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Ferroelectric nematic liquid-crystal phases of dipolar hard ellipsoids 
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A search for ferroelectric nematic liquid crystals is carried out on the basis of a simple theoretical 
model viewing the nonspherical polar molécules as hard ellipsoids of révolution with an embedded 
permanent dipole oriented along the symmetry axis. The density­dipole moment­aspect ratio phase 
diagram of the dipolar hard ellipsoids has been determined with the aid of an approximate density­
functional theory that was shown recently to lead to good quantitative agreement with the comput­
er simulations of the isotropic­nematic transition of hard ellipsoids. For the dipolar hard ellipsoids, 
two types of stable ferroelectric nematic phases are found for dipole moments and aspect ratios 
exceeding some reasonable threshold values. 

A stable ferroelectric fluid could have many practical 
applications as an easily reorientable anisotropic fluid. 
Most ferroelectric materials, however, are solids with the 
exception of some layered' (chiral smectic­O liquid crys­
tals. As discussed recently,^ there appears to be no fun­
damental reason why fluids could not be ferroelectric. 
The aim of the présent investigation is to détermine some 
of the molecular properties which could favor ferroelec­
tricity. In order to obtain quantitative results we will use 
here our récent density­functional theory of orientational 
freezing' as a natural extension of the more qualitative 
mean­field theory used previously.^ To keep the calcula­
tions simple, a compromise will be made with respect to 
the degree of realism of the molecular interactions. To 
this end we have focused our attention on two molecular 
properties which we consider essential for the possible 
formation of ferroelectric fluids. The basic ingrédient re­
sponsible for the appearance of anisotropic fluids is well 
known to be the présence of anisotropic interactions be­
tween the molécules. Considérable évidence has been 
gained recently* that it is sufficient, in a first approxima­
tion, to consider only the anisotropic répulsive (steric) in­
teractions. We will thus model the nonspherical molé­
cules by hard ellipsoids (HE) analogous to the well­
known hard­sphere (HS) model of spherical molécules.' 
For simplicity we only consider ellipsoids of révolution so 
that the molecular shape can be characterized by a single 
parameter, the breadth­to­length or aspect ratio 
k =a^^/a^, with CTy being the diameter along the cylindri­
cal symmetry axis and a^ the diameter in any direction 
perpendicular to this axis. Disk­shaped molécules corre­
spond then to oblate ellipsoids (0<A: < 1 ) while cigar­
shaped molécules correspond to prolate ellipsoids 
( 1 < /c < 00 ). Finally, the electric polarization of the mol­
écules, required to possibly turn the anisotropic fluid into 
a ferroelectric fluid, will be introduced by putting a per­
manent electric dipole of strength /Xg at the center of each 
ellipsoid, with the dipole oriented along the molecular 
symmetry axis. The possible présence of higher­order 
electrical multipoles or of diff"erent orientations of the di­
pole will thus be ignored here. This approximation will 
be briefly referred to as the dipolar hard ellipsoid (DHE) 
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model analogous to the well­known dipolar hard sphère 
(DHS) model of spherical polar molécules. ' 

The orientational freezing of the D H E System will now 
be studied with the aid of the approximate density­
functional theory introduced previously^ for the study of 
the isotropic ( / ) ­ nema t i c (TV) transition of HE. The re­
sults obtained there^ for the / ­A'̂  transition were in good 
quantitative agreement with the computer simulations of 
Frenkel and Mulder.^ For the D H E System only two 
minor modifications of the H E theory need to be intro­
duced. If we locate the D H E in space with the aid of the 
position of its center r and the orientation of its symme­
try axis (with respect to the laboratory frame) with the 
aid of a unit vector u along the axis, then the one­body 
density, p ( r ,u ) , of a spatially uniform fluid (other phases 
will not be considered here) can be written, 
p ( r , u ) = p / i (u), with p the average density and / i (u) the 
normalized angular distribution of the molécules. The 
first modification stems from the fact that as a resuit of 
the absence of a top­bottom symmetry for the DHE, the 
gênerai parametrization of h {M) in terms of Legendre 
polynomials,^ /i (u) = exp [2 ;y / J° / (u­n) ] , has to admit 
now both odd and even values of /. Here n is the director 
of the uniaxial phases to which we restrict our investiga­
tion.^ In the simplest possible approximation^ we now 
have to consider a two­order­parameter distribution: 

