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Impressive advances have been seen in cancer immunotherapy during the last years.

Although breast cancer (BC) has been long considered as non-immunogenic,

immunotherapy for the treatment of BC is now emerging as a new promising

therapeutic approach with considerable potential. This is supported by a plethora of

completed and ongoing preclinical and clinical studies in various types of

immunotherapies. However, a significant gap between clinical oncology and basic

cancer research impairs the understanding of cancer immunology and

immunotherapy, hampering cancer therapy research and development. To exploit

the accumulating available data in an optimal way, both fundamental mechanisms at

play in BC immunotherapy and its clinical pitfalls must be integrated. Then, clinical

trials must be critically designed with appropriate combinations of conventional and

immunotherapeutic strategies. While there is room for major improvement, this

updated review details the immunotherapeutic tools available to date, frombench to

bedside, in the hope that this will lead to rethinking and optimizing standards of care

for BC patients.
KEYWORDS
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Introduction

In the last years, there have been many advances and optimization in the treatment of

breast cancer (BC). However, despite such progress, resistance to therapy and disease

relapse remain important challenges in the management of BC in a considerable proportion

of patients. Specifically, impressive advances have been seen in cancer immunotherapy

during the last decade. Cancer immunotherapy exploits the host’s immune system to

eradicate tumor cells. Although BC has long been considered a non-immunogenic process,
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1287824/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1287824/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1287824/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1287824/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1287824&domain=pdf&date_stamp=2024-02-15
mailto:ealaluf@gmail.com
https://doi.org/10.3389/fimmu.2024.1287824
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1287824
https://www.frontiersin.org/journals/immunology


Alaluf et al. 10.3389/fimmu.2024.1287824
immunotherapy for the treatment of BC is emerging as a new

therapeutic approach with considerable potential, supported by a

plethora of completed and currently ongoing preclinical and clinical

studies in various types of BC immunotherapies. Tumor-infiltrating

lymphocytes (TILs) are more commonly found in Human

epidermal growth factor receptor 2 (HER-2)-positive BC and

triple negative BC (TNBC), where the median percentages are

15% and 20%, respectively (1). However, 10% of TILs are also

found in hormone receptor (HR)-positive BC (1). TILs can

specifically target tumor cells following activation by antigen

presenting cells (APC) via tumor antigen peptide presentation to

human leukocyte antigen (HLA) molecules. TILs are associated

with a better prognosis in TNBC (2) and node-positive TNBC (1).

In HER2-positive BC, the presence of TILs showed contradictory

data regarding trastuzumab therapy benefit (3, 4). TILs have also

been associated with a higher probability of pathological complete

response (pCR) in neoadjuvant settings (5, 6). Likewise, in HR-

positive BC, CD8+ T-cell infiltration has been associated with

survival (7), although this is currently under debate since

contradictory results have been found for this BC subtype in

neoadjuvant (8, 9) and adjuvant (10) settings. This led to suggest

that the tumor-eradicating properties of TILs are an efficient part of

the antitumor immune response and could therefore be exploited as

immunotherapy to improve the clinical outcome of BC patients. gd
T-cells and natural killer (NK) cells have also been associated with a

better prognosis in all BC subtypes (11, 12). Many targets are

constantly being discovered on antitumor lymphoid cells, such as

immune checkpoints. In addition, other immune cells of the tumor

microenvironment (TME) contribute positively or negatively to the

antitumor immune response and are currently a topic of intense

preclinical and clinical research, such as tumor-infiltrating myeloid

cells (13). Herein, we summarize the current and new potential

immunotherapeutic strategies showing promising results in the

emerging field of BC immunotherapy. We provide a basis for

reflection on the available immunotherapeutic tools to date in the

hope that this will lead to rethinking and optimizing standards of

care for BC patients.
Directed monoclonal antibodies

HER2 is overexpressed in 15-20% of BC and correlates with

higher grade, aggressive phenotype, and poor clinical outcome.

Immunotherapies in the form of monoclonal antibodies specifically

binding to HER-2 receptor, added to chemotherapy, are the

cornerstone for HER-2-overexpressing BC therapy and have led

to significant improvements in HER2-positive BC prognosis

compared to previous chemotherapy regimens. Trastuzumab has

been approved for the treatment of HER2-positive BC patients for

approximately the past 20 years and acts through several

mechanisms of action. It suppresses the HER2 intracellular

signaling pathway by binding to the transmembrane HER2

receptor, which is followed by its internalization, degradation, and

downregulation of PI3K pathway. In addition, trastuzumab

activates both the innate and adaptive immune systems. Indeed,

this monoclonal antibody enhances antibody-dependent cellular
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cytotoxicity (14), antibody-dependent cellular phagocytosis and

macrophage activation (15), Fc-mediated immune priming by

dendritic cells (DCs) (16), effector HER-2-specific T cell response

(17) and memory T-cell response (16) (Figure 1). These

mechanisms seem to be critical for the induction of a pCR after

neoadjuvant therapy in HER2-positive BC patients (18).

Pertuzumab is a dual HER2/HER3 monoclonal antibody

approved in combination with trastuzumab and taxane-based

chemotherapy for first-line therapy in HER2-positive metastatic

BC and in adjuvant and neoadjuvant settings. It works by blocking

HER2 heterodimerization and may act by promoting an antitumor

immune response (19), although data regarding its mechanisms of

action and its synergism with trastuzumab is still limited. To

improve the efficacy of trastuzumab, the immunogenic properties

of trastuzumab may be exploited in association with other

strategies. For example, margetuximab was approved in

combination with chemotherapy for third-line therapy in

metastatic HER2-positive BC disease. Margetuximab is a

monoclonal antibody similar to trastuzumab, whose modified Fc

fragment has a much greater affinity for its activating Fcg receptors
and a decreased affinity for its inhibitory Fcg receptors on tumor-

infiltrating NK cells and macrophages. This way margetuximab

promotes antibody-dependent cellular cytotoxicity and

phagocytosis processes against tumor cells. This may explain the

influence of Fcg receptor polymorphism on overall survival of BC

patients treated with margetuximab compared to trastuzumab (20).

In light of the success of anti-HER2 therapies in HER2-positive BC,

one might wonder why other monoclonal antibodies targeting

tumor antigens other than HER2 have not been developed for

other BC subtypes. Such monoclonal antibodies, synergizing with

the potential antitumoral properties of the TME, might be

particularly efficient in BC tumors wherein myeloid cells

are abundant.
Antibody-drug conjugates

Antibody-drug conjugates (ADC), a new emerging class of

antineoplastic agents with a high therapeutic index and impressive

clinical efficacy, display both immune mechanisms of action, like those

of naked directed monoclonal antibodies, combined with the targeted

delivery of chemotherapy directly to antigen-expressing tumor cells

(21). They are therefore known as “biological missiles”. Recently, other

mechanisms of action have been suggested to contribute to both their

antitumor activity and adverse events (such as thrombocytopenia). For

example, the release of chemotherapy into the TME may lead to the

recruitment of particularly immunosuppressive, protumoral and tissue

repairing myeloid cells. ADC may be taken up by macrophages

through Fcg receptors, leading to myeloid cell depletion or

modulation of the activation state (22). Chemotherapy may also

deplete regulatory T cells by diffusing into the TME through a

bystander effect. Chemotherapy may also further promote NK cell-

mediated antibody-dependent cellular cytotoxicity (ADCC) or regulate

tumor antigen presentation byDCs (Figure 2). Trastuzumab emtansine

is an ADC of trastuzumab covalently linked to the cytotoxic agent

emtansine (DM1/maytansinoid). It is approved for HER2-positive BC
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patients in the metastatic setting and in the adjuvant setting for HER2-

positive BC patients with residual invasive disease following

neoadjuvant trastuzumab and chemotherapy. Trastuzumab-

deruxtecan is the following ADC of trastuzumab linked to the

topoisomerase 1 inhibitor deruxtecan (DXt/camptothecin). While

TDM-1 has a non-cleavable linker and an average of 3.5 molecules

of payloads per antibody, trastuzumab deruxtecan displays a cleavable

linker with 8 molecules of a different payload. These differences could

affect their antitumor mechanisms of action, such as the bystander

effect and cellular toxicity. The efficacy and safety of trastusumab

deruxtecan was compared with trastuzumab emtansine in the

DESTINY-BREAST03 phase 3 randomized clinical trial, showing a

lower risk of disease progression or death (23). Trastuzumab

deruxtecan received accelerated approval in 2019 and has now

become the new standard of care for second-line therapy in HER2-

positive BC patients who have received a prior anti-HER2 based

regimen either in the metastatic setting, or in the neoadjuvant or
Frontiers in Immunology 03
adjuvant setting and have developed disease recurrence during or

within 6 months of completing therapy. In addition, it is approved for

locally advanced or metastatic HER2-low (IHC 1+ or IHC 2+/FISH‑)

