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1 Introduction and outlook

The spontaneous breaking of a (0-form) continuous global symmetry has profound conse-
quences in quantum field theory (QFT). Most notably, it leads to an effective low-energy
description in terms of massless modes, the Nambu-Goldstone (NG) modes, which are directly
related to the (Lie algebra) generators of the broken symmetries. Such a low-energy theory can
then be formulated as a σ-model on a group (or more generally a coset) manifold. In this paper
we investigate what changes when the continuous symmetry that is spontaneously broken
does not form a group, but rather constitutes a fusion category of non-invertible symmetries.

Non-invertible symmetries have been at the center of recent interest, see [1–34] for a partial
list of references. While the spontaneous breaking of non-invertible 0-form symmetries of finite
order has been considered for instance in [15, 21, 32, 33], the same question for non-invertible
0-form symmetries of the continuous kind has not yet been explored to our knowledge.1

Continuous non-invertible symmetries are most easily obtained in the following way.
Let us start by considering theories with both a global continuous invertible symmetry and
a discrete symmetry. Importantly, the latter acts non-trivially on the generators of the
continuous symmetry. A paradigmatic example is the one of charge conjugation in presence of
a continuous global symmetry. The non-trivial twist is to then gauge the discrete symmetry
acting on the theory. This gauging does not destroy the continuous symmetry, but makes
it non-invertible. This is known to happen in scalar models in two dimensions, e.g. the
c = 1 orbifold CFT, and in 4d O(2) gauge theory (see for instance [11] and [10, 20, 24],
respectively). In both of the cases above, there is no degeneracy of vacua, because in 2d

the Coleman theorem prevents the breaking of the symmetry, while in 4d the continuous
symmetry is a higher-form symmetry [35].

In order to explore theories with continuous vacuum degeneracies, we generalize the
orbifold construction to scalars in d > 2. In fact, one way to generate such a theory is to
put the O(2) gauge theory discussed in [24], on the manifold Rd−1,1 × S1. In such a set-up

1We stress that our set-up is different from the one in [31], where the broken symmetry is originally of the
“rational” kind considered first in [22, 23]. The latter is enough to ensure the masslessness of the axion/NG
boson. In [31] (see also [30]), a construction is devised to see the axion as an ordinary NG boson parameterising
an S1, i.e. the group U(1). This property will be the main distinction from our set-up.
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the scalar model that we will discuss emerges as a decoupled effective theory in the deep IR
through dimensional reduction.2 Our aim is to study the nature of the NG modes arising in
this model from the breaking of a continuous non-invertible 0-form symmetry.

In this work we start with a model of a free scalar ϕ with a U(1) shift symmetry. This
model has a Z2 reflection symmetry acting as ϕ → −ϕ which we proceed to gauge. The
Z2-gauging leads to the shift symmetry becoming non-invertible.3 A distinctive feature of
this model is that it presents a moduli space of vacua M which includes an S1/Z2 orbifold.
The points in this orbifold are parametrized by a coordinate θ ∈ [0, π]. In ordinary situations,
when a modulus originates from the breaking of an invertible symmetry, the Hilbert spaces of
NG modes H(θ) are isomorphic at every point in the vacuum manifold. This stems from the
fact that there exists a bijective map U : H(θ) → H(θ′), generated by the broken symmetry,
which is well-defined for every pair of points in M. Indeed, M is a homogeneous manifold
in this case. This picture is drastically modified when the symmetry is non-invertible. The
vacuum manifold M can now have singular points which in our case correspond to θ = 0 and
θ = π. We nevertheless show that there is a non-vanishing order parameter at any point on
M which means that the non-invertible global symmetry is spontaneously broken everywhere.
It turns out however that the Hilbert spaces built upon the singular points are qualitatively
distinct from those built upon the other points in the orbifold.

Let us be more specific. In the presence of global symmetries, we may further refine
the definition of the Hilbert space. On general grounds, n-dimensional topological defects
associated to a (d − n − 1)-form global symmetry may host non-trivial (n − 1)-dimensional
(disorder) operators at their boundaries when defined on an open surface. Operators of this
kind are usually associated with twisted sectors in the theory. In particular, when n = 1 and
the global symmetry is a (d − 2)-form Z2 symmetry, such operators implement a mapping
between two distinct superselection sectors in the Hilbert space of the theory:

H = H(u) ⊕H(t) , (1.1)

where we denote H(u) the untwisted sector and H(t) the twisted sector.
In our model, there is a (d − 2)-form Z2 quantum symmetry that is generated by

topological Wilson lines of the Z2 gauge field. Hence, the Hilbert space of the theory is split
as above. The spontaneous breaking of the non-invertible 0-form symmetry actually leads to
two sets of degenerate vacua in these two superselection sectors. The vacua in the untwisted
sector take the form of the S1/Z2 orbifold mentioned earlier. However, only the regular
points parametrized by θ ∈ (0, π) have their counterparts in the twisted sector.

Let us emphasize that the moduli space of vacua just described is not affected by the
realization of higher form symmetries at low energies when the theory is defined on infinite
flat space Rd−1,1 [35]. The gauged theory actually possesses two types of (d − 2)-form
symmetries. First, there is a continuous non-invertible (d − 2)-form symmetry acting on

2This is analogous to how a free compactified boson emerges in the deep IR when the Maxwell theory is
defined on a manifold with a compact direction.

3In fact, the non-invertibility is manifest already in the action on the local charged operators. This is in
contrast to many other instances of non-invertible (0-form) symmetries, which usually act invertibly on the
local operators charged under them, but manifest their non-invertibility when higher dimensional operators
are involved, see e.g. [14, 15, 22, 23].
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(appropriately symmetrized) combinations of integrally quantized vortex operators. Being
continuous, this symmetry cannot be spontaneously broken due to a generalized Coleman-
Mermin-Wagner theorem. In addition, there is the quantum (d − 2)-form Z2 symmetry
acting on reflection vortices (more details below). As we will argue in section 3, the fate
of this symmetry (i.e. whether it is spontaneously broken or not) may be different for the
regular and the singular points in the vacuum manifold. This, however, does not affect
the structure of the moduli space.

We show that one can define a set of invertible operators acting at any value of θ lying
in the open set (0, π). While these operators are not topological, in the sense that there is no
sensible (time-like) defect associated to them, they are conserved over time. The action of
these operators implements translations between the regular points of the orbifold, while it is
trivial on the singular points. Furthermore, these operators define isomorphisms between the
Hilbert spaces built upon the different regular points in the orbifold.

Making use of this structure, we establish the existence of single particle states corre-
sponding to the propagating NG modes at any regular point. In fact, one can construct a
state with arbitrary number of particles on these vacua. However, at the fixed points of
the orbifold, i.e. θ = 0 or θ = π, the spectrum is drastically reduced as all odd-particle
states are in the twisted sector. In particular, the single particle states are no longer in
the untwisted spectrum. This means that the symmetry breaking produces only massless
NG bosons in pairs at those specific points.