e x p [ r , / ' , ( m ) + y2/'2(m)] 
/ i ( u ) = — ; , 

z ( r i , r 2 ) = T e x p [ r , / ' i ( w ) + r 2 ^ 2 ( ' " ) ] . 

where m = u ­ n = cos0. Here y-i is the usual nematic or­
der parameter^ measuring the degree of alignment along 
n while y , is the ferroelectric order parameter measuring 
the total polarization in the direction of n. For the / 
phase we have 7 i==y2~0 , while 7 i = 0 and y^^Q corre­
sponds to a A' phase and y and yi = ^ or y-fé^^ to a 
ferroelectric nematic (FN) phase. The value of thèse or­
der parameters are determined by minimizing the 
Helmholtz free energy with respect to y , and y-^- This 
free­energy expression involves the unknown direct corre­
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lation function (DGF) of the D H E System for which we 
will use the same factorization approximation as used 
prev ious ly ' for the H E . T h e D G F of the D H E will t hus 
be written as the product of the excluded volume of two 
ellipsoids of given orientation, ' 2 ( u u'), times the DGF 
of the "sphericalized" molécules, which are here DHS of 
the same volume as the original DHE. This is a straight-
forward extension of Onsager's low-density approxima­
t ion ' and its success for the / -̂ V transition can be under-
stood by observing that in integrated-out expressions, 
such as the free energy, many of the détails of the DGF 
are irrelevant. For the excluded volume factor Z(u u') , 
we will again use' the Berne-Pechukas approximation^ 
while for the DGF of the DHS we will use the solution of 
the mean-spherical approximation (MSA) as obtained by 
Wertheim.^ It is well known that the MSA for DHS is 
plagued with a considérable amount of thermodynamic 
inconsistency but better approximations would require 
considerably more numerical work. ' For the sake of sim-
plicity we have preferred approximations which lead to 
analytical expressions. In the MSA the DGF of DHS 
consists of three terms, ' C D H S ~ Z « ' ' « = < ^ H S " ' " ^ A + < ^ D > 

each of which can be expressed in terms of the Percus-
Yevick (PY) DGF of HS, Cpy(x;ri), with x = | r | / ( 7 „ the 
reduced distance and r] = {v/6)a(fi the packing fraction 
of HS of diameter OQ and density p. The first term of 
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FIG. 1. Example of the ungular distribution, h {cosO) vs O/n, 
for the three ordcred phases of DHE [for the / phase, iiot shown 
here, h(coH0) is a constant], (a) The N phase with cqual proba-
bility for parallel (0 = 0) and antiparallel I n) ahgnmcnt 
{y 1 — 0 and y2»l), (b) the FN\ phase with a langer probability 
for parallel than for antiparallel alignaient iy^/O and y i » I), 
(c) The FNl phase with a strict parallel alignmeni ( y i » l ) . 
The distributions shown here correspond to k — 10, /t~-().6(), 
and ij = 0.23. Notice al.so that according to Eq. (1), /i(cosO) is 
normalized with respect to cos0. 