BC patients who have received a prior chemotherapy in the metastatic

setting or developed disease recurrence during or within six months of

completing adjuvant chemotherapy. Moreover, trastuzumab

deruxtecan is currently compared, when used with or without

pertuzumab, to the standard of care which is taxane, pertuzumab

and trastuzumab as first-line treatment in the DESTINY-BREAST09

phase 3 clinical trial. Trastuzumab deruxtecan in association with

tucatinib is also currently studied in metastatic BC patients, including

with active brain metastasis, in the HER2-CLIMB-04 phase 2 clinical

trial. Another ADC, sacituzumab govitecan, targets the human

trophoblast cell-surface antigen 2 (Trop-2), which is highly expressed

in BC, and is coupled with a high drug-to-antibody ratio to SN-38, the

active metabolite of irinotecan. This leads to the delivery of high

concentrations of the chemotherapy to the tumor cells by intracellular
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FIGURE 1

Mechanisms of action of monoclonal antibodies on the antitumor immune response.
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uptake of SN-38, thereby also allowing the cells of the TME to be

eradicated by SN-38 which is released extracellularly from the tumor

cells through a bystander effect. This antitumor effect may also be

mediated by a significant antibody-dependent cellular cytotoxicity

effect against the Trop-2-positive tumor cells (24). Sacituzumab

govitecan received accelerated approval in 2020 for the treatment of

refractory metastatic TNBC following at least two prior

chemotherapies, by showing promising results for this notoriously

difficult-to-treat group of patients (25). Recently, it has demonstrated

extended progression-free survival (PFS) and overall survival (OS), as

well as greater health-related quality of life benefits than chemotherapy,

and moved to second-line therapy of TNBC (at least one in the

metastatic setting) (25). It may also represent a new option for

endocrine-resistant hormone receptor-positive/HER2-negative

metastatic BC, since it has recently shown a longer PFS and a

statistically significant OS compared to standard chemotherapy

(capecitabine, eribulin, vinorelbine or gemcitabine) after CDK4/6

inhibitors and 2 to 4 previous lines of chemotherapy (26). The

indication of sacituzumab govitecan is currently investigated in case

of residual disease after neoadjuvant chemotherapy.
Immune checkpoint inhibitors

During the last decade, the emergence of immune checkpoint

inhibitors (ICI) has revolutionized the field of cancer therapies,
Frontiers in Immunology 04
especially in advanced or metastatic cancers where they have shown

unprecedented and durable efficacy. They are approved in many

different cancer types such as lung cancer, melanoma, renal cell

carcinoma, and in any high microsatellite instability or mismatch

repair deficiency. Used alone or in combination with other ICI or

chemotherapies, they represent a staggering proportion of the

ongoing clinical trials in oncology. In all cancer types, the most

widely studied immunotherapeutic agents to date are ICI blocking

cytotoxic T lymphocyte-associated molecule-4 (CTLA-4),

programmed cell death receptor-1 (PD-1) and programmed cell

death ligand-1 (PD-L1). While PD-1 is mainly expressed on TILs,

PD-L1 is expressed on both cancer cells and tumor-infiltrating

immune cells. Although the impact of ICI on the immune response

remains to be fully elucidated, the PD-1/PD-L1 immune inhibitory

axis is thought to be upregulated in the TME and to impair the

effector stage of the antitumor immune response (27).
PD-1 inhibitors

Nivolumab and pembrolizumab are human monoclonal

antibodies that block PD-1 and therefore the interaction of PD-1

with its ligand PD-L1, preventing T-cell suppression.

In TNBC, although pembrolizumab showed antitumor activity in

the phase 1b KEYNOTE-012 and the phase 2 KEYNOTE-086 trials,

the KEYNOTE-119 phase 3 trial comparing pembrolizumab with
B C D EA

FIGURE 2

Mechanisms of action of antibody-drug conjugates (ADC) on the antitumor immune response.
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chemotherapy did not show significant improvement in OS in the

second or third-line treatment of patients with metastatic TNBC (28).

However, in the KEYNOTE-355 phase 3 study, pembrolizumab

combined with chemotherapy significantly improved PFS compared

with chemotherapy alone in patients with advanced or metastatic PD-

L1-positive TNBC (CPS≥10) (29). Moreover, the follow-up of the

patients with CPS of 10 or more showed a significantly longer OS with

no new safety signals identified when pembrolizumab was added to

chemotherapy (30). In addition, among patients with previously

untreated stage II or III TNBC, the rate of pCR at definitive surgery

was higher in pembrolizumab plus neoadjuvant chemotherapy

compared with placebo plus chemotherapy in the KEYNOTE-522

phase 3 trial, along with disease-free survival (DFS) (31). Based on these

results, the FDA approved in 2021 pembrolizumab for high-risk, early-

stage, TNBC, in combination with chemotherapy as neoadjuvant

treatment, and then continued as a single agent as adjuvant

treatment. The FDA also granted accelerated approval in 2020 to

pembrolizumab in combination with chemotherapy for patients with

locally advanced or metastatic TNBC whose tumors express PD-L1.

Other treatments with the combination of pembrolizumab and eribulin

showed promise for patients with metastatic TNBC, with efficacy that

seems greater than reports of either drug alone, according to the

KEYNOTE-150 phase 1b/2 study (NCT02513472) (32). A pilot study

comparing nivolumab with capecitabine and with combination therapy

as adjuvant therapy after residual disease following neoadjuvant

chemotherapy is under investigation (NCT03487666).

In HER2-positive BC, the combination of pembrolizumab plus

trastuzumab demonstrated a tolerable safety profile, activity and

durable clinical benefit, in advanced HER-2-positive, trastuzumab-

resistant, PD-L1-positive BC disease (33).

In HR-positive BC patients, fewer clinical trials have been

performed so far. In a phase 1b study, pembrolizumab was well

tolerated with modest but durable partial response in certain patients

with previously treated, advanced, PD-L1-positive HR-positive HER2-

negative BC (34). In women with early-stage, high-risk, HR-positive

HER2-negative BC, an ongoing phase 2 trial in the neoadjuvant setting

with pembrolizumab in association with standard chemotherapy

showed improved pCR (35). Since CDK4/6 inhibitors induce, in

addition to a tumor cell cycle arrest, an enhanced antitumor

immune response (36), they may be used in synergy with ICI to

increase tumor immunogenicity (NCT02648477). Other studies

currently assessing PD-1 inhibitors in different settings are

summarized in Table 1.
PD-L1 inhibitors

Atezolizumab, durvalumab and avelumab are human

monoclonal antibodies that block PD-L1 and therefore PD-1/PD-

L1 interaction, T-cell activation and proliferation.

In TNBC, the association of durvalumab with nab-paclitaxel

and doxorubicin-cyclophosphamide neoadjuvant chemotherapy

suggested a high rate of pCR in a phase 1/2 trial (43), which was

higher in PD-L1-positive and TILs-high than PD-L1-negative

patients (44). This has not been observed in the phase 3 trial

comparing the addition of atezolizumab to carboplatin and nab-
Frontiers in Immunology 05
paclitaxel with the chemotherapy regimen alone in a neoadjuvant

setting (40). However, the IMpassion130 phase 3 study

demonstrated a prolonged PFS with atezolizumab plus nab-

paclitaxel in metastatic TNBC patients (37) and a clinically

meaningful OS benefit in previously untreated PD-L1-positive

patients, compared with placebo plus nab-paclitaxel (38).

Following this clinical trial, nab-paclitaxel with atezolizumab

received accelerated approval in March 2019 for first-line

treatment of locally advanced or metastatic TNBC whose tumors

express PD-L1 (>=1%). However, this has been withdrawn after

IMpassion131 clinical trial results showing that atezolizumab and

paclitaxel under the same settings did not show any improvement of

PFS or OS versus paclitaxel alone (39).