The paper is organized as follows. In section 2 we discuss in detail our simple model
which involves a single compact scalar with shift symmetry and gauged reflection symmetry,
i.e. the simplest orbifold, however in spacetime dimension d > 2. All the notions that we
want to highlight are present in this model: non-invertibility, vacuum degeneracy, vacuum-
dependent spectrum. In section 3 we conclude with some comments on generalizations
and further investigations.

2 Z2-gauged theory of a free compact scalar

2.1 Review of the free theory of a compact scalar

Let us consider the theory of a free compact scalar, ϕ ∼ ϕ + 2π in d-dimensional Minkowski
spacetime. The action of this model is given by

S = 1
2 g

∫
dϕ ∧ ⋆dϕ , (2.1)

where g is a parameter with mass dimension d − 2. This model has a U(1) global symmetry
realized by shifts ϕ → ϕ − α where α is a constant respecting the identification α ∼ α + 2π.
The associated Noether current

j = −g dϕ (2.2)

is conserved due to the equation of motion d ⋆ dϕ = 0. The symmetry is implemented by
(d − 1)-dimensional topological operators

Uα(Σ) = eiαQ(Σ) = eiα
∫

Σ ⋆j , (2.3)
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where Σ can be taken to be either a closed submanifold when considering action on operator
insertions, or a space-like surface extending to infinity when considering action on the physical
states. With a slight abuse of notation we will use the same symbols for both the cases. The
meaning should be clear to the reader from the context. Local operators charged under this
symmetry are accounted for by properly quantized vertex operators einϕ(x), n ∈ Z.

The standard quantization of the free field ϕ in momentum space reads

ϕ(t, x) = ϕ + lim
V →∞

π

gV
t + 1√

2g

∫
dd−1k

(2π)d−1
1√
|k|

[
ake−i|k|t+ik.x + a†

kei|k|t−ik.x
]

, (2.4)

with the usual commutation rules, i.e.

[ϕ, π] = i , [ak, a†
k′ ] = (2π)d−1δ(d−1)(k − k′) . (2.5)

Here ϕ is the zero-momentum mode which satisfies the identification ϕ ∼ ϕ + 2π. π is
the momentum conjugate to ϕ. The term involving π vanishes in the infinite volume (V )
limit. Nevertheless, we indicate it since, even in this limit, π appears in the charge Q that
generates the shift symmetry given in (2.3).4 This shift symmetry is spontaneously broken
resulting in a continuous set of degenerate vacua parametrized by the eigenvalues of eiϕ̄,
namely eiϕ̄|θ⟩ = eiθ|θ⟩ with θ ∼ θ + 2π. Therefore, the moduli space takes the form M0 = S1.
Throughout this work, we will take the spacetime dimension to be d > 2, so that we are
actually dealing with the low energy effective theory of an NG boson. Indeed, in d = 2 the
vacuum degeneracy is lifted due to the Coleman-Mermin-Wagner theorem, while we would
like to focus precisely on the properties of the moduli space of vacua. Shifts within M0 are
generated by the topological operators (2.3) acting as5

Uα|θ⟩ = |θ + α⟩ , UαakU†
α = ak , Uαa†

kU
†
α = a†

k . (2.6)

In addition to the above-mentioned U(1) symmetry, there is also a Z2 0-form symmetry
which is the reflection ϕ → −ϕ. Hence, it acts on the conserved current as j → −j. This
enhances the symmetry group to U(1) ⋊ Z2 ∼= O(2). There is also a U(1) (d − 2)-form
symmetry associated to the topologically conserved current ĵ = (2π)−1 ⋆ dϕ. Objects charged
under this symmetry are properly quantized holonomies ein

∫
ϕ̂ of the dual (d − 2)-form field,

defined by dϕ̂ = 2πg ⋆ dϕ, over closed (d− 2)-dimensional manifolds. Note that the conserved
current ĵ is also reversed by the action of the Z2 reflection symmetry. However, being a
continuous (d − 2)-form symmetry, it can never be spontaneously broken [35]. Hence, it
does not play any substantial role in our analysis.

Let us notice that the Z2 reflection symmetry is not realized in the same way for all
points in M0. In fact, this symmetry is preserved only by the vacua |0⟩ and |π⟩, whereas
it is broken for the rest of the values of θ. Note that since O(2) ∼= U(1) ⋊ Z2 (and not a
direct product), when it is spontaneously broken the moduli space is still just isomorphic to
S1 ∼= U(1), but with the Z2 acting non-trivially on all the points except θ = 0, π.

The Hilbert spaces H0(θ) associated to the NG bosons are obtained by acting with
creation operators {a†

k} on the respective vacua. The vector spaces H0(θ) that are obtained
4When the surface Σ in (2.3) is an infinite space-like surface, Q = −π.
5For sake of notational simplicity, we are omitting the fixed time slice Σ in these expressions.
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in this way from distinct vacua are mutually orthogonal, though isomorphic. The latter
statement is a consequence of the fact that different vacua |θ⟩ and |θ′⟩ are related by a
shift symmetry transformation Uα with α = θ′ − θ. From its action (2.6) it is clear that it
implements a bijection Uα : H0(θ) → H0(θ′). The full Hilbert space of the theory is the
direct sum of all these vector spaces.

On general grounds, when a given theory possesses global symmetries, the spectrum of
operators decomposes into two classes. On the one hand, the untwisted sector comprises all the
genuine operators in the spectrum. Genuine local operators are the ones that can be defined
locally without any need to be attached to topological lines. More generally, an n-dimensional
operator is called genuine when it does not live on the boundary of any (n + 1)-dimensional
open topological defect. On the contrary, the twisted sector is formed by all the non-genuine
operators, that is the ones that are well defined only as boundaries of topological defects.6

Let us pause here to comment about the different classes of operators arising in this theory.
First, genuine local operators are accounted for by properly quantized vertex operators einϕ(x),
n ∈ Z, together with arbitrary products of derivatives of ϕ(x). As explained above, there are
also genuine (d − 2)-dimensional ‘vortices’ described by properly quantized holonomies of
the dual field. These exhaust the untwisted sector in the ungauged theory. Let us now list
the non-genuine operators contained in the twisted sector. Associated to (d − 1)-dimensional
defects of the U(1) 0-form shift symmetry there are twisted sectors encompassing improperly
quantized vortices. There is also a discrete Z2 ‘reflection vortex’ living on the boundaries of
open Z2 reflection symmetry defects. When going around either of these vortex-type operators,
the field ϕ undergoes ϕ → ϕ − α (α ∈ [0, 2π)) or ϕ → −ϕ respectively. In d > 2 non-compact
dimensions, these extended operators do not map to states in a twisted Hilbert space (see
footnote 6). The latter actually consists of states created by improperly quantized vertex
operators eiνϕ(x) with ν /∈ Z, that need to be attached to a topological line associated to the
(d− 2)-form U(1) symmetry with current ĵ. These operators may become genuine by gauging
discrete subgroups of the U(1) shift symmetry but we will ignore them throughout this paper.

