to Eq. (23).
The conventional cosmological perturbations are recov-

ered by setting the graviton masses to zero, m2
i � 0. In this

case Eq. (15) gives ��� � 0 which implies #�xi� � 0
[cf. Eqs. (21) and (22)]. Then both Eqs. (23) and (24)
reduce to the standard equations describing cosmological
perturbations in the Einstein theory. Note that the value of
# is determined essentially by the initial conditions.
Setting # � 0 would eliminate the #-dependent terms in
Eqs. (23) and (24) and bring these equations to the con-
ventional form even in the case m2

2 � 0.
In the case of matter perturbations in a matter-dominated

universe Eq. (23) reduces to the following equation:

 

@2�

@a2
�

7

2a
@�

@a
�

�
1

�
� 1

�
a1=��3# � 0;

which differs from the standard case by the presence of the
inhomogeneous term proportional to #. The solution to
this equation reads

 � � �
2�

2� 3�
a1=��1#�xi� � a�5=2c1�x

i� � c2�x
i�;

where ci�xi� are the integration constants. Substituting this
solution into Eq. (24) one finds the density contrast
 

�� �
�
2M2

Pla
�0

@2
i � 3

�
c1�x

i�

a5=2
� 2

�
aM2

Pl

�0
@2
i � 1

�
c2�xi�

�
6�

2� 3�
a1=��1

�
a�M2

Pl

�0
@2
i � 1

�
#�xi�; (25)

where �0 is the energy density of matter at present. The
first two terms in this equation are precisely the ones which
appear in the standard Einstein theory, the second term
describing the linear growth of the perturbations, �� / a.
The difference from the conventional case consists in the
third term on the r.h.s of Eq. (25). The perturbations
corresponding to this term grow proportionally to a1=�.
For � > 1 or � < 0 these anomalous perturbations grow
slower than the standard ones.
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In the radiation epoch the situation is similar. For a
relativistic fluid one has wm � 1=3, so that Eq. (23) re-
duces to the following one:
 

0 �
@2�

@a2 �
4

a
@�

@a
�
M2

Pl@
2
i

�r
�

�

�
1

�
� 1�

a2�M2
Pl@

2
i

�r

�
a1=��3#; (26)

where �r is the energy density of radiation at present. For
the generic value of � the solution to this equation is
cumbersome. For simplicity let us concentrate on the
modes which are much smaller than the Hubble scale,
k2 
H 2. The density contrast calculated according to
Eq. (24) has the standard oscillating piece and an extra part
proportional to #,
 

�� � c1�xi� siny� c2�xi� cosy� 2�
�
�r

k2M2
Pl

�
�1=��1�=2

�
�y1�1=� �

Z y

0
dxx1�1=� sin�y� x�

�
#; (27)

where y � �k=
���
3
p

is proportional to the scale factor, while
ci�x

i� are two integration constants. As one may see from
this expression, for �1 � � < 0 the #-dependent contri-
bution to the density contrast decays with the scale factor
so that only the standard contribution remains. Thus, in this
range of � the perturbations behave just as predicted by
general relativity in both matter- and radiation-dominated
epochs.

Another case of interest is � � 1. This case is special
because at � � 1 the a-dependence of the last term in
Eq. (26) disappears. In fact, one may show that in this
case the dependence on # cancels out in the density con-
trast, so that only the standard part of perturbations
remains.

At other values of � the #-dependent contributions to
perturbations grow in the radiation-dominated universe.

IV. DISCUSSION

To summarize, in the model of massive gravity de-
scribed by the action (1) the cosmological perturbations
contain two parts, the ‘‘normal’’ and the anomalous one.
The first, normal part has the behavior identical to that
found in conventional general relativity. It is therefore in
agreement with observations to the same extent as the
latter. In particular, the normal part of the perturbations
can describe successfully at least the linear stage of the
structure formation. In fact, the predictions of general
relativity and the model (1) with only the normal pertur-
bations present completely coincide in the linear regime, so
that the two models are indistinguishable in this respect.

The second, anomalous part of perturbations is specific
to the model of massive gravity with the action (1). These
perturbations originate from the condensates of the scalar
fields present in the model. This contribution to perturba-

tions depends linearly on the unknown function of space
coordinates #�xi� which enters as an integration constant.
The value of this function cannot be determined within the
model (1) and has to be specified as an initial condition.

The behavior of the anomalous contributions to pertur-
bations at different stages of the evolution of the universe
depends on the value of �. At the matter-dominated stage
the anomalous perturbations grow no faster than the stan-
dard ones for � 	 1 and � < 0. In the radiation-dominated
epoch this occurs at �1 � � < 0 and � � 1. Thus, at
�1 � � < 0 and � � 1 the normal perturbations dominate
at both radiation and matter-dominated stages.