The addition of atezolizumab to TDM-1 did not show any

improvement and was associated with more adverse events in

previously treated HER2-positive locally advanced or metastatic BC

patients who received prior trastuzumab and taxane based therapies.

However, a benefit in terms of PFS in favor of the combination has

been observed in the PD-L1-positive subgroup of patients (45). Further

study is required in subpopulations of patients.

Further results from various clinical trials investigating anti-

PD-L1 treatments in TNBC, HER2-positive or HR-positive BC

patients are summarized in Table 1 (41, 46).
CTLA-4 inhibitors

CTLA-4 on TIL surface mediates T-cell suppression by binding to

CD80 and CD86 (expressed on the surface of antigen-presenting cells),

therefore competing with the co-stimulatory receptor CD28 on the cell

surface of T cells (47). Ipilimumab is a human monoclonal antibody

that targets CTLA-4, thus preventing its inhibitory effect on T-cell

activation. Ipilimumab is under investigation in various settings in BC

which are summarized in Table 1 (42).
Optimizing trial design

Major clinical trials, such Keynote-119 trial assessing

pembrolizumab monotherapy, failed to improve OS versus single-

drug chemotherapy per investigator’s choice after first-line metastatic

TNBC. This underscores the inefficacy of PD-1 inhibitors alone and

suggests the association with chemotherapies for the next trials. Indeed,

various chemotherapies (such as anthracyclines or taxanes) result in

tumor cell death and debris which induce immunogenic cell death.

Immunogenic cell death is mediated by damage-associated molecular

patterns (DAMPs), promoting tumor phagocytosis and antigen

presentation, and may facilitate the induction of a robust antitumor

immune response by ICI. In contrast, Keynote-355 showed

improvement of PFS and OS in PD-L1-positive metastatic TNBC

when chemotherapies including platinum or taxanes were associated

with PD-1 inhibitors. This suggests the selection of such

chemotherapies combined with ICI for further trials. On an early

setting, Keynote-522 showed improved pCR when neoadjuvant and

adjuvant pembrolizumab was combined with neoadjuvant carboplatin-
frontiersin.org
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TABLE 1 Published and ongoing clinical trials related to ICI.

TNBC Setting Regimens Results Safety data references

KEYNOTE-119
phase 3

Metastatic pembro 200mg 1x/3 weeks vs investigator’s choice chemo
(capecitabine, eribulin, gemcitabine, or vinorelbine)

OS ≈ Anemia and
leupopenia ↘ with
pembro vs chemo.
AE of grade≥3 in 20%
of both groups

(28)

KEYNOTE-355
phase 3

Metastatic Chemo (nab-paclitaxel, paclitaxel, or gemcitabine/
carboplatin)+pembro 200mg 1x/3 weeks vs placebo

↗ PFS (≥CPS
10)
↗ OS (≥CPS
10): 23 vs
16.1 months

68.1% of AE of
grade≥3 in pembro
+chemo vs 66.9%
in chemo

(29, 30)

KEYNOTE-522
phase 3

Early
(neoadjuvant
and adjuvant)

Chemo (paclitaxel+carboplatin)+4 cycles of neoadjuvant
pembro 200mg 1x/3 weeks vs placebo. Additional four
cycles of pembro vs placebo and then doxorubicin
+cyclophosphamide or epirubicin+cyclophosphamide for
both groups. Adjuvant pembro vs placebo.

↗ DFS
↗ pCR:
64.8% vs 51.2%

78% of AE of grade≥3
in pembro+chemo vs
73% in chemo

(31)

KEYNOTE-150
phase 1b/2

Metastatic Pembro 200mg d1+eribulin 1.4mg/m² d1, d8/21 ↗ ORR in PD-
L1+ tumors:
28.4% vs 17.3%

26.3% of neutropenia
of grade≥3

(32)

IMpassion130
phase 3

Metastatic Nab-paclitaxel 100mg/m² d1,8,15/28+atezolizumab
840mg d1, d15 vs placebo

↗ PFS:
7.2 vs 5.5
months
in PD-L1+
tumors:
7.5 vs 5
months
OS ≈

Withdrawn
due to lack
of benefit.

48.7% of AE of
grade≥3 in the atezo
group vs 42.2% in
placebo,
57,3% of potential
immune -related AE vs
41.8%, respectively

(37, 38)

IMpassion131
Phase 3

Metastatic Paclitaxel 90mg/m² d1,8,15/28+atezolizumab 840mg d1
and d15 vs placebo

PFS ≈

OS ≈

53% of AE of grade≥3
in atezo group vs 46%
in placebo. Higher
incidence of low-grade
hypo and
hyperthyroidism in
atezo group

(39)

Pilot study Early
(residual
disease)

adjuvant capecitabine 1250mg/m² bid d1-d14/21 or
nivolumab 360mg 1x/3 weeks or both

Immunoscore
change?

? NCT03487666

Phase 2 Metastatic carboplatin+nivolumab 360mg 1x/3 weeks vs placebo PFS? ? NCT03414684

Phase 3 Metastatic Chemotherapies+pembrolizumab 200mg 1x/3 weeks
vs placebo

PFS? OS? ? NCT02819518

Phase 1/2 Metastatic Niraparib up to 300mg/day d1-21+pembrolizumab
200mg d1/21

DLT? ORR? ? NCT02657889

IMpassion030
Phase 3

Early
(adjuvant)

paclitaxel 80mg/m² 1x/week for 12 weeks followed by
dose-dense doxorubicin 60mg/m² or epirubicin 90mg/
m²+cyclophosphamide 600mg/m² 1x/2weeks for 4 doses
+atezolizumab 840 mg 1x/2 weeks for 10 doses and then
maintenance 1200 mg 1x/3weeks to complete 1 year
vs placebo

iDFS? ? NCT03498716

NeoTRIP
Phase 3

Early
(neoadjuvant)

Neoadjuvant carboplatin+nab-paclitaxel 125mg/m² d1
and d8+atezolizumab 1200mg 1x/3weeks for 8 cycles vs
placebo, followed by adjuvant anthracyclines for 4 cycles

pCR ≈

EFS?
Liver transaminase
abnormalities in
atezo group

NCT02620280
(40)

IMpasision031
phase 3

Early
(neoadjuvant)

Nab-paclitaxel 125mg/m² 1x/week+atezolizumab 840mg
1x/2weeks for 12 weeks followed by atezolizumab 840mg
+doxorubicin 60mg/m²+cyclophosphamide 600mg/m²
1x/2weeks for 4 doses followed by adjuvant atezolizumab
1200mg 1x/3weeks for 11 doses vs placebo

↗ pCR in all-
randomized
population and
PD-L1+ status

30% of AE of grade≥3
in atezo group vs 18%
in placebo, such as
febrile neutropenia,
pneumonia
and pyrexia

NCT03197935
(41)

(Continued)
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TABLE 1 Continued

TNBC Setting Regimens Results Safety data references

Phase 3 Early
relapsing
metastatic

Chemotherapy (capecitabine or gemcitabine/carboplatin)
and atezolizumab 1200mg 1x/3weeks vs placebo

OS? ? NCT03371017

Phase 3 Early
(adjuvant)

Adjuvant avelumab 10mg/kg 1x/2 weeks vs placebo DFS? OS? ? NCT02926196

Phase 2 Stage III
(neoadjuvant)

Neoadjuvant ipilimumab 1mg/kg 6 weekly for 2 doses
+nivo 240mg every 2 weeks for 6 weeks+weekly
paclitaxel 80mg/m² for 12 weeks+postoperative
nivolumab 480 mg 4-weekly for further 9 months

pCR 37.5% in
PD-L1+ and
23% in PD-L1-
, 57.6% of ORR

? ongoing
(42)

GeparNuevo
Phase 2

Early
(neoadjuvant)

Nab-paclitaxel 125mg/m² 1x/week+durvalumab 1.5g 1x/4
weeks vs placebo followed by doxorubicin 60mg/
m²+cyclophosphamide 600mg/m²+durvalumab
vs placebo

pCR ≈

↗iDFS 85.6%
in durva group
vs 77.2% in
placebo
↗DDFS 91.7%
in durva group
vs 78.4% in
placebo
↗OS 95.2% in
durva group vs
83.5%
in placebo

NCT02685059

HER2+ BC Setting Regimens Results Safety data references

PANACEA
Phase 1b/2

Metastatic Trastuzumab 6mg/kg+pembro 200mg 1x/3 weeks
vs placebo

OR of 15% in
PD-L1+
tumors, 0% in
PD-L1- tumors

29% of AE of grade≥3.
Immune-related AE in
19% such as thyroid
dysfunction,
pneumonitis and
autoimmune hepatitis.