2.2 Operators and states in the Z2-gauged theory

Let us now proceed to the theory obtained by gauging the Z2 reflection symmetry. Before
entering into a detailed discussion of this theory, let us spell out the procedure of Z2-gauging
to avoid any confusion. One way to implement the Z2-gauging is to introduce a U(1) gauge
field, restrict its holonomies to the Z2 subgroup via a BF action [35, 36], and finally couple
the scalar field to this gauge field [37]. We follow an equivalent approach where we divide
the manifold arbitrarily into simply connected patches. Within each patch the scalar field

6This notion becomes more transparent in two spacetime dimensions, where the state operator corre-
spondence induces a similar grading on the Hilbert space. More precisely, non-genuine operators defined
at the endpoints of topological lines are in one-to-one correspondence with states obtained by quantization
with twisted boundary conditions. This defines the so-called defect Hilbert space. In higher dimensions,
this construction becomes less precise, mainly due to the fact that topological defects may come in various
dimensionalities. Borrowing the intuition from the two-dimensional case, we will associate a state in a twisted
Hilbert space to operators attached to topological line defects. The latter necessarily correspond to generators
of a (d − 2)-form symmetry. On the contrary, extended non-genuine operators will not be interpreted in terms
of states.
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varies continuously, and the Lagrangian is given by

L = 1
2g∂µϕ∂µϕ . (2.7)

However, while going from one patch to another neighboring patch, the field can undergo
a reflection in the overlapping region. The corresponding transition function is −1 or +1
depending on whether such a Z2 transformation takes place or not. A gauge transformation in
this picture corresponds to flipping the sign of the field throughout a patch. The path integral
involves summing over all field configurations (satisfying the above-mentioned constraints)
while identifying configurations that are related by such gauge transformations.7

As a consequence of the Z2-gauging, only the Z2-neutral sector of the genuine operators
discussed above remains genuine. In addition, gauging the Z2 reflection symmetry retrieves
originally non-genuine operators into the spectrum. This occurs with the (d − 2)-dimensional
reflection vortices. Moreover, these are charged under the dual (quantum) Ẑ(d−2)

2 (d− 2)-form
symmetry generated by topological defect lines corresponding to the holonomies of the Z2
gauge field [1, 2, 38].

Let us discuss the spectrum of operators in the Z2-gauged theory in more detail. The local
vertex operators that survive under the gauging are given by the symmetric combinations

Vn(x) ≡ 1
2(einϕ(x) + e−inϕ(x)) , n ∈ Z . (2.8)

The antisymmetric combinations, by themselves, are not gauge-invariant. However, one
can construct gauge-invariant operators out of them by attaching a semi-infinite topological
Z2 Wilson line as shown below

Wn(x) ≡ 1
2i

(
einϕ(x) − e−inϕ(x)

)
η∞

x , (2.9)

where η∞
x denotes the semi-infinite line ending at the point x. η∞

x is given by the product
of the transition functions for all the overlapping regions through which the line passes
as it goes from one patch to another. The topological nature of the line follows from the
flatness of the Z2-gauge connection. In the simply connected spacetime Rd−1,1 that we are
considering, all such semi-infinite Wilson lines ending at a particular point are equivalent
as there is no loop where the gauge connection has a nontrivial holonomy. The operators
in (2.9) belong to the spectrum of non-genuine local operators. In fact, since these operators
are attached to a line that generates the dual quantum symmetry Ẑ(d−2)

2 , one may regard
them as disorder operators of the latter symmetry.8

As a consequence of the topological line in (2.9), the action of such an operator can be
interpreted as a map from objects in the untwisted sector to those in the twisted sector and
vice versa. Importantly, note that the subsector of non-genuine operators is generically not
closed under fusion. More precisely, due to the fusion algebra satisfied by the Z2 topological

7In such a path integral Dirichlet boundary conditions are imposed at infinity, namely the configurations
related by sign flips of the field at infinity are not identified.

8As non-genuine operators, they are not unambiguously defined in presence of reflection vortices, i.e. the
objects whose charge is measured by closed loops of the Z2 gauge field.
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lines (i.e. (η∞
x )2 = 1), products of an even number of disorder operators lead to genuine local

operators. We will make use of this property in the following analysis.
The above-mentioned semi-infinite Wilson line can also be attached to the field operator

ϕ(x) yielding the twisted field ϕ′(x) defined below:

ϕ′(x) ≡ ϕ(x)η∞
x . (2.10)

The periodicity of the field ϕ(x) leads to the identification ϕ′(x) ∼ ϕ′(x) + 2π. Let us note
that this twisted field satisfies the equation of motion d ⋆ dϕ′ = 0 which follows from the
Lagrangian (2.7) and the fact that η∞

x does not vary within a patch. Moreover, by taking
cosines and sines of this field, one can get the operators in (2.8) and (2.9) as shown below:

Vn(x) = cos
(
nϕ′(x)

)
, Wn(x) = sin

(
nϕ′(x)

)
. (2.11)

The even powers that appear in the expansion of the cosines lead to the disappearance of
the Wilson line since (η∞

x )2 = 1. Similarly, a single factor of η∞
x survives in each term of the

expansion of the sines. So, one ends up with the expressions given in (2.8) and (2.9).
In addition to the twisted field ϕ′(x) discussed above, let us introduce its canonical

conjugate
π′(x) ≡ g∂tϕ

′(x) (2.12)

which is also a non-genuine local operator due to the attached Wilson line. Now, we
can canonically quantize the fields ϕ′(x) and π′(x) and demand the following equal-time
commutation relations:

[ϕ′(t, x), ϕ′(t, y)] = 0, [π′(t, x), π′(t, y)] = 0, [ϕ′(t, x), π′(t, y)] = iδ(d−1)(x − y). (2.13)

Note that the above commutation relations have support only at coincident points. Hence,
the effect of the Wilson line trivializes and these commutation relations are the same as those
between the field ϕ and its conjugate momentum π ≡ g∂tϕ in any gauge.9

Next, analogous to (2.4), we can do a Fourier mode expansion of ϕ′ as follows:

ϕ′(t, x) = ϕ
′ + lim

V →∞

π′

gV
t + 1√

2g

∫
dd−1k

(2π)d−1
1√
|k|

[
a′

ke−i|k|t+ik.x + a′†
k ei|k|t−ik.x

]
, (2.14)

with ϕ
′ ∼ ϕ

′ + 2π. All the Fourier modes are defined by integrals along a spatial slice.They
are essentially linear combinations of the twisted operators ϕ′(t, x) and π′(t, x) over that
slice. Therefore, these Fourier modes, which act on the total Hilbert space of the theory,
now map states in the untwisted sector to the twisted sector and vice versa. Note that
the total, or extended, Hilbert space includes both untwisted and twisted states, that we
will describe in detail shortly.