The appearance of the time-independent arbitrary func-
tion is not surprising. The same function #�xi� also enters
the expression for the gravitational potential of an isolated
massive body [12]. Its origin may be traced back to the
existence of the scalar mode with the dispersion relation
!2 � 0 [11]. This mode is not dynamical in the model (1).
However, the action (1) is the low-energy effective action,
so one should expect the corrections containing higher-
derivative terms to be present. In general, these corrections
make # a dynamical variable with the dispersion relation
!2 � �p4, where � is a small coefficient. Therefore, #
becomes a slowly varying function of time. The slow
evolution may drive # to a particular value at the infla-
tionary epoch and thus prepare the initial conditions for the
radiation-dominated stage. If this initial value of # is
small, then the growth of the anomalous part of perturba-
tions may become irrelevant and corresponding values of �
phenomenologically acceptable. This question will be con-
sidered elsewhere.
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APPENDIX A

In these Appendices we provide some intermediate for-
mulas skipped in the main text. In Appendix A 1 we
calculate the field equations for the standard FRW solution
(3). In Appendix A 2 we introduce the mass parameters and
the relations between them. In Appendix A 3 we calculate
the gauge-invariant linearized field equations.

1. The background

For X, Vi, andWij given by Eq. (2), the following action
describes a massive gravitational field,

 S �
Z

d4x
�������
�g
p

��M2
PlR��4F �X; Vi;Wij; . . .��;
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characterized by the ten Einstein equations G�� �

M�2
Pl �T

m
�� �T �

��� and four Goldstone equations

 

0 � @�

� �������
�g
p

g��
�
@F
@X

�0
�@��0 �

@F
@Wij

�
�i�@��j

�
Vj

X
@���

0�i� ��
i�0
�� � �

0
�
ViVj

X2 @��
0

�

�
1

2

@F
@Vi

@���
0�i� ��

i�0
��

��
:

Here T m
�� is the energy-momentum tensor of the ordinary

matter which has the standard form (8) while the energy-
momentum tensor of the Goldstone field is given by

 T �
�� � �4

�
�

1

2
g��F �

1

2

@F
@Vi
�@��i@��0

� @��
0@��

i� �

�
@��

i@��
j �

Vj

X
�@��

i@��
0

� @��
0@��

i� �
ViVj

X2 @��
0@��

0

�
@F
@Wij

�
@F
@X

@��
0@��

0

�
:

For the cosmological solutions given by Eq. (3), X �
a�2�02, Vi � 0, and Wij � �a�2�ij. The 14 field equa-
tions reduce to the following three relations (prime stands
for the derivative with respect to �):

 

3H 2 �
a2

M2
Pl

��m � �� � ���;

2H 0 �H 2 � �
a2

M2
Pl

�pm � p� � p��;

0 � @0�a3F XX1=2�;

which can be solved for any given function F �a; X�. The
following notations were used:

 �� � �4XF X; p� � �4WFW;

�� � ��4F =2; p� � �4F =2:

For the model (1) characterized by a function F depending
only on Zij one has p� � ��3���1��.

2. The mass parameters

There are five mass parameters m2
i , i � 0 . . . 4 defined

by the following relations:

 m2
0 �

�4

M2
Pl

�XF X � 2X2F XX�;

m2
1 �

2�4

M2
Pl

�
�XF X �WFW �

1

2
XWF VV

�
;

m2
2 �

2�4

M2
Pl

�WFW � 2W2FWW2�;

m2
3 �

�4

M2
Pl

�WFW � 2W2FWW1�;

m2
4 � �

�4

M2
Pl

�XF X � 2XWF XW�;

where W��1=3�ijW
ij and where the first and second

derivatives of the function F �X; Vi;Wij; . . .� are denoted as
follows:

 

@F
@X
� F X;

@2F

@X2 � F XX;
@2F

@ViVj
� F VV�ij;

@F
@Wij � FW�ij;

@2F

@XWij � F XW�ij;

@2F

@WijWkl � FWW1�ij�kl �FWW2��ik�jl � �il�jk�:

It is possible to relate the masses m2
0 and m2

4 by using the
Goldstone equation for the background. This last gives

 m2
0

�
�00

�0
�H

�
� 3Hm2

4:

For the model characterized by the function F �
F �Zij�, it is straightforward to show that

 m2
0 �

�4

M2
Pl

��3�1� 2��ZF Z � 6�Z2�3F ZZ1 � 2F ZZ2��;

m2
1 �

2�4

M2
Pl

�3�� 1�ZF Z;

m2
2 �

2�4

M2
Pl

�ZF Z � 2Z2F ZZ2�;

m2
3 �

�4

M2
Pl

�ZF Z � 2Z2F ZZ1�;

m2
4 �

�4

M2
Pl

��ZF Z � 2Z2�3F ZZ1 � 2F ZZ2��;

where

 