(33)

KATE2
Phase 2

Metastatic TDM-1 3.6mg/kg+atezolizumab 1200mg 1x/3 weeks
vs placebo

PFS ≈

In PD-L1+
tumors:
PFS 8.5
months in
atezo group vs
4.1 months
in placebo

19% of AE of grade≥3
in atezo group vs 3%
in placebo

(43)

Phase 2 Early
(neoadjuvant)

Neoadjuvant pembro 200mg+trastuzumab 6mg/kg
+pertuzumab 420mg/kg 1x/3 weeks

pCR? ? NCT03988036

Phase 2 Metastatic 5 administrations of pembro 200mg 1x/3 weeks or VRP-
HER2 vaccine 4x10EE8 IU 1x/2 weeks for 3 injections or
both of them

Anti-HER2
TILs
and antibodies?

? NCT03632941

Phase 3 Metastatic Paclitaxel 1x/week or docetaxel 1x/3 weeks+ trastuzumab
+pertuzumab+atezolizumab 1x/3 weeks vs placebo for
2 years

PFS? OS? ? NCT03199885

IMpassion050
Phase 3

Early Neoadjuvant doxorubicin 60mg/m²+cyclophosphamide
600mg/m²+atezolizumab 840 mg 1x/2 weeks vs placebo
followed by paclitaxel 80mg/m²1x/week for 12 weeks
+trastuzumab 6mg/kg+pertuzumab 420mg 1x/3weeks.
Adjuvant to complete up to 1 year HER2-target therapy
+atezolizumab 1200mg 1x/3 weeks vs placebo

pCR ≈

DFS?
OS?

Neoadjuvant:
47.3% of AE of
grade≥3 in atezo group
vs 42.2% in placebo
Adjuvant:
13.4% of AE of
grade≥3 in atezo group
vs 9.8% in placebo

NCT03726879
(44)

Phase 2a Metastatic Atezolizumab+paclitaxel+trastuzumab+pertuzumab Antitumor
activity
(RECIST)?

? NCT03125928

Phase 1b Metastatic Durvalumab+trastuzumab 1x/3 weeks Recommended
phase 2 dose?

? NCT02649686

(Continued)
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paclitaxel followed by anthracycline-based chemotherapy. The

IMPassion031 trial combining atezolizumab to nab-paclitaxel

followed by atezolizumab with anthracycline-based chemotherapy

also significantly increased pCR rate. This further suggests the

synergy of ICI with anthracyclines or taxanes. The Impassion130

trial showed increased PFS when atezolizumab was added to nab-

paclitaxel chemotherapy in metastatic previously untreated PD-L1-

positive TNBC. The trial received accelerated FDA approval which was

later withdrawn due to lack of benefit. Accumulating data suggests that

immune checkpoint inhibitor antitumor activity is mediated by a non-

specific FcgR-mediated modulation of the TME, and not only by the

blockade of PD-1/PD-L1 axis on TILs. For example, anti-CTLA4

antibodies may activate FcgR-mediated elimination of intratumoral
Frontiers in Immunology 08
regulatory T cells (48) and anti-PD-L1 antibodies may activate FcgR-
mediated reprogramming of tumor-infiltrating myeloid and NK cells

(49). This highlights the role of the Fc domain of therapeutic ICI

antibodies in their antitumor activity. The albumin found in nab-

paclitaxel (albumin-bound paclitaxel, Abraxane) may prevent the non-

specific binding of the ICI antibodies (through Fcg receptors). Indeed,
‘‘blocking solutions’’, such as bovine serum albumin, are commonly

used in laboratories to prevent such non-specific antibody bindings.

This might explain the lack of antitumor activity of ICI associated with

nab-paclitaxel and suggest replacing nab-paclitaxel by other

chemotherapies in the next clinical trials. The involvement of nab-

paclitaxel in parallel with atezolizumab in a neoadjuvant setting, such

as in the neoTRIP trial, also showed disappointing results up to now,
TABLE 1 Continued

Luminal Setting Regimens Results Safety data references

I-SPY2
Phase 2

Early
(neoadjuvant)

neoadjuvant paclitaxel 80 mg/m²+pembrolizumab 200mg
1x/3 weeks vs placebo followed by doxorubicin 60 mg/
m²+cyclophosphamide 600 mg/m². Standard-of-care
adjuvant therapy.

pCR 30% vs
13% for HR
+HER2- and
60% vs 22%
for TNBC

immune-related AE
such as thyroid
dysfunction (1,4% ≥3)
and adrenal
insufficiency (7,2%
of ≥3)

NCT01042379
(35)

Phase 2 Metastatic Pembrolizumab 1x/3 weeks for 24 months+aromatase
inhibitor po QD

ORR? OS? ? NCT02648477

Phase 2 Early
(residual
disease)

Adjuvant pembrolizumab 1x/3 weeks up to 24 months
+hormone therapy

DFS? OS ? NCT02971748

KEYNOTE-756
phase 3

Early
(neoadjuvant)

Neoadjuvant pembrolizumab 200mg 1x/3 weeks vs
placebo+paclitaxel 80mg/m² 1x/week followed by
doxorubicin 60mg/m² or epirubicin 100mg/
m²+cyclophosphamide 600mg/m² 1x/2 weeks. Adjuvant
pembrolizumab 200mg 1x/3 weeks vs placebo
+hormone therapy

pCR? EFS? ? NCT03725059

Phase 3 Metastatic pembrolizumab 200mg 1x/3 weeks vs placebo
+chemotherapy (paclitaxel, nab-paclitaxel, liposomal
doxorubicin or capecitabine)

PFS? OS? ? NCT04895358

Phase 2 Early
(neoadjuvant)

Tremelimumab 3mg/kg+exemestane 25mg daily followed
by durvalumab 20mg/kg 1x/4weeks+exemestane
25mg daily

CD8+ T cells?
pCR?

? NCT02997995

Phase 2 Metastatic Atezolizumab 840mg 1x/2 weeks+cobimetinib daily ORR? ? NCT03566485

Phase 2b Metastatic Chemotherapy (pegylated liposomal doxorubicin 20mg/
m² 1x/2 weeks+cyclophosphamide 50mg daily first 2
weeks in each 4 week cycle)+ibilimumab 1mg 1x/6 weeks
and nivolumab 240mg 1x/2 weeks vs placebo

PFS? ? NCT03409198

Phase 2 Metastatic
(hypermutated)

Nivolumab 1x/2 weeks+ibilimumab 1x/6 weeks ORR? ? NCT03789110

Phase 2 Metastatic sacituzumab govitecan 10mg/kg 2x/3 weeks
+pembrolizumab 1x/week vs placebo

PFS?
ORR? OS?

? NCT04448886

Phase 3 Early neoadjuvant chemotherapy (paclitaxel followed by
anthracycline+cyclophosphamide) and adjuvant
hormonotherapy of investigator’s choice+neoadjuvant
and adjuvant nivolumab vs placebo

pCR? ? NCT04109066
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regarding pCR in TNBC patients. In the IMPassion131 trial, adding

atezolizumab to paclitaxel did not significantly improve PFS, even in

the PD-L1-positive TNBC patients. It should be noted that, according

to post hoc analyses, most patients were administered corticosteroid

premedication throughout paclitaxel therapy, which might alter

immunotherapy efficacy. Nevertheless, although the Kaplan-Meier

curves remained overlapping for the first 7 months, the trend began

to diverge thereafter, favoring the atezolizumab arm and thus,

suggesting that the impact of ICI may begin later on, and therefore

the need for a longer follow-up.