Based on the commutation relations given in (2.13), we get the following commutators
between the Fourier modes introduced above:

[ϕ′
, π′] = i , [a′

k, a′†
k′ ] = (2π)d−1δ(d−1)(k − k′). (2.15)

9To see this, one simply notes that π′(x) = π(x)η∞
x , and then uses again the fusion rule (η∞

x )2 = 1.
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We will shortly use the above Fourier modes and the commutation relations between them to
construct the Hilbert space of the theory. For the moment, let us continue our discussion
on the operators in the theory.

From the operator ϕ′(x) defined above, one can also form an analogue of the current
in (2.2) as follows

j′(x) ≡ −gdϕ′(x). (2.16)

It is tempting to use this non-genuine current operator to construct an analogue of the
operator implementing the shift symmetry in the ungauged theory as shown below:

U ′
α(Σ) ≡ eiα

∫
Σ ⋆j′

. (2.17)

More precisely, the above construction is needed only for α ̸= 0, π as the operators U0(Σ)
and Uπ(Σ) are already gauge invariant by themselves.10

An operator such as (2.17) is indeed invariant under deformations of the surface Σ as
can be seen from the equation of motion d ⋆ dϕ′ = 0. However, the operator U ′

α(Σ) is a linear
combination of genuine and non-genuine surface operators which can be seen as follows. For
simplicity, let us place ourselves in a set up suitable for canonical quantization, i.e. take Σ
to be a fixed time slice. Then we have U ′

α(Σ) = e−iαπ̄′ , where π̄′ is a twisted operator as
we saw above. Hence an operator like U ′

α(Σ) takes a generic state into a superposition of
untwisted and twisted states. Indeed, recalling that the sum of the untwisted and twisted
Hilbert spaces is nothing else than the Hilbert space of the ungauged theory, we recognize
that U ′

α(Σ) acts exactly as Uα(Σ) there. However, in the gauged theory, the operators that
truly implement symmetries are only those that act within the untwisted sector (and the
twisted sector, separately). It is only the latter that we will call genuine.

Let us comment here on the following subtlety that needs to be taken into account if one
considers such defects on a surface Σ with at least a non-trivial one-cycle. In this case, the
definition of the operators (2.17) has an ambiguity due to the fact that while integrating, the
semi-infinite line that defines j′ can wind (or not) on the non-trivial 1-cycles. This is taken
care of by positing that the final expression contains as a factor the projector11

P(Σ) = 1
|H1(Σ,Z2)|

∑
γ∈H1(Σ,Z2)

η(γ) . (2.18)

Note that since P(Σ)η(γ) = P(Σ) for γ ∈ H1(Σ,Z2), a consequence of this fact is that
the operators U ′

α(Σ) absorb the η(γ) closed lines, i.e. the generators of the quantum Ẑ(d−2)
2

symmetry (see [17] for an extensive exposition on this kind of operators).12

One can then extract a genuine topological operator for α ̸= 0, π by taking the following
symmetric combination of operators U ′

α(Σ) and U ′
−α(Σ):

Tα(Σ) ≡ U ′
α(Σ) + U ′

−α(Σ) . (2.19)
10U0 is just the identity operator, while Uπ implements the shift ϕ → ϕ − π ∼ ϕ + π which commutes with

the Z2 gauge transformation.
11As already mentioned, exceptions to this definition are the operators related to α = 0 and π. Those are

associated to the subset of invertible symmetries, and as such they should not involve a projector.
12Another consequence is that if one takes such a defect on a surface Σ with a cylindrical shape, wrapping a

reflection vortex, it will annihilate it, a first hint of non-invertibility.
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The above normalization yields fusion rules of these operators with integer coefficients, as
we will see shortly.

Similarly, a non-genuine topological operator can be obtained by taking the anti-symmetric
combination of U ′

α(Σ) and U ′
−α(Σ):

Zα(Σ) ≡ U ′
α(Σ) − U ′

−α(Σ) . (2.20)

Such defects turn genuine operators into non-genuine ones, and vice-versa, as we will dis-
cuss below.

A technical remark is in order: the expression (2.19) for the genuine surface operator as
a sum of non-genuine operators U ′

α should be interpreted with some care as, at the end, the
operators Tα are indecomposable objects. However, introducing U ′

α as a formal intermediate
step in the construction leads to a more intuitive picture of the underlying structure.

While the operators U0(Σ) and Uπ(Σ) form an invertible Z2 group, the Tα(Σ) implement
a non-invertible symmetry which is analogous to the non-invertible symmetry in the O(2)
gauge theory [24]. The non-invertibility of this symmetry is manifest at the level of the
fusion rule satisfied by these operators:

Tα(Σ) ⊗ Tβ(Σ) = Tα+β(Σ) + Tα−β(Σ) , (2.21)

where we are taking all of α, β, α + β and α−β to be different than 0 or π. If α±β = 0 or π,
then the right hand side contains an invertible operator, however its coefficient is a projector
(or more specifically, and up to a normalization, a condensation defect). For instance:

Tα(Σ) ⊗ Tα(Σ) = T2α(Σ) + 2P(Σ)U0(Σ) . (2.22)

The presence of P(Σ) in front of U0(Σ) is necessary for consistency with the left hand
side, and because U0(Σ) ≡ I does not carry it, since it is an invertible defect, see a similar
discussion in [18, 24].

Within correlation functions, the operators (2.19) and (2.8) satisfy the following Ward
identity

Tα(Σ)Vn(x) = 2 cos
(
nα Lk(Σ, x)

)
Vn(x) , (2.23)

where Lk(Σ, x) denotes the linking number between Σ and x. For unit linking, one sees
that the symmetry operators with α = (2k+1)π

2n , k ∈ Z, annihilate Vn(x), so that they have a
non-trivial kernel. This is another manifestation of their non-invertibility. We will later show
that this non-invertible symmetry is spontaneously broken in all the vacua of the theory.

We can similarly display the Ward identities satisfied by the non-genuine topologi-
cal defects:

Zα(Σ)Vn(x) = 2 sin
(
nα Lk(Σ, x)

)
Wn(x) ,

Zα(Σ)Wn(x) = −2 sin
(
nα Lk(Σ, x)

)
Vn(x) .

(2.24)

See figure 1 for a diagrammatic representation of these identities.13

13Similar diagrammatic representations for topological defects are extensively displayed in the literature,
although not necessarily in the same context, see for instance [3, 39].
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(a) (b)

Figure 1. Representation of the Ward identities (2.24) satisfied by the non-genuine topological
defects and operators. The wiggly lines represent the topological Wilson lines for the Z2 gauge field,
required for gauge invariance.

Finally, an analogous structure arises for the continuous (d − 2)-form symmetry acting
on the vortices since the Z2 gauge symmetry also takes ĵ → −ĵ. Indeed, one can define
(non-)genuine extended vortices by taking (anti-)symmetric combinations as in (2.8) and (2.9),
and similarly for the continuous (d − 2)-form symmetry generators.

