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Abstract—This study investigates the problem of angle-based
localization of multiple targets using a multistatic OFDM radar.
Although the maximum likelihood (ML) approach can be em-
ployed to merge data from different radar pairs, this method
requires a high complexity multi-dimensional search process. The
multiple signal classification (MUSIC) algorithm simplifies the
complexity to a two-dimensional search, but no framework is
derived for combining MUSIC pseudo-spectrums in a multistatic
configuration. This paper exploits the relationship between MU-
SIC and ML estimators to approximate the multidimensional ML
parameter estimation with a weighted combination of MUSIC
pseudo-spectrum. This enables the computation of a likelihood
map on which a peak selection is applied for target detection.
In addition to reducing the computational complexity, the pro-
posed method relies only on transmitting the estimated channel
covariance matrices of each radar pair to the central processor.
A numerical analysis is conducted to assess the benefits of the
proposed fusion.

Index Terms—Multistatic, Data Fusion, Maximum Likelihood,
MUSIC, OFDM radar

I. INTRODUCTION

The recent development of Wi-Fi Sensing has led to a
growing interest in the use of multistatic orthogonal frequency
division multiplexing (OFDM) radars [1]. A multistatic radar
consists of several radar pairs, where the sensing transmitters
(STx) and the sensing receivers (SRx) can either be collocated
(i.e. a monostatic pair) or separated (i.e. a bistatic pair).
Information collected by each radar pair about the targets
is sent to a central processor that estimates their positions.
Multistatic radars improve target localization by exploiting
spatial diversity, but require a data transfer between the SRx
and the central processor, as well as the definition of a fusion
rule [2].

In [3], the authors provide an overview of fusion techniques
and describe the different levels at which the fusion can occur.
At the lowest level, the data fusion framework fuses raw
observations to estimate the target location. All the available
information is transmitted to the central processor. At a higher
level, parametric fusion of the individual radar pairs decisions
can be defined. Soft and hard parameter fusion refer to the
decision at the central processor relying on a weighted or
unweighted combination of the locally estimated parameters,
respectively. These parameters may include the range, the
angle-of-departure (AoD), the angle-of-arrival (AoA) or di-
rectly the target position (x, y). Although data fusion enhances

localization by exploiting all available information, it comes
at the cost of an increased information transfer to the central
processor. Therefore, when designing a system, it is essential
to ensure that the fusion method does not necessitate an
excessive data transfer.

In this study, we address the localization of K targets
using a multistatic radar through the processing of AoD and
AoA at each radar pair [4]. Parametric fusion in multistatic
OFDM radars is a widely studied topic [5], [6]. However, there
exists no data-level fusion method for this problem with low
computational complexity and data transfer.

The maximum likelihood (ML) framework presents an opti-
mal solution for deriving a data fusion combination rule. How-
ever, the high computational complexity of the ML approach
makes it unfeasible. In practice, the brute force estimation
requires a 2K-dimensional search over the (x, y) position of
the K targets. The use of a two-dimensional Fourier transform
across the transmitting and receiving antenna arrays of each
radar pair is a common approximation for the ML solution.
However, this approximation yields inaccurate results when the
number of antennas is limited. In comparison, subspace-based
methods such as the multiple signal classification (MUSIC) al-
gorithm provide better accuracy than the Fourier transform and
lower complexity than the ML approach as a two-dimensional
search is possible [7]. However, there is no framework to
combine the outputs of the MUSIC algorithm from multiple
radar pairs.

A. Major Contributions

Our contributions can be summarized as follows:

• We propose a data-level fusion methodology based on
the ML framework for joint AoD/AoA-based localization
of K targets by a multistatic OFDM radar. The method
exploits the relationship between the MUSIC and ML
estimators demonstrated in [7] and some approximations
to reduce the complexity of the 2K-dimensional search
of the ML estimator into K two-dimensional problems
solved by MUSIC.

• The proposed data-level fusion method can be extended
to other systems than OFDM multistatic radars as it
relies solely on the transmission of the sample covariance
matrix of the estimated channel by each radar pair to the
central processor.
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• Numerical simulations show the benefits of this method
compare to other approaches and investigate the influence
of system parameters on the localization performed by a
multistatic radar composed of two OFDM radar pairs.