Regarding HER2-positive BC, HER2-directed monoclonal

antibodies, such as trastuzumab, already significantly improved

HER2-positive BC prognosis and are probably potent tools for next-

generation immunotherapies. Indeed, these antibodies have multiple

mechanisms of action, as described above. Therefore, the addition of

ICI to trastuzumab/pertuzumab seems to be a promising combination

that can at the same time target the tumor cells (through antibody-

dependent cellular cytotoxicity and antibody-dependent cellular

phagocytosis by anti-HER2 therapy) and trigger myeloid and

lymphoid compartment activation (through anti-HER2 therapy and

immune checkpoint inhibitor). Associated chemotherapies may further

promote tumor immunogenicity. For example, in a metastatic setting,

the phase 1b/2 PANACEA trial showed encouraging results, although

associated usual chemotherapies were unfortunately missing and

should be investigated. ADC are expected to deliver a toxic payload

specifically to antigen-expressing-tumor cells. However, ADC have also

been clinically shown to be effective in low antigen expression, whereas

trastuzumab is not effective. This highlights other mechanisms of

action of ADC which might be antigen-independent, as described

above. While these mechanisms of action are not yet clear today,

combination therapies including ADC are even more difficult to

suggest. In phase 2 KATE2 trial, investigating TDM-1 combined

with atezolizumab, there is a trend in increased PFS in favor of

atezolizumab only in the PD-L1-positive tumors. Adding

chemotherapy to ADC and ICI might facilitate the inflammatory

response. On the other hand, chemotherapy might suppress immune

cells from the TME and by this way alter this inflammatory response.

Clinical trials combining ADC with chemotherapy and/or ICI are

ongoing (NCT04538742)(NCT04556773) and will first have to assess

the adverse events of such combinations. In early HER2-positive BC

disease, phase 3 IMpassion050 trial has investigated the association of

atezolizumab to anthracycline-based chemotherapy followed by

paclitaxel, trastuzumab and pertuzumab in a neoadjuvant setting.

Although the primary endpoint has not been reached (pCR was not

improved), the neoadjuvant period was short. We should certainly wait

a bit longer to observe the known long-term impact of immunotherapy

by checking EFS –which is a secondary end point of this study. Indeed,

following the administration of the treatments, the mature dendritic

cells migrate to the draining lymphoid organs, activate antitumor

tumor T cells, which proliferate and go back to the tumor site to kill

specifically the cancer cells. The common concept of pCR, which is

associated with an important prognosis factor after chemotherapy,

might therefore be very different in an immunotherapy setting and we

are not sure if pCR is a proper primary endpoint to choose. To

optimize the trial design, we would suggest adding atezolizumab to

taxanes (with or without platins) and HER2 blockade (monotherapy or
Frontiers in Immunology 09
dual therapy) neoadjuvant sequence, and not to the anthracycline-

based neoadjuvant chemotherapy sequence. Indeed, this may allow the

combination of chemotherapy, anti-HER2 blockade and ICI in parallel,

whose mechanisms of actions might synergize.

In luminal BC, fewer trials involving immunotherapies have been

performed so far. While the first trials were disappointing, many

results of ongoing trials are awaited. In high-risk early-stage luminal

HER2-negative BC, the pCR rate increased from 13% to 30% in the

phase 2 adaptively randomized I-SPY2 trial by adding pembrolizumab

to neoadjuvant paclitaxel chemotherapy followed by anthracycline-

based chemotherapy. This was associated with a high EFS rate of 93%

at 3 years. This chemo-immunotherapy combination is similar to

those that are effective in the other BC subtypes, and might succeed in

the randomized phase 3 Keynote 756. In metastatic luminal BC,

results are encouraging as well (50). While a previous trial adding

pembrolizumab to eribulin did not improve PFS or OS in luminal

metastatic BC patients pretreated with 2 or more lines of hormonal

therapy (51), there are many other combination therapies to

investigate. For example, combinations of ICI with aromatase

inhibitors and CDK 4/6 inhibitors might synergize. Indeed, CDK 4/

6 inhibitors induce the presentation of tumor antigens on dendritic

cells, stimulate cytotoxic T cells and suppress regulatory T cells activity

(52). The impact of hormone therapies on the antitumor immune

response is less clear, but aromatase inhibitors might improve CD8 T

cell/regulatory T cell ratio (53).
New immune checkpoint targets

Immune checkpoint discovery has increased interest in other

recently discovered inhibitory and stimulatory immune checkpoint

pathways and gave rise to new clinical trials with many other potential

immune checkpoint targets (Figure 3). For example, Lymphocyte

Activation Gene-3 (LAG-3) signaling pathway is mainly expressed

on lymphocytes where it inhibits T-cell activation, proliferation and

cytokine production (54). The combination of eftilagimod a (a

monoclonal antibody inhibiting LAG-3) with paclitaxel showed

clinical benefit in 90% of metastatic BC patients at 6 months,

supporting the future development of this agent in combined first-

line regimens (55). Ongoing clinical studies investigate its safety and

efficacy alone, associated with other immunotherapies, or through a

bispecific antibody targeting ICI and LAG-3 simultaneously

(NCT02614833)(NCT03742349)(NCT03849469). T-cel l

Immunoglobulin and Mucin domain-containing protein 3 (TIM-3)

contains multiple co-inhibitory receptors expressed on different types

of immune cells (56). TIM-3 antagonistic monoclonal antibodies are

currently being clinically investigated in advanced tumors including

BC, alone or with a co-blockade with other immunotherapies or

chemotherapies (NCT02817633)(NCT04370704)(NCT05287113)

(NCT03446040). T-cell Immunoreceptor with Ig and ITIM domains

(TIGIT) is restricted to lymphocytes where it exerts its

immunosuppressive effect by competing with costimulatory signals

such as CD226, like the CD28/CTLA-4 pathway (57). Monoclonal

antibodies targeting TIGIT undergo early-stage clinical trials as

monotherapy or in combination with current ICI in patients with

locally advanced or metastatic malignancies including BC
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(NCT03628677). V-domain Immunoglobulin Suppressor of T-cell

Activation (VISTA) is expressed on myeloid cells, regulatory T cells,

and on a lesser extent, on BC tumor cells (58). Preclinical trials of

VISTA monoclonal antibody-mediated blockade showed remarkable

protective antitumor effects (59). CA-170 is an orally available dual

small molecule inhibitor of VISTA and PD-L1 being examined in

patients with advanced tumors such as BC (NCT02812875). B7

Homolog 3 protein (B7-H3) displays complex immunomodulatory

activity in innate and adaptive immunity with costimulatory as well as

inhibitory functions and still requires further elucidation. Its receptor

has not yet been identified (60). The blockade of B7-H3 is being

investigated in early-stage clinical trials in various cancers including BC

(NCT03729596)(NCT04145622)(NCT03406949). OX40 and OX40

ligands are co-stimulatory molecules expressed on different types of
Frontiers in Immunology 10
immune cells whose interaction leads to T-cell proliferation and

decreased regulatory T cells. Although this axis seems to play a

controversial role in the antitumor response, many oncological

clinical trials are focusing on agonistic antibodies with potential

antitumor activity (61) (NCT03971409)(NCT02410512). Inducible

CO-Stimulator of T cells (ICOS) is a costimulatory molecule induced

by T-cell activation, leading to secondary stimulatory signals. Besides its

expression on antitumor effector TILs, ICOS is also expressed on

regulatory T cells from the TME, on which it confers an

immunosuppressive activity. Since ICOS does not induce a cytotoxic

immune response independently (62), clinical investigation of

monoclonal antibodies for potential synergistic effects in association

with other immunotherapies in advanced malignancies, including BC,

are currently conducted (NCT02904226, NCT03447314,
FIGURE 3

New immune checkpoint targets.
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NCT03829501). Glucocorticoid-Induced TNFR-Related gene (GITR)

activation promotes effector T-cell activity and inhibits tumor-

infiltrating regulatory T-cell function. GITR agonism alone does not

seem to be sufficient to induce a significant clinical response to therapy.

However, there is a rationale for reinvigoration TILs exhaustion

through combination with PD-1 blockade (63), which is currently

under clinical investigation in advanced malignancies including BC

(NCT02628574)(NCT03126110). 4-1BB is a powerful costimulatory

signal whose agonistic stimulation on CD8+ T-cells enhances survival,

function andmemory differentiation in preclinical models (64). Anti-4-

1BB agonist monoclonal antibodies are under clinical investigation in

combination with ICI in patients with locally advanced or metastatic

TNBC (NCT02554812)(NCT03971409) and HER2-positive BC

(NCT03414658). A bispecific antibody targeting HER2 and 4-1BB

has also shown encouraging data of safety and clinical benefit in phase

1 clinical trial (65) (NCT03330561)(NCT03650348). In addition, 4-

1BB upregulation through Fcg receptor stimulation on NK cells

(66) may suggest a synergy between 4-1BB agonism and anti-

HER2 blockade/anti-HER2 ADC, which is also currently

investigated (NCT03364348).