Having discussed both genuine and non-genuine operators, let us now turn our attention
to the states in the theory. We will first discuss the different vacua of the theory. For
this, consider the eigenstates of the operator eiϕ

′
which are annihilated by the operators

{a′
k}. These are nothing else than the vacua of the ungauged theory, parametrized by the

angular variable θ with eiϕ
′
|θ⟩ = eiθ|θ⟩. Note that just as the operator in (2.17), eiϕ

′
is a

linear combination of genuine and non-genuine operators. Accordingly, its eigenstates are
(generically) linear combinations of states in the untwisted and the twisted sector. To obtain
the vacua in these two respective sectors, one needs to take appropriate linear combinations
of the above eigenstates.

The vacua in the untwisted sector take the following form:

|v(u)⟩θ ≡


1√
2(|θ⟩ + | − θ⟩) for θ ∈ (0, π),

|θ⟩ for θ = 0, π.
(2.25)

The moduli space of vacua in this sector is an orbifold S1/Z2 which is parametrized by
θ ∈ [0, π]. From these states, one can also obtain the vacua in the twisted sector as follows

|v(t)⟩θ ≡ 1
sin(θ) sin(ϕ′)|v(u)⟩θ = 1√

2
(|θ⟩ − | − θ⟩) for θ ∈ (0, π). (2.26)

They can be thought as parametrizing an open segment. This can also be inverted to retrieve
a subset of the vacua in the untwisted sector, i.e.,

|v(u)⟩θ = 1
sin(θ) sin(ϕ′)|v(t)⟩θ (2.27)

In the expressions above, we use sin(ϕ′)/ sin(θ) instead of the simpler expression ϕ
′
/θ because

it respects the 2π-periodicity. Note that sin(ϕ′) is a twisted operator. Furthermore, the
action of this operator on the vacua |v(u)⟩0 and |v(u)⟩π vanishes. So, there is no counterpart
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of these vacua in the twisted sector. This illustrates a distinction between these singular
points and the regular points in the orbifold. We will later show that this distinction gets
carried over to the Hilbert spaces built upon these two classes of vacua.

Let us make a further comment about our choice of the operator sin(ϕ′) to go from the
untwisted vacua to the twisted vacua. Instead of the sine function, one could have considered
a more general function f(θ) which is 2π-periodic and odd. We can then immediately see that
the corresponding operator f(ϕ′) has a vanishing action on the vacua |v(u)⟩0,π. Moreover, the
action of this operator on an untwisted vacuum with θ ∈ (0, π) gives f(ϕ′)|v(u)⟩θ = f(θ)|v(t)⟩θ.
In order to obtain all the vacua in the twisted sector from those in the untwisted sector in
this way, we only need the function f(θ) to be nonzero for any θ in the open interval (0, π).
By choosing f(θ) = sin(θ), we just work with the simplest such function.

We may now look at the fate of the non-invertible symmetry given in (2.19) at the
different vacua mentioned above. The order parameters for this symmetry are the expectation
values of the operators defined in (2.8) after a normal-ordering, namely

θ⟨v(u)| : Vn(x) : |v(u)⟩θ = cos(nθ) for θ ∈ [0, π], (2.28)

where : () : indicates the normal-ordering in which the creation operators {a′†
k} are pushed

to the left of the annihilation operators {a′
k}.14 It is clear that there is an infinite number

of non-vanishing order parameters at any point in the orbifold. Hence, the non-invertible
symmetry is spontaneously broken in all these vacua,15 including those at θ = 0 and π.

Let us next discuss the Hilbert spaces that are constructed upon the different vacua.
First, let us focus on the states that can be obtained from the vacua |v(u)⟩0 and |v(u)⟩π.
One can act with the creation operators {a′†

k} on |v(u)⟩0 or |v(u)⟩π to get these states. Since
these creation operators are twisted operators, an odd number of them acting on the vacuum
leads to a state in the twisted sector. On the other hand, the states in the untwisted sector
are obtained by the action of even number of these creation operators on the vacuum. We
emphasize that, in particular, there is no single particle excitation in the untwisted sector
living upon the vacua |v(u)⟩0 and |v(u)⟩π. Such excitations rather lie in the twisted sector.

Let us now contrast this with the Hilbert spaces built upon the vacua |v(u)⟩θ and |v(t)⟩θ

with θ ∈ (0, π). Consider the action of the creation operator a′†
k on the vacuum |v(u)⟩θ:

a′†
k |v

(u)⟩θ = 1
sin(θ)a′†

k sin(ϕ′)|v(t)⟩θ. (2.29)

The resulting state lies in the twisted sector. Similarly, the action of this operator on |v(t)⟩θ

gives a state in the untwisted sector:

a′†
k |v

(t)⟩θ = 1
sin(θ)a′†

k sin(ϕ′)|v(u)⟩θ. (2.30)

Based on the above observations, we can define the modified creation/annihilation operators

ã
(θ)
k ≡ 1

sin(θ)a′
k sin(ϕ′), ã

(θ)†
k ≡ 1

sin(θ)a′†
k sin(ϕ′) for θ ∈ (0, π). (2.31)

14As usual, the normal-ordering removes the divergences in the expectation values of the composite operators
Vn(x).

15One can check that the same statement is true for the vacua in the twisted sector.
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The action of these operators retains states in the untwisted/twisted sector in the same sector
as they are obtained by taking the product of two operators that map between these sectors.
They satisfy the following commutation relations

[ã(θ)
k , ã

(θ)†
k′ ] = (2π)d−1δ(d−1)(k − k′)sin2(ϕ′)

sin2(θ)
. (2.32)

Note that these commutation relations reduce to the standard ones in the sectors built upon
the vacua |v(u)⟩θ and |v(t)⟩θ. Therefore, one can build a tower of states in the untwisted
sector by acting the modified creation operators {ã

(θ)†
k } on the vacuum |v(u)⟩θ. A similar

tower of states can be built upon the vacuum |v(t)⟩θ in the twisted sector by acting with the
same operators. In particular, there are single excitation states in both the untwisted and
the twisted sectors living upon the vacua |v(u)⟩θ and |v(t)⟩θ respectively.

2.3 Translations along the moduli space of vacua

In this subsection, we want to show that the regular points of the moduli space of the orbifold
model are very similar to points in the moduli space of the ungauged model. Indeed, we
can build a charge and invertible operators relating the Hilbert spaces built on any two such
points. The non-invertible operators on the other hand generically map to linear combinations
of states built from different points. We start with the analysis at regular points, and then
proceed to confront with what is obtained with the non-invertible operators.