B. Notations

The vectors and matrices are defined as a and A, re-
spectively. The transpose and the Hermitian transpose are
denoted AT and AH, respectively. The Moore-Penrose inverse
is defined as A+ =

(
AHA

)−1
AH. The identity matrix is

denoted I. The expectation operator is denoted E[·] and the
Kronecker product is denoted ⊗.

II. SYSTEM MODEL

In this study, we investigate a multistatic OFDM radar
configuration for target localization in the (x, y) plane. The
system comprises several STx-SRx radar pairs. The processed
data collected by each radar pair is sent to a central processor.
The information obtained is then combined to determine the
location of the targets. The data to transmit and the combi-
nation rule at the central processor are discussed in Section
III.

To express the channel model, we make the following
assumptions.

1) The OFDM symbols transmitted by the different radar
pairs are orthogonal (using frequency, time or code divi-
sion multiple access), enabling each SRx to process the
frame transmitted by its paired STx without interference
from other STx.

2) The direct signal between the STx and the SRx and the
clutter contributions are suppressed from the estimated
channel.

3) Only multipath signals with a single reflection on a target
have a significant impact on the observed channel model.
Signals with multiple reflections are thus neglected.

The scenario is illustrated in Fig. 1. The multistatic radar
system aims at localizing K targets within its area of coverage.
The positions of the K targets are defined by the vectors
x = [x1 . . . xK ]T and y = [y1 . . . yK ]T. The system is
composed of P radar pairs. Each radar pair consists of an
STx and an SRx equipped with a uniform linear array, which
for simplicity is assumed to have half-wavelength spacing and
to be oriented toward the coverage area. For the pth radar pair,
the AoD and the AoA for the kth target are denoted φp,k

and ϑp,k, respectively. The set of all AoDs and AoAs are
denoted by Φp and Θp. Note that throughout this paper, we
simplify notations by omitting the dependence of (Φp,Θp) on
(x,y). These angles are defined between the waveform and
the normal vector of the corresponding antenna array. The
(Mp × 1) AoD and (Np × 1) AoA steering vectors are thus
given by

vp(φp,k) = [1 ejπ sin(φp,k) . . . ejπ(Mp−1) sin(φp,k)]T, (1)

vp(ϑp,k) = [1 ejπ sin(ϑp,k) . . . ejπ(Np−1) sin(ϑp,k)]T, (2)

where Mp and Np denote the number of transmitting and
receiving antennas, respectively. The STx of the pth radar pair

Bistatic
Radar

Monostatic
Radar

Fig. 1. Illustration of the scenario. The multistatic configuration is built up of
a bistatic radar and a monostatic radar. The solid lines represent the incident
waveforms, the dashed lines represent the reflected ones and the dotted lines
represent the data transmitted to the central processor.

transmits OFDM symbols isotropically with Qp subcarriers
and a subcarrier spacing of ∆f .

The baseband equivalent channel matrix for the pth radar
pair is stacked in a vector for each subcarrier q as follows

hp,q(Φp,Θp) = Ap(Φp,Θp) αp,q, (3)

where

• hp,q is the MpNp×1 channel vector of the pth radar pair
for subcarrier q.

• Ap(Φp,Θp) = [ap,1(φ, ϑ) . . . ap,K(φ, ϑ)] is the joint
AoD/AoA steering matrix (MpNp × K). A short nota-
tion ap,k(φ, ϑ) is used to represent the joint AoD/AoA
steering vector defined as ap(φp,k, ϑp,k) = vp(φp,k) ⊗
vp(ϑp,k).

• αp,q = [αp,q,1 . . . αp,q,K ]T is the channel coefficient
vector (K × 1). These coefficients include the linear
increasing phases across subcarriers due to the range of
the targets and the attenuation defined by the radar range
equation [8]. Any stochastic model can be associated to
the channel coefficient (e.g. the Swerling model [9]).

III. MAXIMUM LIKELIHOOD FUSION

In this section, we develop the ML combination rule for
locating the K targets from the information transmitted by
every radar pair. The parameters to estimate are defined by
the vector γ = [xT yT {αT

p,0 . . . αT
p,Qp−1}p=1...P ]

T. The
number of targets to localize is assumed to be known as
methods to estimate K can be found in the literature [10].
At each radar pair, information about the targets is acquired
by estimating the channel at the SRx using a known OFDM
symbol transmitted by the STx. The observed data from the
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pth radar pair for the ML development is thus modelled as a
noisy channel estimated vector

h̃p,q = Ap(Φp,Θp) αp,q + np,q, (4)

where the (MpNp × 1) vector np,q represents the estimation
errors which are assumed to be Additive White Gaussian Noise
(AWGN) of variance σ2

p.
Notice that our study solely focuses on joint AoD/AoA-

based ML localization and does not utilize the range infor-
mation. As a result, each channel coefficient vector αp,q is
independently estimated, since the linear phase increase across
subcarriers defined by the range of each target is not exploited.