CD40 is mainly expressed on antigen-presenting cells, where

ligation by CD40 ligand results in antigen-presenting cell activation

and therefore priming and activation of effector T cells (67). Agonist

monoclonal antibodies are under investigation, as monotherapy or

in combination, in patients with advanced malignancies including

BC (NCT03329950)(NCT05029999).
Adoptive cellular therapy

Despite their antitumor reactivity, TILs, if they are not suppressed

within the TME, are often exhausted, contributing to tumor immune

escape mechanisms. Autologous TILs can be isolated from tumor

specimens, expanded, and activated in vitro, and reinfused into the

patient, alone or in combination with interleukins. In TCR-engineered

lymphocytes and CAR T cell therapy, the cells are isolated from a

patient’s peripheral blood through leukapheresis, and genetically

modified to express either a T cell receptor (TCR) or a chimeric

antigen receptor (CAR) (Figure 4). Unlike its success in

haematological malignancies with FDA’s approval of tisagenlecleucel

and axicabtagene ciloleucel, adoptive cell therapy in solid tumors is

associated with major obstacles. This includes the identification of

appropriate specific tumor antigen targets and the presence of a strong

immunosuppressive TME. However, numerous adoptive cellular

strategies have recently been developed to fight solid tumors and are

under investigation in preclinical studies and clinical trials, including

in BC patients. Once expressed in T cells and accompanied by

costimulatory domains (such as 4-1BB or CD28), CAR T cells

display antigen-specific recognition, activation, proliferation and

cytotoxic function, independent of MHC presentation, which is a

major advantage compared to TCR therapy (see hereunder) (68).

Several targets have been proposed to date, such as mesothelin (69)

(NCT02792114)(NCT02414269), c-Met (70), CEA (NCT04348643),

EPCAM (NCT02915445), CD70 (NCT02830724), or MUC1

(NCT04020575)(NCT04025216). Clinical trials have also been

started with an infusion of CAR T-cells targeting HER2
Frontiers in Immunology 11
(NCT04511871)(NCT04430595)(NCT03740256), including

intraventricular administration in patients with brain metastases

(NCT03696030). CAR-T cells could also be designed to recognize a

universal motif such as an Fc portion of immunoglobulins (71),

allowing a potential antitumor activity in synergy with antibody

treatments such as trastuzumab. Besides, other molecules

demonstrated in vitro and in vivo antitumor activity against BC,

such as Natural killer group 2, member D (NKG2D) (72) or Receptor

tyrosine kinase-like orphan receptor 1 (ROR1) (73). CAR-T cells

targeting these molecules will probably be clinically investigated soon

as well.

Although CAR T-cell therapy has attracted major interest, TCR

therapy can target both surface and intracellular proteins whose

peptides are presented onto MHC molecules (Figure 4). As a result,

TCRs could target more tumor antigens and be more tumor-specific

(74). In a metastatic HER2-overexpressing BC patient, an adoptive

transfer of autologous HER2-specific cytotoxic T cells has been

shown to lead to accumulated T cells in the bone marrow along with

a loss of bone marrow-residing disseminated tumor cells (75). The

adoptive transfer of allogeneic T cells in metastatic BC patients

suggested their contribution to a transient early tumor response

(76). TCR T-cell therapy is currently being evaluated in patients

with metastatic or locally recurrent and unresectable disease

including BC through tumor-associated antigen-specific cytotoxic

T lymphocyte infusion (NCT03412877)(NCT03093350).

In addition, several clinical studies investigating TIL therapy in

BC have been performed. A phase 2 clinical trial demonstrated a

case of adoptive transfer of autologous mutant-protein-specific TILs

in association with pembrolizumab and interleukin-2 that led to the

complete and durable regression of metastatic disease in an HR-

positive BC patient who failed to respond to multiple previous lines

of therapy (77). Clinical trials are currently investigating the

transfer of autologous TILs in patients with pretreated metastatic

BC (NCT01174121)(NCT04111510).

Lastly, a growing interest in CAR-NK cell immunotherapy (78) has

demonstrated promising preclinical studies in TNBC. In the future,

personalized immunopeptidomic profiling of the tumors may allow us

to identify new potential therapeutic target antigens (79). Next-

generation engineering CAR-T cells may also target several aspects

of the TME to treat solid tumors such as the tumor stroma and

vasculature as opposed to tumor cells alone, as it has recently been

suggested in vivo (80). In addition, next-generation CAR-T cells

endowed with bispecific CAR dual specificity targeting multiple

tumor antigens have been shown to potentiate the antitumor activity

in tumor models and to minimize parallel reactivity against normal

tissues harboring single antigen, which could present a novel approach

focusing CAR-T cells to tumor cells (81).
Bispecific antibodies

With FDA’s approval of blinatumomab in the treatment of B-

cell malignancies, recent efforts have focused on the extension of

multifunctional bispecific antibodies to BC immunotherapy. Most

bispecific antibodies for cancer immunotherapy consist of two

arms. One arm binds tumor-associated antigens on cancer cells.
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The other arm binds effector immune cells, with selective binding to

activate Fcg receptors, resulting in the formation of a tri-cell

complex and specific elimination of tumor cells (Figure 5). This

elimination is independent of TCR specificity, co-stimulatory

signals, or peptide antigen presentation, representing a major

advantage of bispecific antibodies in cancer immunotherapy.

Compared to trastuzumab, it has been shown that these

trifunctional antibodies mediate the elimination of tumor cells

expressing HER2/neu at low levels, which was associated with a

Th1-based cytokine release (82) and a potent antitumor activity

(83). Ertumaxomab which targets CD3 and HER2 simultaneously

has shown encouraging results in phase 1 clinical trials, with an

antitumor response seen in 30-59% of metastatic BC patients,

especially in HER2-positive BC patients (84). This provides a

strong rationale for further studies involving unlimited

combinations of bi- or tri-specific antibodies in the therapeutic

strategies against BC. Consecutively, new phase 1 and 2 clinical

trials evaluate the efficacy of bi- or tri-specific antibodies in locally

advanced or metastatic BC patients, through for example HER2/

CD3 bispecific target (NCT03448042), NK cell/T-cell/HER2 tri-

specific target (NCT04143711), HER2/PD-1 bi-specific target

(NCT04162327), or two non-overlapping domains of HER2
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target (NCT04224272). A multitude of other bispecific antibodies

are designed to simultaneously target molecules on the tumor cells

and/or the TME, such as different immunosuppressive pathways

(85) or cell-cell adhesion molecules overexpressed on BC tumor

cells (86).
Therapeutic peptide and protein-
based cancer vaccines

In the age of cancer immunotherapy we see a renewed interest in

harnessing cancer-targeting vaccines for therapeutic purposes. Such

vaccines can be preventive or therapeutic. Several preventive

vaccinations are FDA-approved, such as HPV-related genital/head

and neck cancers, and HBV-related hepatocellular carcinoma.

Among the FDA-approved therapeutic cancer vaccines today are

the Bacillus Calmette-Guérin (BCG) for early-stage bladder cancer

and Sipuleucel-T (Provenge) for the treatment of metastatic castrate-

resistant prostate cancer. No vaccine has been approved for clinical

use in BC to date. However, a rising interest for the development of

peptide vaccines has been seen in recent years. For example, the most
FIGURE 4

Adoptive cellular therapy.
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studied cancer vaccine which has been successful to date is the E75

HER2 peptide vaccine, also known as Nelipepimut-S when combined

with Granulocyte-Macrophage Colony-Stimulating Factor (GM-

CSF). E75 is a small peptide derived from the HER2 receptor

which is expected to bind HLA molecules and therefore activate

cytotoxic effector T cells (Figure 6). This vaccine demonstrated in

high-risk HLA-A2 BC patients a recurrence rates of 5.6% in

vaccinated patients compared to 14.2% in control unvaccinated

participants at 20 months follow-up (87). However, the observed

difference could not be repeated in later analyses, possibly due to a

lack of immune re-boost. Alternatively, one could speculate that the

vaccine could be more efficient with trastuzumab or with an

associated myeloid-compartment targeting strategy. Consequently,

a phase 1/2 clinical trial assessed the administration of nelipepimut-S

and GM-CSF in high risk BC patients in the adjuvant setting, with

booster inoculations every 6 months until trial completion at 5 years.