@F
@Zij

� F Z�ij;

@2F

@ZijZkl
� F ZZ1�ij�kl �F ZZ2��ik�jl � �il�jk�:

For this particular case, �3�p� � �� and the following
relations hold:
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8>><
>>:
m2

0 � 3��m2
4 �m

2
1=2�;

m2
4 � ��3m2

3 �m
2
2�;

m2
1 � 2�3�� 1�p�:

3. The linearized equations

Small perturbations on the cosmological background can be expressed through Eqs. (6) and (7). The tensor field hij and
the vector field 	i are gauge-invariant, while the other two gauge-invariant vector fields and seven gauge-invariant scalar
fields are introduced through Eqs. (9) and (10). With all these definitions, the linearized part of the Einstein tensor is given
by

 

�G00 � 2@2
i�� 6H 0;

�Gi0 � @i�2�H’�  0� � �2H 0 �H 2�B� �
1

2
@2
i $i � vi�2H

0 �H 2�;

�Gij � ��ij�2�’�  ��2H
2 �H 0� � 2H �2 � ’�0 � 2 00 � @2

i ����� � 6� � ’��H 2 �H 0��

� @i@j����� 2�2H 0 �H 2�E� �Hh0ij �
1

2
�@2
i hij � h

00
ij� � �2H

0 �H 2�hij �H �@i$j � @j$i�

�
1

2
�@i$0j � @j$

0
i� � �H

2 � 2H 0��@iFj � @jFi�:

The linearized energy-momentum tensor of the ordinary matter fields is given by Eq. (8), while the linearized energy-
momentum tensor of the Goldstone fields takes the form
 

�T �
00 � a2M2

Pl��2�� � 2�� �m2
0�’�m

2
0�

00=�0 � ��� � p� �m2
4��@

2
i�� 3 ��;

�T �
0i �

��� � p�
M2

Pl

��i � @i��0 �
�� � ��

M2
Pl

�vi � @iB� �
m2

1

2
�vi � @iB� �0i � @i�

0�

�
a2M2

Pl;

�T �
ij � a2M2

Pl

�
1

2
m2

2�@j�i � @i�j � 2@i@j�� �m
2
3�ij�3 � @

2
i�� � �ijm

2
4�’� �

00=�0�

�

�
1

2
m2

2 �
p� � p�

M2
Pl

�
�2 �ij � @iFj � @jFi � 2@i@jE� hij�

�
:

These relations allow us to write the linearized Einstein field equations for the massive gravitational field. They consist
of one tensor equation,

 0 � h00ij � @
2
i hij � 2Hh0ij � a

2m2
2hij;

two vector equations,

 0 � $0i � 2H$i � a
2m2

2
i; 0 � a�2@2
i $i �

�
m2

1 � 2
�� � p�
M2

Pl

�
�$i � 


0
i� � 2

�m
M2

Pl

�1�!m�	i;

and four scalar equations,

 0 � �2@2
j�� 6H �H���0� � a2m2

0

�
�00

�0
B�B0 ��

�
� a2

��� � p�
M2

Pl

�m2
4

�
�@2
j�� 3�� � a2 �m

M2
Pl

��;

0 � 2@i��0 �H�� � a2@i

�
�
m2

1

2
�B��0� �

�� � p�
M2

Pl

�0 �
�m
M2

Pl

�1� w!��	

�
; 0 � @i@j����� a2m2

2��;

0 � �2�00 � 2��H 2 � 2H 0� � @2
j ����� � 2H �2����0 � a2 pm

M2
Pl

�p � a
2m2

3@
2
j�� a

2m2
4

�
��

�00

�0
B�B0

�

� a2�m2
2 � 3m2

3��:
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The linearized Goldstone equations give one vector equation,

 0 � a�4@0

�
a4

�
m2

1 � 2
�� � p�
M2

Pl

�
�$i � 
0i�

�
�m2

2@
2
j
i;

and two scalar equations,

 

0 � @0

�
a4

�0

�
m2

0

�
�00

�0
B�B0 ��

�
�m2

4�3�� @2
i��

��
�

a4

2�0
m2

1@
2
i �B��0�;

0 � @i@0

�
a4

��
m2

1

2
�
��
M2

Pl

�
�B��0� �

p�
M2

Pl

�0
��
� a4@i

�
�m2

3 �m
2
2�@

2
j��

�
m2

4 �
�� � p�
M2

Pl

�
�

� �3m2
3 �m

2
2���

�
m2

4 �
��
M2

Pl

��
�00

�0
B�B0

��
:
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