C[),is is the purely HS contribution, c^^^=c^,y^x ;r]), the 
second is the dielectric term, = u-u 'c^(x \rj,p.), and the 
third, CQ, the dipolar term which does not contribute to 
the approximate free-energy expression because the angu-
lar average of with respect to r vanishes. The dielec­
tric term can again be expressed in terms of the PY DGF 
as c^(x ;T;,/i) = 2K[c,,Y(x ;2/cij) — C p y l x ; —/C7/)], where 
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FIG. 2. /i —T; phase diagram of DHE for (a) k=i and (b) 
k =10. Here /t is the reduced dipole strength (^^=l3tii/(j]a\\) 
and 1) the packing fraction (7/ = (7r/6)(7V||P) of the D H E of as­
pect ralio k =ij\^/(j^. The différent régions correspond to the 
isolropic (/), the nematic (/V), and Ihe two types of ferroelectric 
ncmalic (h'N \ and h'Nl) phases. 
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K is given in terms of rj and u by the implicit 
é q u a t i o n q{2K'r}) — q{~Kr]) = Sr]n, w h e r e q{r]) 
= (1+277)^(1 -17)" w h i l e ^ = (/3/i^/a^)'/^ is the reduced 
dipole strength (P=\/kgT). The reduced différence is 
free energy per particle ( j 3 /p )A/be tween the ordered and 
the disordered (71 = 72"^^ phase can then be written^ 

- A / = r dnh(\i)\nh(M) 
P 

- I L 2 I J M H J Y U Y 2 ) - H J 0 , 0 ) ] , (2) 
a=HS,A 

where 

riljri;fi)=p f drc^ (3) 

^ « ( 7 1 . 7 2 ) = f du f rfu'A(u)(u u ' ) " "2 (u -u ' ) / i (u ' ) , 

(4) 

with w „ = 0 ( n „ = l ) for the a = HS ( a = A) term of the 
D H S DCF. In Eq. (3), f j = fi{r],k) is, moreover an 
effective density somewhat smaller than 17 and deter-
mined in such a way that the H S D C F of the / phase 
evaluated at the density rj will mimic^ the sphericalized 
D C F of the ordered phase of density 77. In order to fix 77 
we use again ' the rescaling of the contact distances 
defined implicitly by CpY{l,r]) = CpY(x{k);7j), with 
x{k) = k when Jt < 1 and x{k)=l/k when k>ï. The 
three terms in the right-hand side of Eq. (2) are seen then 
to favor respectively the / , Â , and F N phases. Minimiz-
ing now Eq. (2) with respect to 7 , and Yi' 'o ' ' ^ given 
value of k, /x, and 77, we find four différent stable phases. 
An example of the corresponding angular distributions is 

shown in Fig. 1. The phase diagram in the fi — r] plane is 
shown in Fig. 2 for ^ = 5 and k=\0. It is seen that 
below a threshold value of /x (typically for /x < 0 . 3 5 when 
k = lO) only I-N transitions are observed. Above this 
threshold we find free energy minima corresponding, be-
sides to the / and N phases, to two types of F N phases. 
The latter consist of a F N 1 phase with considérable anti-
ferroelectric order; but a small net polarization (see Fig. 
1) and a F N 2 phase with a strong ferroelectric order and 
hence a large polarization (see Fig. 1). AH transitions ap-
pear to be first-order except for the A^-FNl transition 
which is second order, at least within the présent numeri-
cal accuracy. The F N l phase appears only for the inter-
mediate n values. For values of /x above the iV-FNl-FN2 
triple point value, the ^ -phase transforms directly into 
the FN2 phase when increasing 77, whereas above the 
/ - ^ - F N 2 triple point value the N phase disappears as a 
thermodynamically stable phase. When increasing the 
molecular excentricity (i.e., increasing k) the F N phases 
are pushed towards lower values of fi and 77. For in­
stance, the I-N-F'N2 triple point which for A: = 5 corre­
sponds to / x = 1 . 3 8 and 7 7 = 0 . 3 3 is shifted to /x = 0.89 and 
7 7 = 0 . 1 9 f o r k = \ 0 a n d t o /x = 0 . 8 0 a n d 77 = 0 . 1 3 f o r 
Â: = 15, while the two triple points corne also dose r one to 
another (see Fig. 2). The F N phases occur then well 
below the densities for which the other phases not con-
sidered here (e.g., the smectic or solid phases) are expect-
ed to become stable. ' To favor ferroelectricity one 
should thus look for molécules'" with a sufiîciently high 
dipole moment ( /x^O.3) and a sufficiently large excentri­
city (/c 2:7). 
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