In the above analysis of the Hilbert space of the Z2-gauged theory we found that there
are two distinct classes of vacua in the untwisted sector. On one hand, there are the ground
states |v(u)⟩0 and |v(u)⟩π, namely the singular points of the S1/Z2 orbifold. The Hilbert
spaces in the untwisted sector that are constructed on top of these vacua only contain states
with an even number of massless excitations. In particular, there is no single excitation
state in this sector. On the other hand, the lowest energy states |v(u)⟩θ with θ ∈ (0, π) can
be acted upon by an arbitrary number of the modified gauge invariant creation operators
{ã†

k}. In other words, the Hilbert spaces living on these vacua have states with arbitrary
number of massless excitations.16

Notice that the Z2 gauge symmetry is Higgsed in this second class of vacua as can be
verified from the behavior of the 2-point function of the disorder operator W1 introduced
in (2.9) at a large separation between the insertions:

θ⟨v(u)| : W1(t, x) : : W1(t, y) : |v(u)⟩θ
|x−y|→∞−−−−−−→ sin2(θ) . (2.33)

We will now argue that the above distinction is emphasized by the presence of a charge
operator Q̃ in the Z2-Higgsed sector which generates translations along the moduli space of
vacua. The allowed range of translations is constrained to keep the vacuum in the Z2-Higgsed
sector, i.e. these translations do not connect the regular points in the moduli space to the
singular points (|v(u)⟩0 and |v(u)⟩π). The above feature distinguishes these translations from
the familiar case of spontaneous breaking of an ordinary symmetry where the translations along

16Let us comment here that the single and multi-particle states may be experimentally indistinguishable
in a gapless theory. It would be interesting to find a physical setting where the difference in the respective
Hilbert spaces is made manifest.
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the moduli space cover all the vacua. Despite this distinction, the operators implementing the
afore-mentioned translations do form a group which is isomorphic to the group of real numbers
under addition.17 We will show that the presence of the charge Q̃ generating this group of
translations about the regular points in the moduli space leads to isomorphisms between the
Hilbert spaces built upon such points. We will also show that, just as in case of ordinary
symmetry breaking [40], the single excitation states built upon these vacua are obtained from
plane wave superpositions of local excitations of the charge density. Furthermore, we will
demonstrate that this charge density (and hence, the charge operator Q̃) has a vanishing
action on the singular points in the moduli space, viz. |v(u)⟩0 and |v(u)⟩π. This is what leads
to the absence of the single excitation states in the sectors built upon these vacua.

Let us now proceed to construct the charge Q̃ that we mentioned above. Consider
the non-genuine current operator that was given in (2.16) and multiply this operator by
sin(ϕ′) to define a modified current

j̃(x) ≡ j′(x) sin(ϕ′) = −gdϕ′(x) sin(ϕ′). (2.34)

Here the choice of the sine function can be motivated by the same considerations as after (2.27).
Just as j′(x), this modified current is also conserved, i.e. d ⋆ j̃ = 0. Integrating the Hodge
dual of this current over a (d − 1)-dimensional space-like surface Σ that extends to infinity,
we can construct the conserved charge operator

Q̃ ≡
∫

Σ
⋆j̃ . (2.35)

Note that the factor sin(ϕ′) in j̃ implies a surface integral in order to define the (twisted)
zero mode ϕ

′. In the following, we will always take this surface to be aligned with Σ in (2.35).
Then, considering the Taylor expansion of sin(ϕ′), we see that we have a sum of terms each
of which involves an even number of integrations, starting with a double integral. One can
consequently take the integrands to consist of local insertions pairwise connected by finite
Wilson lines. This makes the operator Q̃ a genuine operator at the price of fixing the surface
Σ to be essentially a spacelike slice.18 In this sense it is not a topological operator, as for
instance (2.19), but merely a conserved operator acting on the Hilbert space that we will use
to make the structure of the latter more explicit. In other words, the surface operator is still
invariant under time translations of the surface. However, there is no clear notion of a defect
constructed out of it, hence not complying with the modern view on symmetries.

Due to the presence of the factor sin(ϕ′), the operator Q̃ has a vanishing action on the
vacua |v(u)⟩0 and |v(u)⟩π. On the other hand, it has a nontrivial action on |v(u)⟩θ for θ ∈ (0, π)
which generates translations along the moduli space. To show this, let us take Σ to be a
constant time slice and use the mode expansion given in (2.14) to obtain

Q̃ = −g

∫
dd−1x ∂tϕ

′(x) sin(ϕ′) = −π′ sin(ϕ′) . (2.36)

17This is in contrast to the theory without the Z2-gauging where, as we mentioned earlier, similar translation
operators form a group that is isomorphic to U(1).

18In the present case, we can take Σ to be a surface with trivial H1, so that we do not need to consider a
projector over the closed η lines.
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Using this charge operator as a generator, we can define a set of operators

Ũ(ξ) = eiξQ̃, ξ ∈ (−∞,∞). (2.37)

Note that the charge Q̃ does not obey any quantization condition, hence the operators are
indeed parameterized in R. Consider the action of such an operator with a small value ϵ

of the parameter ξ on the vacuum |v(u)⟩θ (θ ∈ (0, π)):

Ũ(ϵ)|v(u)⟩θ =
(
I + iϵQ̃

)
|v(u)⟩θ + O(ϵ2) = 1√

2

(
|θ + ϵ sin θ⟩ + | − θ − ϵ sin θ⟩

)
+ O(ϵ2)

= |v(u)⟩θ+ϵ sin θ + O(ϵ2).
(2.38)

We see that the action on a vacuum specified by θ depends on the value of θ itself. For a
finite transformation, we would like to determine the value of θ′ that one obtains by acting
with a transformation of (finite) parameter ξ on a vacuum given by θ, i.e.

Ũ(ξ)|v(u)⟩θ = |v(u)⟩θ′(ξ;θ) , (2.39)

where we have made explicit that θ′ depends also on the starting point θ. From above we
learn that for small variations of the parameter ξ we have

θ′(ξ + δξ; θ) = θ′(ξ; θ) + δξ sin θ′(ξ; θ) + O(δξ2). (2.40)

In other words,

∂

∂ξ
θ′(ξ; θ) = sin θ′(ξ; θ) (2.41)

with θ′(0, θ) = θ. Integrating the above differential equation we get

θ′(ξ; θ) = 2 arctan
(

eξ tan θ

2

)
. (2.42)

Now note that for θ ∈ (0, π) and for ξ ∈ R, θ′(ξ; θ) ∈ (0, π). More precisely, for a fixed
θ ∈ (0, π), θ′(ξ; θ) is a monotonically increasing function from R to (0, π). Indeed, one can
easily see that for ξ → −∞, θ′ → 0, while for ξ → +∞, θ′ → π. On the other hand, if
θ = 0, then θ′ = 0 for any ξ. Similarly if θ = π, then θ′ = π for any ξ. Therefore the
operators Ũ(ξ) keep the vacua |v(u)⟩0 and |v(u)⟩π fixed, while they implement translations
between the other vacua.

The fusion rule of the operators Ũ(ξ) is straightforward:

Ũ(ξ)Ũ(η) = eiξQ̃eiηQ̃ = ei(ξ+η)Q̃ = Ũ(ξ + η) . (2.43)

One can indeed be easily convinced that

θ′(ξ; θ′(η; θ)) = θ′(ξ + η; θ) . (2.44)

In particular, the action of Ũ(ξ) is invertible. It reproduces the additive group of the real
numbers. The open segment θ ∈ (0, π) furnishes a faithful representation, while the endpoints
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θ = 0, π provide trivial representations. Note that the states |v(t)⟩θ are acted upon in exactly
the same way as |v(u)⟩θ for θ ∈ (0, π).