This trial demonstrated prevention of disease recurrence at 94.6% in

optimally vaccinated patients versus 80.2% in the control group, with

minimal toxicities (88). Unfortunately, the phase 3 study was

discontinued due to futility (89). However, the addition of

trastuzumab to nelipepimut-S and GM-CSF has shown a DFS of

92.6% compared with 71.9% for trastuzumab and GM-CSF group in

a phase 2b clinical trial in patients with TNBC (90), with no

additional overall or cardiac toxicity compared with trastuzumab

alone. Together, this suggests a synergy between trastuzumab and the

HER2 peptide vaccine and highlights the importance of selecting the

most relevant arms when designing a clinical trial. In addition, it

highlights the fact that most BC patients are defined as HER2-

negative tumors following fluorescence in situ hybridization (FISH)

amplification methods, though they display some HER2 expression

by immunohistochemistry (IHC) and therefore might respond to
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anti-HER2 therapies in some combination therapies. In HER2-

positive BC patients, a possible synergistic immunologic effect of

nelipepimut-S and trastuzumab is currently being investigated

(NCT02297698). A meta-analysis of randomized clinical trials

suggested significant benefits to vaccination over control, though

the high heterogeneity of the patients treated in the involved trials led

to unclear final results (91). Moreover, the trials generally show low

toxicity of therapeutic vaccination. Vaccination thus remains an

attractive strategy that seems to promote both effector immune

response and protective memory immunity potentially controlling

tumor relapse. Preventive BC vaccines are therefore also under

investigation in patients in remission to prevent or delay relapse

(NCT02780401)(NCT03384914). Additional HER2-derived peptide

cancer vaccines have demonstrated beneficial impacts on BC

antitumor immunity and clinical outcome, such as GP2 and AE37

(92), folate receptora peptide vaccine (93) (NCT03012100), sialyl-Tn

(sTn) conjugated to keyhole limpet hemocyanin (KLH) (94), and

oxidized mannan-MUC-1 vaccine (95). STn-KLH vaccine (an

epitope found among others on MUC1 that activates estrogen

receptor-a function), given concurrently with endocrine therapy,

offered a robust antibody response to the vaccine and an OS

advantage to metastatic BC patients in a retrospective blinded

review involving 1028 women (96). This further justifies

prospective randomized trials combining anti-MUC1 vaccine with

endocrine therapies. Unlike peptide-based cancer vaccines, protein-

based cancer vaccines have not been explored to the same extent up

till now. However, clinical studies have suggested safety,

immunogenicity, long-term survival and a few high grade adverse

events of protein-based cancer vaccines in patients with HER2-

overexpressing BC refractory to trastuzumab (97). They are under

clinical investigation in BC patients undergoing neoadjuvant
FIGURE 5

Specific elimination of tumor cells by bispecific antibody.
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endocrine therapy (NCT02204098) and in combination with ICI

(NCT03632941). Thanks to the next-generation sequencing of tumor

mutations and epitope-prediction strategies, new patient-specific

neoantigen-based cancer vaccine will probably allow inducing

highly specific antitumor immune responses (NCT02316457).
Autologous tumor cells

Personalized vaccines targeting patient-specific mutated neo-

antigens, through autologous tumor cells, alone or pulsed on

dendritic cells, are new potential strategies (98). Autologous

tumor cell-based cancer vaccines, obtained from tumor cell

isolation, may overcome the difficulties of selection of an

appropriate tumor-associated antigen. These tumor cells harbor a

complete and individualized repertoire of tumor-associated

antigens, therefore potentially triggering a polyclonal T-cell

response against various tumor cells (99) (Figure 7). Several

translational and clinical trials undergone in BC patients have

suggested that autologous tumor cell-based vaccines may be

effective and safe, even among patients with depressed immunity

(100). BC cell lines can also be used and have shown the induction

of a humoral and T cell-mediated immune response alone or in

combination with low-dose chemotherapy or costimulatory

molecules, although the clinical results showed limited success.

This is possibly because the cell lines do not express the antigen

repertoire of the tumor because of inter- and intra-tumoral

heterogeneity among cancer patients (101). This obstacle may be

overcome by an autologous tumor cell-based vaccine, which may

also minimize tumor immune escape through antigen loss observed

in clinical trials (102). In this line, autologous BC tumor cells

harvested from stage II-III and metastatic BC patients, irradiated

and reinfused, led to encouraging results (103). Vaccination using

irradiated, genetically modified GM-CSF-secreting tumor cells has
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shown to induce an enhanced antitumor immunity in a phase 1/2

clinical trial alone or in association with chemotherapy in metastatic

BC patients (104). In an additional clinical trial, an irradiated BC

cell line, endowed with antigen-presenting cell activity and in

association with interferon-a, showed in heavily pretreated

advanced BC patients an objective tumor regression in parallel

with a decrease in circulating cancer-associated cells, with no

serious adverse events (105). Unfortunately, clinical data about

autologous tumor vaccination in BC is still limited to date,

despite its promising antitumor immune potential.
B cell-based vaccines

Trastuzumab’s success led to enthusiasm for B cell-based

vaccines, which induce an endogenous active and specific

humoral B cell-immune response (antibodies with antitumor

activity) from the patient’s own B cells. The antibodies secreted in

the patients are similar to those of the drug itself, and may offer a

promising alternative to antibody administration. Indeed,

trastuzumab antibody yield seems to be a major challenge for

large-scale production. Trastuzumab is usually produced in

Chinese Hamster Ovary Cells in incubators of 80 up to 12 000

liters, which makes a year of treatment per person very expensive.

HER-2 B-cell peptide vaccine already demonstrated a robust

production of anti-HER2 antibodies in patients with advanced or

metastatic HER2-positive cancer of the stomach or the

gastroesophageal junction. Besides, there is a correlation between

the levels of anti-HER2 antibodies and the clinical response to

therapy. In addition, the early data indicated a benefit in OS (hazard

ratio of 0.418) with no added toxicity, in association with standard-

of-care chemotherapy, compared to chemotherapy alone (106). The

combination of two peptide B-cell epitope vaccines, representing

trastuzumab and pertuzumab binding sites, showed safety and
FIGURE 6

HER2-positive breast cancer vaccine.
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antitumor activity performed in patients with advanced solid

tumors including BC (107). Other clinical trials are ongoing

(NCT01376505). The next generation of clinical studies will have

to involve the combination of vaccines with ICI, since preclinical

data suggest synergistic mechanisms of action. Indeed, IFNg
secreted by cytotoxic antitumor T cells upregulates PD-1/PD-L1

axis-mediated immune suppression. The addition of ICI to vaccine

administration may block the induced immunosuppressive

feedback and allow the induction of robust antitumor

immunity (108).
Dendritic cell-based vaccines and
TLR agonists

Whole-cell dendritic cell (DC) vaccines are tumor-specific DC

infusion, mainly isolated from patients’ peripheral blood monocytic

cells, exogenously matured and expanded using various cytokines,
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and loaded with tumor lysate or antigens (Figure 8). This approach

has shown therapeutic potential with limited toxicities and is

extensively investigated in clinical trials. For example, DC loaded

with tumor antigens, in association with chemotherapy, have been

shown to significantly increase PFS and OS in metastatic BC

patients compared to chemotherapy alone over a 10-year follow-

up (109). Another clinical study showed a prolonged PFS from 31%

to 76.9% with DC vaccine in ER/PR double-negative stage II/III BC

patients (110). In addition, the DC vaccine added to neoadjuvant

chemotherapy increased the pCR rate to 28.9% compared to 9.09%

in the control group with neoadjuvant chemotherapy alone (111).

Remarkably, these results were observed in the PD-L1-negative

population, and may probably be explained by a poorly

immunosuppressed TME where the vaccine can trigger an

appropriate antitumor activity. This supports again the hypothesis

that the combination of ICI to cancer vaccine might provide a

synergistic antitumor activity. Lapuleucel-T, consisting of an

adoptive transfer of autologous antigen-presenting cells activated

in vitro with a recombinant fusion protein comprising HER-2
FIGURE 7

Autologous tumor cell vaccine.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1287824
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Alaluf et al. 10.3389/fimmu.2024.1287824
sequences, demonstrated safety and significant antitumor immune

response in patients with HER-2-overexpressing metastatic BC,

associated with clinical response or disease stabilization in some

patients (112). Another example is the vaccination with p53

peptide-pulsed DCs, which showed disease stabilization of

advanced BC patients, and a correlation between p53 expression

of tumor cells and the induction of a p53-specific T cell response

(113). Other clinical trials are currently investigating DC vaccine in

BC patients, such as HER2-pulsed DC vaccine (NCT02063724) an

multiepitope DC vaccine (NCT00266110), and are also investigated

in a neoadjuvant setting (NCT02018458)(NCT02061423)

(NCT03387553).

