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Abstract
Motivation: Predicting how mutations impact protein biophysical properties remains a significant challenge in computational biology. In recent 
years, numerous predictors, primarily deep learning models, have been developed to address this problem; however, issues such as their lack 
of interpretability and limited accuracy persist.
Results: We showed that a simple evolutionary score, based on the log-odd ratio of wild-type and mutated residue frequencies in evolutionary 
related proteins, when scaled by the residue’s relative solvent accessibility, performs on par with or slightly outperforms most of the bench
marked predictors, many of which are considerably more complex. The evaluation is performed on mutations from the ProteinGym deep muta
tional scanning dataset collection, which measures various properties such as stability, activity or fitness. This raises further questions about 
what these complex models actually learn and highlights their limitations in addressing prediction of mutational landscape.
Availability and implementation: The RSALOR model is available as a user-friendly Python package that can be installed from the PyPI reposi
tory. The code is freely available at https://github.com/3BioCompBio/RSALOR.

1 Introduction
Accurately estimating the fitness of variants is essential both 
from a biomedical perspective, to deepen our understanding 
of the mechanisms underlying pathogenesis (Fowler et al. 
2023), and from a biotechnological perspective, to improve 
protein engineering approaches (Freschlin et al. 2022). As a 
result, an impressive number of computational tools have 
been developed over the last decade to predict the effects of 
variants on different protein biophysical properties (Pucci 
et al. 2022; Livesey and Marsh 2023; Rastogi et al. 2024). 
These tools are characterized by a wide range of architec
tures, ranging from simple linear models applied to a few fea
tures to complex deep learning methods.

In recent years, the field has witnessed an even more re
markable growth, with the emergence of protein language 
models (pLMs), which have significantly advanced variant ef
fect prediction (Notin et al. 2024; Rastogi et al. 2024). 
However, these deep learning techniques also come with no
table drawbacks. Their immense number of parameters 
requires extensive training, making them computationally ex
pensive and more prone to overfitting. While there are meth
ods to mitigate overfitting, it remains challenging to 
disentangle true biophysical properties from unwanted biases 
and to achieve good generalizability. Additionally, their in
herent complexity often makes it nearly impossible to extract 
meaningful biophysical insights from their predictions.

An alternative approach is to introduce simple prediction 
models with biological significance that retain the same accu
racy as these more complex approaches. Following this direc
tion (Hermans et al. 2024), we recently showed how a simple 
evolutionary score, when scaled by the relative solvent acces
sibility (RSA) of the mutated residues, can accurately predict 
changes in folding free energy upon mutations. The model is 
extremely simple, interpretable, and performant, and has no 
free parameters to optimize. Its score reflects the impact of a 
variant on protein fitness, which is broadly defined as the 

Figure 1. Graphical representation of the RSALOR model.
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ability of the protein to effectively perform its biological func
tion. As such, it is related not only to stability but also to 
other protein properties. We thus extended the analysis of 
this model, called RSALOR, by providing additional evidence 
of its accuracy across a broader range of protein biophysical 
properties, including stability, binding affinity, organismal 
fitness, activity, and expression, using ProteinGym (Notin 
et al. 2024), a widely used benchmark dataset specifically 
designed for this purpose. A graphical representation of the 
model is provided in Fig. 1.

2 RSALOR model
We present a very simple, independent-site, unsupervised ap
proach for mutational effects prediction that combines evolu
tionary and structural information. In this section, we outline 
the key steps of the RSALOR model. Detailed implementa
tion aspects are described in Supplementary Materials 
Sections 1 and 2.

The evolutionary information used in the model is derived 
from amino acid frequencies at the mutated position in a mul
tiple sequence alignment (MSA), using the LOR between 
wild-type and mutant amino acid frequencies. The MSA is 
first curated by removing redundant identical sequences and 
those falling within the ‘twilight zone’ (Rost 1999) (i.e. 
sequences too evolutionary distant from the target sequence 
based on a sequence identity criterion). Indeed, we observed 
that the presence of very distant sequences adds noise rather 
than improving RSALOR predictions.