Let us now show that these operators implementing translations between the regular
points in the moduli space of vacua also define isomorphisms between the Hilbert spaces
built upon those vacua. To see this, consider the states of the following form which span
a basis of the Hilbert space living on the vacuum |v(u)⟩θ (θ ∈ (0, π)):

|Ψ(θ)
k1···kn

⟩ = ã
(θ)†
k1

· · · ã(θ)†
kn

|v(u)⟩θ. (2.45)

If n is odd, we further have

|Ψ(θ)
k1···kn

⟩ = a′†
k1

· · · a′†
kn
|v(t)⟩θ , (2.46)

while for n even, we have

|Ψ(θ)
k1···kn

⟩ = a′†
k1

· · · a′†
kn
|v(u)⟩θ . (2.47)

Since Q̃, and hence Ũ(ξ), commute with a′†
k , it immediately follows that19

Ũ(ξ)|Ψ(θ)
k1···kn

⟩ = ã
(θ′)†
k1

· · · ã(θ′)†
kn

|v(u)⟩θ′ ≡ |Ψ(θ′)
k1···kn

⟩. (2.48)

This evidently defines an isomorphism between the Hilbert spaces built upon |v(u)⟩θ and
|v(u)⟩θ′ , for any two θ, θ′ ∈ (0, π).

Now, let us turn our attention to the charge density that appeared in the integral given
in (2.36). This charge density is

ρ̃(t, x) ≡ −g∂tϕ
′(t, x) sin(ϕ′). (2.49)

By using the mode expansion of ϕ′ given in (2.14), we get the following expression for the
Fourier transform of the above charge density at the time t = 0:

∫
dd−1x eik·xρ̃(0, x) = Q̃δk,0 + i

√
g|k|

2
[
a′
−k − a′†

k

]
sin(ϕ′). (2.50)

From this we can easily see that the single excitation states living on the vacuum |v(u)⟩θ

(θ ∈ (0, π)) are given by

ã†
k|v

(u)⟩θ = i

√
2

g|k|
1

sin(θ)

∫
dd−1x eik·xρ̃(0, x)|v(u)⟩θ (2.51)

for k ̸= 0. Therefore, as mentioned earlier, these single excitation states are obtained from
plane wave superpositions of local excitations of the charge density. Note that, just as the
charge Q̃, the charge density ρ̃(t, x) has a vanishing action on the singular points in the
moduli space of vacua (|v(u)⟩0 and |v(u)⟩π). This results in the absence of single excitation
states like the ones given in (2.51) on these vacua.

19Here note that we have Ũ(ξ)ã(θ)†
k Ũ(−ξ) = ã

(θ′)†
k only when acting on |v(u)⟩θ′ . On other vacua, the relation

does not come out with unit normalization.
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Let us mention here that the above discussion for the Z2-Higgsed vacua in the untwisted
sector goes through for their counterparts in the twisted sector. This means that the operators
defined in (2.37) also implement translations in the space of the twisted vacua and define
isomorphisms between the Hilbert spaces living on these vacua. The single excitation states
in these Hilbert spaces are given by expressions analogous to (2.51).

Finally, let us discuss the action of the operators Tα implementing the non-invertible
symmetry on the different vacua. For the following discussion, we take the surface Σ in their
definition given in (2.19) to a be a constant time slice. Unlike the operators defined in (2.37),
these operators are not unitary. For α ∈ (0, π), Tα acting on the different regular points in
the moduli space generically produces linear combinations of two vacua as shown below:

Tα|v(u)⟩θ = |v(u)⟩θ+α + |v(u)⟩θ−α , (2.52)

with the understanding that if θ + α > π, then |v(u)⟩θ+α ≡ |v(u)⟩2π−θ−α, and if θ − α < 0,
then |v(u)⟩θ−α ≡ |v(u)⟩α−θ. We also have the special cases

Tθ|v(u)⟩θ =
√

2|v(u)⟩0 + |v(u)⟩2θ ,

Tπ−θ|v(u)⟩θ =
√

2|v(u)⟩π + |v(u)⟩2θ−π

(2.53)

(with the same understanding as above, and the special case Tπ/2|v(u)⟩π/2 =
√

2|v(u)⟩0 +√
2|v(u)⟩π), and finally the (invertible) cases (from now on for simplicity we identify T0 ≡ U0

and Tπ ≡ Uπ)

T0|v(u)⟩θ = |v(u)⟩θ, Tπ|v(u)⟩θ = |v(u)⟩π−θ . (2.54)

The above expressions define the action of Tα on |v(u)⟩θ (θ ∈ (0, π)) for all α ∈ R because
of the identities Tα = T−α and Tα = Tα+2π which can be verified from the definition of
these operators given in (2.19).

From the above action of Tθ or Tπ−θ on |v(u)⟩θ, we can see that these operators allow
one to make a transition from a regular point in the moduli space to a singular point. This
may lead the reader to wonder whether, contrary to our previous analysis, the action of these
operators on the single excitation states living on |v(u)⟩θ can produce single excitaton states
living on the singular points |v(u)⟩0,π. This is indeed not the case as we show below for the
action of Tθ on a single excitation state built upon |v(u)⟩θ:

Tθã
(θ)†
k |v(u)⟩θ = 1√

2
(U ′

θ + U ′
−θ)a′†

k (|θ⟩ − | − θ⟩)

= 1√
2

a′†
k (|2θ⟩ − |0⟩ + |0⟩ − | − 2θ⟩) = 1√

2
a′†

k (|2θ⟩ − | − 2θ⟩)

= sgn(π − 2θ)ã(2θ)†
k |v(u)⟩2θ ,

(2.55)

with a similar understanding as above, i.e. when 2θ > π, then |v(u)⟩2θ ≡ |v(u)⟩2π−2θ and
ã

(2θ)†
k ≡ ã

(2π−2θ)†
k . Note that the terms involving states built upon the singular points neatly

cancel in the above expression. A similar argument can be presented for the action of Tπ−θ

on such a single excitation state. Note that in particular Tπ/2ã†
k|v(u)⟩π/2 = 0.
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Let us now consider the action of Tα on the singular points |v(u)⟩0 and |v(u)⟩π:

Tα|v(u)⟩0 =
√

2|v(u)⟩α, Tα|v(u)⟩π =
√

2|v(u)⟩π−α (2.56)

for α ∈ (0, π). We see that these operators acting on the vacua at the singular points in
the moduli space produce the vacua at the regular points (up to a normalization factor).
The operator T0 acts trivially on |v(u)⟩0 and |v(u)⟩π, whereas the operator Tπ exchanges
these two vacua. Let us note here that the invertible symmetry generated by Tπ leads to an
isomorphism between the Hilbert spaces built upon |v(u)⟩0 and |v(u)⟩π.