Considering independent noise contributions for the es-
timated channel vector from all radar pairs, the combined
likelihood function is obtained as the product of the individual
Gaussian density functions. After taking the natural logarithm
of the combined likelihood function, the sum of the individual
log-likelihood functions has to be maximized. These individual
log-likelihood functions are denoted Lp(γ) and are developed
in the subsection below separately for each radar pair as their
contributions are independent.

A. Development of the Individual Likelihood Functions

By omitting the dependence on γ, for notation simplicity,
the individual log-likelihood function for the pth radar pair is
given by

Lp =
−1

2σ2
p

Qp−1∑
q=0

∥h̃p,q −Ap(Φp,Θp) αp,q∥2. (5)

First, we maximize with respect to the channel coefficients
αp,q to obtain a closed-form expression as a function of
Φp,Θp. After solving the resulting linear least square prob-
lem, the ML estimate of the channel coefficient for every
subcarrier q is

α̂p,q(Φp,Θp) = A+
p (Φp,Θp) h̃p,q. (6)

By inserting the estimates (6) back into (5) and after some
mathematical steps, the individual log-likelihood function can
be rewritten as

Lp =
Qp

2σ2
p

Tr
{
Ap(Φp,Θp)A

+
p (Φp,Θp) R̃p

}
, (7)

in which R̃p = 1
Qp

∑Qp−1
q=0 h̃p,q h̃H

p,q is the sample covariance
matrix of the channel vector averaged over the subcarriers.

We search the set of (x, y) positions of the K targets that
maximizes the sum of the individual log-likelihood functions.
Therefore, the brute-force maximization of the sum of (7)
implies solving a 2K-dimensional problem due to the presence
of multiple targets within the coverage area. This high level of
computational complexity renders the solution of the exact ML
problem impractical. In the next subsection, we establish the
connection between the MUSIC algorithm and the ML. This
link is then exploited in Subsection III-C to replace the 2K-
dimensional ML parameter estimation by K two-dimensional
estimation based on MUSIC pseudo-spectrum outputs.

B. From ML to MUSIC

In [7], the authors investigate the relationship between
the MUSIC and the ML estimators for a single radar pair
p. The authors assert that the MUSIC estimator is a large
sample realization of the ML estimator, if and only if the
coefficient covariance matrix Sp = 1

Qp

∑Qp−1
q=0 E[αp,qα

H
p,q]

is diagonal. The large sample assumption holds when the
number of subcarriers Qp is sufficiently large to obtain an
accurate estimate of the covariance matrix Rp. As the number
of subcarriers also plays a direct role on the diagonality of
Sp, its impact on the localization performance is discussed in
Section IV.

By adapting the steps of the proof of [7, Theorem 6.1], we
can show that maximizing the log-likelihood function given in
(7) is equivalent under the assumptions above to maximizing
the following expression

Lp =
Qp

2σ2
p

K∑
k=1

aH
p,k(φ, ϑ) Γ̃p ap,k(φ,ϑ)︸ ︷︷ ︸

(a)

ŝp,k(Φp,Θp)︸ ︷︷ ︸
(b)

, (8)

where Γ̃p = ŨpŨ
H
p = I− G̃pG̃

H
p , where Ũp and G̃p are the

signal and noise subspace matrices, which are obtained from
the singular value decomposition of R̃p. The K eigenvectors
corresponding to the strongest eigenvalues form the signal sub-
space Ũp, the remaining vectors form the noise subspace G̃p.
The coefficient ŝp,k(Φp,Θp) is the kth diagonal element of the
estimated sample coefficient covariance matrix Ŝp(Φp,Θp)
defined as

Ŝp(Φp,Θp) =
1

Qp

Qp−1∑
q=0

α̂p,q(Φp,Θp) (α̂p,q(Φp,Θp))
H

= A+
p (Φp,Θp) R̃p

(
A+

p (Φp,Θp)
)H

. (9)

Two parts can be identified in (8):
(a) is equivalent to the output of the MUSIC pseudo-

spectrum for the tested angles (φp,k, ϑp,k) of the kth

target. The steering vector ap,k(φ, ϑ) is projected onto
the sample signal subspace using the projection matrix
defined as Γ̃p.