Since MSAs can be dominated by clusters of closely related 
sequences, we computed the ‘weighted’ amino acid frequen
cies by reducing the contribution of sequences from larger 
clusters, as done in coevolutionary models (e.g. Weigt et al. 
2009; Morcos et al. 2011). We discussed and analyzed the 
impact of the weighting step in Supplementary Materials 
Section 3.2, showing that it mildly but consistently improves 
our model’s performance. To prevent LOR values from di
verging and to handle the lack of information in small MSAs, 
we applied regularization to these frequencies. Using the 
weighted and regularized frequencies fiðwtÞ and fiðmtÞ for the 
wild-type and mutant amino acids at position i, the LOR is 
defined as: 

LORði;wt;mtÞ ¼ log
fiðwtÞ

1 − fiðwtÞ
− log

fiðmtÞ
1 − fiðmtÞ

: (1) 

The sign of LOR is defined such that the result of muta
tions from a highly represented amino acid wt to a less repre
sented amino acid mt is positive, which generally corresponds 
to a decrease in protein stability or fitness.

As structural information, we used the per-residue RSA, 
reflecting the observation that mutations in the protein core 
tend to have a greater impact than those on the surface. The 
simple product of LOR and the “complement” of RSA 
defines the RSALOR: 

RSALORði;wt;mtÞ ¼ 1 −
RSAi

100%

� �

� LORði;wt;mtÞ: (2) 

Since the RSA factor in this equation is always positive, the 
sign of RSALOR is the same as the sign of LOR.

Note that RSALOR nearly perfectly preserves the symme
try property (i.e. the effect of a mutation from wt to mt is 

opposite to the effect of the mutation from mt to wt). Indeed, 
while the evolutionary component LOR is perfectly symmet
ric, the fact that RSA is calculated using only the wild-type 
structure can, in principle, introduce asymmetry into the 
model. However, as shown in Supplementary Materials 
Section 3.4, this approximation does not substantially impact 
the predictions, which remain almost perfectly symmetric. 
This symmetry, which is often violated by predictors, has 
been shown to be an important feature in the prediction of 
changes in protein stability and binding affinity (Pucci et al. 
2018; Usmanova et al. 2018; Tsishyn et al. 2025).

3 RSALOR implementation
We provide RSALOR as a freely available, easy-to-install, 
and user-friendly Python package. It can be installed by clon
ing our GitHub repository at github.com/3BioCompBio/ 
RSALOR or via the Python Package Index (PyPI) using pip. It 
takes as input the MSA of the target protein and its three- 
dimensional structure in PDB format.

The package automatically maps RSA values extracted 
from the structure to the corresponding positions in the 
MSA, even if the template structure contains missing residues 
or is homologous but not identical to the target sequence of 
the MSA. Indeed, RSA values are relatively robust to small 
structural changes. The model’s performance, therefore, 
remains almost unchanged when using structures with a few 
amino acid substitutions (see Supplementary Materials 
Section 3.5 for details).

The RSALOR package outputs or saves to a CSV file the 
following information for each possible single-site mutation 
in the target protein: the frequencies of gaps, wild-type and 
mutant residues in the MSA; the RSA of the mutated residue; 
and the LOR and RSALOR scores of the mutation.

4 RSALOR performances
In Hermans et al. (2024), we evaluated RSALOR on its abil
ity to predict the impact of mutations on protein stability. To 
further assess the robustness of the model, we tested it on 
ProteinGym (Notin et al. 2024), consisting of 218 standard
ized deep mutational scanning (DMS) experiments, covering 
a total of 2.5 million mutations with annotated experimental 
effects on protein stability, binding affinity, fitness, activity, 
and expression.

To ensure a fair comparison with the other benchmarked 
models, we used the MSAs and structures provided by the 
ProteinGym repository without any modifications. These 
structures are AlphaFold-generated models (Jumper et al. 
2021), as the target sequences of most DMS experiments are 
not, or only partially, covered by experimental structures. 
Importantly, this means that our model does not rely on the 
availability of high-quality experimental structures. We addi
tionally assessed the robustness of our predictions using 
alternative MSAs and structures, and observed essentially 
the same results (see details in Supplementary Materials 
Section 3.5).