Unlike the operators Ũ(ξ) implementing translations between the regular points in the
moduli space of vacua, the operators Tα are not generated by a charge. Nevertheless, one
can perform an expansion of these operators near α = 0 as follows:

Tα = 2I + α2
∫

dd−1x

∫
dd−1y ρ2(t, x, y) + O(α4) , (2.57)

where

ρ2(t, x, y) ≡ −g2∂tϕ
′(t, x)∂tϕ

′(t, y). (2.58)

Just as the single excitation states on the regular points in the moduli space are obtained
from the action of the charge density on those vacua, the double excitations on the singular
points |v⟩0,π are obtained from ρ2(0, x, y) as follows:

a′†
k1

a′†
k2
|v(u)⟩0,π = 2

g

1√
|k1||k2|

∫
dd−1x

∫
dd−1y eik1.x+k2.y : ρ2(0, x, y) : |v(u)⟩0,π. (2.59)

Similarly, the other states with even number of excitations can be obtained from the integrands
appearing in the higher order terms in the expansion (2.57). As a final comment in this
section, let us mention that the states in the twisted sector with odd number of a′†

k ’s acting
on |v(u)⟩0,π can be obtained similarly from the integrands appearing in an expansion of the
twisted operator Zα defined in (2.20).

3 Conclusion and discussion

We conclude with some remarks on generalizations of the model that we considered, and
on further investigations.

So far, we have considered only free field theories, i.e. theories of NG bosons in the
strict IR limit. A natural question is whether the features we have discussed are also present
when the spontaneous breaking happens in an interacting theory. We believe the answer is
positive, simply because most of the arguments can be phrased in terms of the conserved
currents before the gauging of the discrete symmetry.

Let us consider for simplicity the case of a single NG mode, modded by reflection
symmetry. Because of the broken shift symmetry, the low energy theory will be organized as
a derivative expansion. For instance, the first non-trivial interaction is the quartic higher
dimensional operator (∂µϕ∂µϕ)2, which is automatically invariant under reflections ϕ → −ϕ.
The current on the other hand, is odd under reflections. The vacuum structure is exactly the
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same, by definition. Then, using the current, one can build the operators Uα in the ungauged
theory, and the operators Tα and Ũα after gauging.20 The single massless excitations on the
vacua at the regular points in the orbifold can again be extracted from the action of the
charge density associated with Ũα [40]. The absence of these states in the Hilbert spaces
built upon the singular points also follows from the vanishing action of the charge density
on the respective vacua.

It would be interesting to explore how our analysis may be extended to theories with
multiple scalars. In particular, it would be nice to generalize to cases where the gauged
symmetry forms a finite non-abelian group such as SN . A subtely in this case is that the
dual quantum symmetry which arises due to the gauging is non-invertible [41]. This may
introduce new complications in defining the twisted operators that played an important role
in our analysis. We would like to address these issues in the future.

Let us finally return to our model once more and comment on a complementary way
to diagnose whether the vacuum is on a singular or a regular point of the moduli space,
i.e. whether the Z2 gauge symmetry is preserved or Higgsed, respectively. Now, we recall the
argument that ties the breaking or not of the quantum symmetry to whether the original
symmetry was broken or not before gauging [5, 36, 42, 43]. This is because order parameters
for the original symmetry in the ungauged theory become disorder parameters (twisted
sectors) for the quantum symmetry upon gauging. Moreover, for a given symmetry, a
non-vanishing order parameter implies a vanishing disorder parameter, and vice-versa. In
other words, we can probe whether a symmetry is broken or not by the vacuum expectation
value of its disorder parameter.

Then, for the quantum symmetry of our orbifold model, the correlator (2.33) would imply
that the Z2 (d− 2)-form symmetry is preserved in the vacua |v(u)⟩θ for θ in (0, π). Conversely,
at θ = 0, π the symmetry might be broken since the VEV of the disorder operator vanishes.
Unfortunately, even if these arguments can be safely applied to the study of massive phases,
it is not clear whether they hold in presence of gapless excitations. Therefore, it would be
interesting to directly probe the status of the quantum symmetry by evaluating the vacuum
expectation value of its order parameter, which is a (d − 2)-dimensional surface, namely a
“reflection vortex” for ϕ. One expects to find an area law in the smooth region of the moduli
space, probably after the addition of higher orders in the effective action. In addition, it
would be very nice to establish a strong connection between the realization of this emergent
symmetry and the structure of the Hilbert space analysed in this work.

An alternative path to reach the same conclusion may be the following. Let us first note
that the invertible part of the global symmetry in this theory seems to form an interesting
higher group structure. Indeed, by a simple generalization of the arguments presented for
the orbifold theory in d = 2 [11], it is easy to check that the ungauged theory contains an
anomaly involving all three global symmetries

Sanomaly ⊃ π

∫
d+1

C(1) ∪ A(1) ∪ B(d−1), (3.1)

20In an interacting theory, the expansion (2.14) of the twisted field ϕ′ is no longer valid. Nevertheless, one
can still define a zero momentum mode ϕ

′ by taking an average of this field over a spatial slice. Using this one
can construct the operator sin(ϕ′) which enters in the definition of Ũα.
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where C(1), A(1), B(d−1) are the background fields (normalized as integral co-cycles) for the
Z2 reflection symmetry and for the Z2 restrictions of both the U(1) shift symmetry and the
(d − 2)-form vortex symmetry respectively. We are restricting to the particular subgroups
of the continuous symmetries that remain invertible after gauging.

One can then verify that, upon gauging the reflection symmetry, i.e. making C(1) → c(1)

dynamical, gauge invariance forces the following correlation between gauge bundles

δB̂(d−1) = A(1) ∪ B(d−1) , (3.2)

where B̂(d−1) is the background field for the quantum symmetry and δ denotes the co-boundary
operator. Indeed, the correlation (3.2) is the signature of a higher group structure [44, 45].
Such a structure usually leads to interesting hierarchies on the symmetry breaking scales
corresponding to the global symmetries involved. In physical terms, such a constraint applied
for the case at hand would imply that a phase preserving both Z(0)

2 and Z(d−2)
2 necessarily

confines the Ẑ(d−2)
2 reflection symmetry vortices. Now, consider the vacuum at θ = π/2.

From (2.54), we see that in this vacuum the Z(0)
2 generated by Tπ is unbroken. Furthermore,

the generalization of the Coleman theorem states that a continuous (d − 2)-form symmetry
cannot be broken. Thus the U(1)(d−2) vortex symmetry is unbroken in the ungauged model.
If we assume that gauging the reflection symmetry does not change that status, then it would
follow that its Z(d−2)

2 subgroup that survives in the gauged model is unbroken as well. If this
holds, then we would deduce that by virtue of the higher group constraint, the Ẑ(d−2)

2 reflection
symmetry is also unbroken in the θ = π/2 vacuum. Recalling the isomorphism between
Hilbert spaces discussed in this paper, it would then seem reasonable to extend this conclusion
to all regular points of the orbifold. We hope to come back to these problems in the future.
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