(b) is the estimated signal power received from the kth target.
This term represents a weight applied to the output of the
MUSIC algorithm of the pth radar pair.

It is worth noting that unlike the MUSIC output which only
depends on (φp,k, ϑp,k), the values of ŝp,k(Φp,Θp) solving
the ML function in (8) still depend on all angles of all
K targets, therefore requiring a 2K-dimensional parameter
search.

C. Estimation of the Weighting Coefficients

In this subsection, we present an alternative approach to
the ML estimation by using an approximated expression of
the weighting coefficient ŝp,k(Φp,Θp). This method relies on
a local pre-estimation of the set of angles. For each radar pair
p, we propose to pre-estimate the AoDs Φp and AoAs Θp

using the K largest peaks of the MUSIC pseudo-spectrum.
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Then, instead of evaluating Ŝp(Φp,Θp) for each angles cor-
responding to the tested positions (x,y) of all targets, the
matrix is evaluated for the pre-estimated angles (Φ̂p, Θ̂p).
This allows to decouple the 2K-dimensional parameter search
of the ML estimator of the target positions into K two-
dimensional estimation solved by weighted MUSIC outputs.

In practice, the position of the targets are obtained by
evaluating the log-likelihood function for every point (x, y)
of a two-dimensional search grid. For the pth radar pair, the
individual log-likelihood function evaluated for a given tested
position (x, y) can thus be rewritten as

Lp(x, y) =
Qp

2σ2
p

aH
p (φ, ϑ) Γ̃p ap(φ, ϑ) ŝp(Φ̂p, Θ̂p), (10)

where (φ, ϑ) are the AoD and the AoA corresponding to the
tested position (x, y) and ŝp(Φ̂p, Θ̂p) =

∑K
k=1 ŝp,k(Φ̂p, Θ̂p).

The approximated individual log-likelihood function is thus
given by a two-dimensional estimation obtained from weighted
MUSIC outputs.

D. Fusion of Multiple Radar Pairs

From the expression of the individual log-likelihood func-
tion for each radar pair stated in (10), the combined log-
likelihood function for a position (x, y) of the search grid
is obtained as the sum of these individual functions

L(x, y) =
P∑

p=1

Qp

2σ2
p

aH
p (φ, ϑ) Γ̃p ap(φ, ϑ) ŝp(Φ̂p, Θ̂p). (11)

Then, the estimate of the K target positions is defined by the
K largest peaks obtained from this combined log-likelihood
map. The combined log-likelihood function in (11) represents
a weighted combination of the MUSIC pseudo-spectrum out-
puts of each radar pair. The weights are determined by the
number of subcarriers Qp, by the noise variance σ2

p and by
the estimated received signal power ŝp(Φp,Θp), which is
derived from a local pre-estimation of the AoD and AoA of
the targets. The two-dimensional weighted MUSIC transform
followed by a peak selection has replaced the 2K-dimensional
ML parameter estimation.

The expression of the combined log-likelihood in (11) can
be evaluated by the central processor only from the sample
covariance matrix R̃p of every radar pair p. Therefore, the
proposed data fusion algorithm requires each radar pair to send
an (MpNp) square matrix to the central processor, instead of
a (Qp ×Mp ×Np) estimated channel tensor.

IV. SIMULATION RESULTS

In this section, Monte-Carlo simulations are performed
to assess the improvement brought by the proposed fusion
method on the accuracy of a multistatic radar system to
localize targets in the coverage area. The method proposed
in Section III is compared to the following methods:
Method A The MUSIC outputs are combined without a

weight depending on the received signal power. In (11),
we define ŝp = 1.

Fig. 2. Illustration of the combined log-likelihood map. The two STx are
represented by the diamonds, the SRx by the triangle, the true target positions
by the crosses and the estimated location of the targets by the circles.

Method B Instead of relying on a pre-estimation of
(Φ̂p, Θ̂p), we can approximate the signal power by as-
suming that the targets have orthogonal steering vectors.
Using this assumption in the expression of the matrix
Ŝp in (9), it comes down to use (11) with ŝp(φ, ϑ) =
aH
p (φ, ϑ) R̃p ap(φ, ϑ).