While we present here a summary of the results, a more 
comprehensive analysis is provided in Supplementary 
Materials Section 3.1. It includes both overall performances 
and per-category performances on single-site and all (single- 
site and multiple) mutations from ProteinGym, evaluated 
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using various metrics and compared among 27 different pre
dictors (including 19 pLM-based models).

We first focused on the approximately 700,000 single-site 
mutations in the dataset. In Table 1, we present a comparison 
of the Spearman correlations, averaged over all DMS experi
ments or over specific DMS categories. The predictions of 
RSALOR were compared with some of the top-performing 
tools included in the ProteinGym benchmark. Our results 
show that the simple RSALOR model achieves performance 
in line with the other state-of-the-art methods, with an aver
age Spearman correlation of 0.473 across all 217 datasets. 
Among the 27 models in the unsupervised category, only 
ProSST (Li et al. 2024), which combines structure and pLM 
features, achieves better results.

We note that the structural contribution, RSA, has a vari
able impact on performance depending on the DMS target 
property. Although it provides great improvements to the 
LOR score on stability and binding datasets, it enhances ac
curacy to a lesser extent for expression, activity, and fitness 
datasets. This is consistent considering that stability and 
binding affinity are more directly related to protein structure. 
For instance, the RSA score alone outperforms most bench
marked predictions on stability datasets.

In addition, we have shown that using RSA computed 
from more appropriate input 3D conformations can further 
boost predictions (see Supplementary Materials Section 3.6). 
For example, when studying the impact of mutations on pro
tein–protein binding affinity, using the structure of the pro
tein complex instead of the monomeric structure provided by 
the ProteinGym dataset leads to substantially improved 
performance.

It is worth noting, as already highlighted in the 
ProteinGym benchmark (Notin et al. 2024), that predictions 
also vary greatly between datasets, with some DMSs being 
exceptionally well predicted (Spearman correlation above 
0.7), while in others, all methods essentially fail. In contrast, 
the number of homologous sequences in the input MSA has 
only a minor impact on the performance of RSALOR (see 
details in Supplementary Materials Section 3.3).

To predict the effect of multiple mutations using the 
RSALOR model, we made the approximation that there are 
no epistatic effects. Therefore, the effect of a multiple muta
tion is simply the sum of the effects of its individual single- 
site mutations. Even with this simplistic assumption, 

RSALOR achieved a correlation of 0.484 on all ProteinGym 
mutations, outperformed only by ProSST (Li et al. 2024) and 
PoET (Truong Jr and Bepler, 2023) (with correlations of 
0.523 and 0.490, respectively). All values are provided in 
Supplementary Materials Section 3.1.

We would like to underline that the RSALOR model is 
clearly a rough approximation for estimating the effects of 
protein mutations. First, it assumes that mutations at fully ex
posed residues (with a RSA of 100%) have no effect on the 
protein. While the link between the RSA of mutated residues 
and mutational impacts is well known (Wei et al. 2013; 
Ancien et al. 2018), the strength of its effect can vary signifi
cantly depending on the biophysical property considered. 
Second, RSALOR completely ignores epistatic effects and po
tential evolutionary information from other residue positions. 
While their contribution could be less significant in describ
ing protein stability (Hermans et al. 2024; Sternke et al. 
2025), they seem to play an essential role in protein activity 
and fitness (Russ et al. 2020; Sternke et al. 2025). Despite 
these limitations, the model is on par with or slightly outper
forms nearly all benchmarked models, highlighting that pre
dicting mutational landscapes remains a challenge for current 
state-of-the-art methods.

Remarkably, combining the predictions of other models 
with RSA values (using Equation (2)) substantially improves 
the performance for almost all of the 27 benchmarked predic
tors. This holds true even for models that already incorporate 
structural information as input (see details in Supplementary 
Materials Section 4). We thus show that effectively incorpo
rating RSA and other types of structural knowledge into evo
lutionary- or pLM-based models can lead to improved 
performance.

Finally, an important feature of RSALOR is its ease of use. 
It requires no model training or external dependencies, is eas
ily installed with a single pip command, and runs in a 
straightforward manner (see the GitHub repository). From a 
computational perspective, RSALOR is highly efficient. Its 
weighting step, being the most computationally intensive, is 
implemented in Cþþ and supports multi-threading. For in
stance, we evaluated the 2.5 million mutations from 
ProteinGym in less than 20 min on a laptop using 8 CPUs. 
Results for each individual protein were generated in a time 
range of 1 s to 1 min.

Table 1. Average per-DMS Spearman correlations across ProteinGym subclasses (categorized by DMS target properties), comparing the RSALOR model 
with some of the top-performing models from the ProteinGym benchmark.a

Method Model type Overall Stability Binding Expression Activity Fitness

−RSA STRb 0.356 0.480 0.281 0.323 0.330 0.286
LOR ALIc 0.427 0.447 0.375 0.390 0.452 0.414
RSALOR STR & ALI 0.473 0.551 0.455 0.428 0.472 0.419
ProSST-2048 (Li et al. 2024) STR & pLM 0.522 0.638 0.527 0.527 0.486 0.441
PoET (Truong Jr and Bepler 2023) ALI & pLM 0.470 0.458 0.440 0.459 0.495 0.474
SaProt (650M) (Su et al. 2024) STR & pLM 0.462 0.565 0.441 0.482 0.459 0.375
VespaG (Marquet et al. 2024) pLM 0.461 0.479 0.415 0.450 0.489 0.440
TranceptEVE (L) (Notin et al. 2022) ALI & pLM 0.450 0.424 0.405 0.447 0.489 0.458
GEMME (Laine et al. 2019) ALI 0.447 0.452 0.367 0.430 0.477 0.444
EVE (ensemble) (Frazer et al. 2021) ALI 0.431 0.410 0.382 0.398 0.466 0.446
ESM2 (650M) (Lin et al. 2023) pLM 0.428 0.496 0.382 0.409 0.431 0.381

a Only single-site mutations were considered. Note that ProteinGym’s benchmark uses a slightly different method of averaging correlations, so their values 
and ours do not always perfectly match.

b STR, structure-based.
c ALI, alignment-based.

RSALOR for predicting protein mutational effects.                                                                                                                                                              3 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/41/6/btaf322/8152299 by U
niversite Libre de Brussels - D

O
 N

O
T U

SE user on 06 July 2025

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf322#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf322#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf322#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf322#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaf322#supplementary-data


Conflict of interest: None declared.

Funding
The authors acknowledge financial support from the Belgian 
Fund for Scientific Research (F.R.S.-FNRS) through a PDR 
project. M.T. benefits from an FNRS-FRIA PhD grant. P.H. 
benefits from a Win4Doc grant from SPW Recherche of the 
Walloon Region .

References
Ancien F, Pucci F, Godfroid M et al. Prediction and interpretation of 

deleterious coding variants in terms of protein structural stability. 
Sci Rep 2018;8:4480.

Fowler DM, Adams DJ, Gloyn AL et al. An atlas of variant effects to 
understand the genome at nucleotide resolution. Genome Biology 
2023;24:147.

Frazer J, Notin P, Dias M et al. Disease variant prediction with deep 
generative models of evolutionary data. Nature 2021;599:91–5.

Freschlin CR, Fahlberg SA, Romero PA. Machine learning to navigate 
fitness landscapes for protein engineering. Curr Opin Biotechnol 
2022;75:102713.

Hermans P, Tsishyn M, Schwersensky M et al. Exploring evolution to 
uncover insights into protein mutational stability. Mol Biol Evol 
2024;42:msae267.

Jumper J, Evans R, Pritzel A et al. Highly accurate protein structure pre
diction with alphafold. Nature 2021;596:583–9.

Laine E, Karami Y, Carbone A. GEMME: a simple and fast global epi
static model predicting mutational effects. Mol Biol Evol 2019; 
36:2604–19.