2D-FFT This is equivalent to the classical two-dimensional
Fourier transform processing. It can be shown to be
the optimal ML solution if the targets have orthogonal
steering vectors. The combination rule is defined by using
(11) with ŝp = 1 and Γ̃p = R̃p.

Soft Fusion This parameter fusion method sets the detected
position of each target to the weighted average of the local
decisions of each radar pair [3]. The weight is based on
the local log-likelihood function value with ŝp = 1. Note
that this method requires an association of the detected
positions of each radar pair which is here assumed to be
perfect.

For each simulation, we analyze a fixed multistatic radar
setup consisting of two STx and one SRx. This yields two
radar pairs to locate three randomly placed targets. Fig. 2
shows the setup for one realization of the position of the targets
and displays the combined log-likelihood map obtained with
the method proposed in Section III. We evaluate the root mean
square error (RMSE) for the presented methods through 15000
Monte-Carlo simulations.

Table I presents the results for different radar pair charac-
teristics. It is observed that the proposed method outperforms
all other compared techniques. When both radar pairs possess
identical features, the proposed method proves to be more pre-
cise than the unweighted fusion of MUSIC outputs computed
by method A. This highlights the significance of the signal
power coefficient ŝp(Φp,Θp). Nevertheless, it is crucial to
consider the estimator employed to determine this coefficient
as method B is not as accurate as the proposed method. Also,
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TABLE I
COMPARISON OF THE RMSE IN METERS FOR THE PRESENTED COMBINATION METHODS FOR VARIOUS RADAR PAIR CHARACTERISTICS. UNLESS

OTHERWISE STATED, Mp = 4, Qp = 512 AND σ2
1 = σ2

2 .

Our Method Method A Method B 2D-FFT Soft Fusion
Same characteristics 1.55 1.67 2.61 2.97 2.04

M1 = 8 = 2M2 1.24 1.29 2.15 2.52 1.64

σ2
1 = 0.5σ2

2 1.44 1.57 2.62 2.99 1.90

M1 = 8 = 2M2, σ2
1 = 2σ2

2 1.15 1.19 2.19 2.56 1.51

Fig. 3. Impact of the number of subcarriers when each radar pair as the same
characteristics. The RMSE is compared for the different methods as a function
of the number of subcarriers. The impact of the number of subcarriers on the
diagonality of Ŝp is represented by the dashed line.

the improvement in RMSE is more significant when doubling
the number of antennas than halving the noise variance of the
estimated channel.

In Section III-B, we made the assumption that the matrix Ŝp

is diagonal to ensure that the proposed method is equivalent to
the complete 2K-dimensional ML estimator. We now discuss
the impact of this assumption. Fig. 3 displays the impact of
the number of subcarriers Qp on the accuracy of the presented
methods and evaluates its influence on the average diagonality
of the matrix Ŝp using a criterion defined in [11]. The matrix
is considered perfectly diagonal when the criterion is equal to
1 and balanced when it is equal to 0. With an increase in the
number of subcarriers, the accuracy of the proposed method,
of method A, and of the soft fusion increases. This is due to
the improved reliability of the MUSIC algorithm outputs when
the sample covariance matrix Rp is well estimated. It can be
observed that the proposed method remains reliable and more
accurate than the other methods even when Ŝp is not perfectly
diagonal.

V. CONCLUSION

In this paper, we propose a novel data-level fusion method
derived from the ML framework for a multistatic OFDM radar.
The method exploits the relationship between the MUSIC and
ML estimators to perform a joint AoD/AoA-based localiza-
tion of K targets. Further, we demonstrate that a weighted

combination of MUSIC outputs from each radar pair of the
multistatic system can provide an efficient approximation of
the ML estimator. This approach reduces the complexity of
the 2K-dimensional search required by the ML estimator into
K two-dimensional problems solved by MUSIC.

Unlike classical data-level fusion rule, the proposed com-
bination avoids the transmission of the full raw data obser-
vations. Instead, each radar pair solely transmits its estimated
channel covariance matrix to the central processor.

The performance of the proposed combination is compared
to other fusion methods and its benefit is evaluated by numer-
ical simulations. The study examines various system param-
eters, including the number of antennas, the noise variance,
and the number of subcarriers, to assess their impact on
localization accuracy. The proposed methodology could be
expanded in future works to take advantage of the range and
Doppler estimations of each radar pair to enhance localization
accuracy. The proposed framework can also be extended to any
type of multistatic radar that provides noisy channel estimates.
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