Li M, Tan Y, Ma X et al. ProSST: Protein language modeling with 
quantized structure and disentangled attention. In: The Thirty- 
eighth Annual Conference on Neural Information Processing 
Systems, 2024, Vancouver (CA).

Lin Z, Akin H, Rao R et al. Evolutionary-scale prediction of atomic- 
level protein structure with a language model. Science 2023; 
379:1123–30.

Livesey BJ, Marsh JA. Updated benchmarking of variant effect predic
tors using deep mutational scanning. Mol Syst Biol 2023; 
19:e11474.

Marquet C, Schlensok J, Abakarova M et al. Expert-guided protein lan
guage models enable accurate and blazingly fast fitness prediction. 
Bioinformatics 2024;40:btae621.

Morcos F, Pagnani A, Lunt B et al. Direct-coupling analysis of residue 
coevolution captures native contacts across many protein families. 
Proc Natl Acad Sci U S A 2011;108:E1293–E1301.

Notin P, Kollasch A, Ritter D et al. ProteinGym: large-scale bench
marks for protein fitness prediction and design. Adv Neural Inform 
Process Syst 2024;36.

Notin P, Van Niekerk L, Kollasch AW et al. TranceptEVE: combining 
family-specific and family-agnostic models of protein sequences for 
improved fitness prediction. In: The Thirty-Sixth Annual 
Conference on Neural Information Processing System, 2022, New 
Orleans (USA).

Pucci F, Bernaerts KV, Kwasigroch JM et al. Quantification of biases in 
predictions of protein stability changes upon mutations. 
Bioinformatics 2018;34:3659–65.

Pucci F, Schwersensky M, Rooman M. Artificial intelligence challenges 
for predicting the impact of mutations on protein stability. Curr 
Opin Struct Biol 2022;72:161–8.

Rastogi R, Chung R, Li S et al. Critical assessment of missense variant 
effect predictors on disease-relevant variant data. Hum Genet 
2025;144:281–93.

Rost B. Twilight zone of protein sequence alignments. Protein Eng 
1999;12:85–94.

Russ WP, Figliuzzi M, Stocker C et al. An evolution-based model for de
signing chorismate mutase enzymes. Science 2020;369:440–5.

Sternke M, Tripp KW, Barrick D. Protein stability is determined by 
single-site bias rather than pairwise covariance. bioRxiv, 2025; 
pages 2025–01. preprint: not peer reviewed.

Su J, Han C, Zhou Y et al. SaProt: protein language modeling with 
structure-aware vocabulary. In: The Twelfth International 
Conference on Learning Representations, 2024, Vienna (AU).

Truong T, Jr, Bepler T. Poet: a generative model of protein families as 
sequences-of-sequences. Adv Neural Inform Process Syst 2023; 
36:77379–415.

Tsishyn M, Pucci F, Rooman M. Quantification of biases in predictions 
of protein–protein binding affinity changes upon mutations. Brief 
Bioinform 2025;25:bbad491.

Usmanova DR, Bogatyreva NS, Ari~no Bernad J et al. Self-consistency 
test reveals systematic bias in programs for prediction change of sta
bility upon mutation. Bioinformatics 2018;34:3653–8.

Wei Q, Xu Q, Dunbrack Jr RL. Prediction of phenotypes of missense 
mutations in human proteins from biological assemblies. Proteins: 
Struct Funct Bioinf 2013;81:199–213.

Weigt M, White RA, Szurmant H et al. Identification of direct residue 
contacts in protein–protein interaction by message passing. Proc 
Natl Acad Sci U S A 2009;106:67–72.

© The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics, 2025, 41, 1–4
https://doi.org/10.1093/bioinformatics/btaf322
Applications Note

4                                                                                                                                                                                                                                  Tsishyn et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/41/6/btaf322/8152299 by U

niversite Libre de Brussels - D
O

 N
O

T U
SE user on 06 July 2025


	Active Content List
	1 Introduction
	2 RSALOR model
	3 RSALOR implementation
	4 RSALOR performances
	Funding
	References