Human DC cells express Toll-Like receptors (TLRs) which play

a key role in recognizing signals from the microenvironment and

adapting accordingly. The DCs can be targeted and activated

through TLR agonists which have shown promise in preclinical

and clinical cancer studies, enhancing antitumor T-cell response.

Several clinical trials are currently evaluating TLR agonists. For

example, topical TLR-7 agonist imiquimod, in association with nab-

paclitaxel, has shown an immune-mediated disease regression in

treatment-refractory BC chest wall metastases in phase 2 clinical

trial (114). Systemic TLR7 agonists are also under development to

activate the antitumor immune response in patients with advanced

cancer (115). Therapeutic cancer vaccination using TLR3 agonists,

such as PolyICLC, are also currently under investigation in patients

with advanced cancer including BC (NCT02643303). Systemic DC

expansion is also being tested in patients with cancers including

metastatic BC, through vaccination with polyICLC in association

with Flt3L (NCT03789097).
DNA/mRNA-based cancer vaccines

The favorable clinical experience observed with COVID-19

vaccine may help facilitate research and development in the field

of DNA/mRNA-based cancer vaccines. These vaccines are mainly

viral replicon particles, or completely synthetic lipid nanoparticles,

and contain the genetic information coding for tumor-specific
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antigens or tumor-associated antigens. Upon administration, the

DNA is transcribed into mRNA, which is then translated to

synthesize peptides and proteins within the ribosomes. This leads

to the presentation of the peptides onto HLA, ultimately activating

highly specific cytotoxic and memory T cells against tumor, possibly

for a longer period of time compared to peptide or protein-based

cancer vaccines. A phase 1 clinical trial investigating a naked

plasmid DNA vaccine in metastatic BC patients is currently

ongoing (NCT02204098) and preliminary evidence suggested an

increased specific CD8+ T-cell proliferation and cytotoxicity along

with an improved PFS rate (116). Another phase 1 clinical trial of 66

BC patients with advanced HER2-positive disease investigated the

administration of a plasmid DNA coding for HER2 molecule,

associated with GM-CSF as an adjuvant, for 3 immunizations.

This study demonstrated the induction of an anti-HER2

immunity in most patients, persisting after the end of the

vaccinations, and safety with 10-year postvaccine toxicity

assessments (117). Importantly, the authors underscore the fact

that high anti-HER2 immunity is associated with favorable clinical

outcomes after trastuzumab therapy. In line with these results, a

randomized phase 2 trial is currently in progress (117). Moreover,

in TNBC patients with residual disease after neoadjuvant

chemotherapy, another phase 1 clinical trial has indicated that

DNA vaccine induced neoantigen-specific immune response in

88.8% of the patients along with a PFD of 87.5% in the

vaccinated patients, compared to 49% in historical controls (118).

Adverse events were mainly injection site reactions and other

limited toxicities. The administration of a mRNA-based vaccine

encoding a portion of HER2 (VRP HER2), with or without an

additional anti-HER2 targeted therapy, also demonstrated stable

diseases and partial response in a phase 1 clinical trial with

advanced HER2-positive BC patients (119). In this study, PFS

correlated with perforin expression by memory T cells. Other

clinical trials investigating DNA/mRNA-based vaccine

immunotherapies are ongoing, for example in advanced and

metastatic BC patients (NCT02157051), with concurrent ICI

(NCT03632941), or in non-metastatic, node-positive BC patients

who are in remission (NCT02780401).
FIGURE 8

Dendritic cell vaccine therapy.
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ℽd T cells

In contrast to conventional ab T cells, ℽd T cells are a distinct

little subset of T cells, which typically recognize and kill malignant

cells rapidly and independently of HLA restriction. This highlights

the antitumor impact that ℽd T cells may play in the next

generations of cancer immunotherapies, for example through

adoptive transfers of allogeneic cells from healthy donors rather

than autologous ones. In addition, ℽd T cells contribute also

indirectly to the antitumor immune response by communicating

with other tumor-infiltrating immune cells (120). Vℽ9Vd2 T-cell

therapy has demonstrated safety and higher survival of late-stage

lung or liver cancer patients (121). In BC, although ℽd T cells have

been suggested to display a degree of functional plasticity with

possible opposing effects on the growth of breast tumors (122), the

antitumor potential of these cells makes them an encouraging

immunotherapeutic tool to exploit as well. Indeed, ℽd T cells

were correlated with an improved pCR rate following

neoadjuvant therapy, and an improved DFS and OS (11). In

addition, the antitumor activity demonstrated by the use of

bisphosphonates in some BC clinical trials may be at least partly

due to ℽd T cell activation (123). Furthermore, BC-infiltrating ℽd T
cells have been suggested to be involved in the efficacy of

trastuzumab, through a mechanism of ADCC (124). ℽd T cells

have also been associated with remission in TNBC patients (125),

although conflicting observations have been reported regarding a

potential suppressive function of ℽd T cells on ab T cells (126).

For example, a phase 1 clinical trial was conducted in which the

bisphosphonate zoledronate, a Vℽ9Vd2 T-cell agonist, plus low-

dose interleukin-2 (IL-2), were administered to terminal advanced

metastatic BC patients. The treatment was well tolerated by all

patients. In addition, the patients who showed a robust peripheral

population of Vℽ9Vd2 T cells had declining CA15.3 levels and

displayed partial remission and stable disease, compared to patients

who failed to sustain Vℽ9Vd2 T cells (127). Infusions and other

agonists of Vℽ9Vd2 T cells are investigated in clinical trials (128)

(NCT03183206)(NCT02781805) as monotherapy or in

combination with an ICI (NCT04243499). Furthermore, we

expect that adoptive transfers of engineered T cells expressing

antitumor ℽd TCR will also be investigated in BC patients in the

upcoming years (129). Although most clinical results have not

shown encouraging results thus far, these attractive cells must be

better understood and will then certainly show us their hidden

secrets, hopefully to the advantage of BC immunotherapy.
Tumor-associated macrophages

Macrophages are among the most abundant immune cells

within the TME, where they play a key role in the antitumor

immune response through pro-inflammatory macrophage

activation, tumor cell phagocytosis and antigen presentation.

Clinically approved cancer therapies such as trastuzumab exert at

least partially their effects through these mechanisms (130), while

pre-clinical studies attempt to optimize these mechanisms (131).

Experimental mouse models and clinical studies demonstrated that
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macrophages are educated by the TME and generally adopt

protumoral and immunosuppressive functions, in contrast to

their tumoricidal role following in vitro activation (132). A meta-

analysis of BC patients demonstrated that Tumor-Associated

Macrophages (TAMs) were significantly correlated with an

aggressive phenotype, metastasis and poor clinical prognosis

(133), lack of pCR, resistance to chemotherapy (134) and

tamoxifen (135). Furthermore, the protumoral effect of TAMs is

often further reinforced after cancer treatments, through

macrophage recruitment and polarization, limiting the efficacy of

chemotherapy and radiotherapy and promoting early tumor

recurrence (136). Clinical trials investigating TAMs-targeting

strategies (Figure 9) suggest potential impact in the treatment

of cancer.

Blocking SIRPa on the surface of TAMs and DCs, which blocks

its interaction with CD47 on the surface of tumor cells and their

subsequent “don’t eat me” signal, restores the phagocytosis of

tumor cells. Clinical trials suggested safety and therapeutic

potential (137) in several cancer patients. Furthermore, the

concomitant blockade of the CD47/SIRPa axis with tumor-

targeting monoclonal antibodies such as trastuzumab may

provide a synergistic phagocytic antitumor activity. In this way,

the preliminary antitumor activity of this association has been

demonstrated in rituximab-refractory non-Hodgkin lymphoma

patients and in solid tumors (138, 139). In BC, no clinical trial

has assessed such a combination up to now. However, CD47 gene

expression has been found to limit the therapeutic activity of

trastuzumab in HER2-positive BC patients (15). Other “don’t eat

me” anti-phagocytic signals include PD-L1, or recently highlighted

CD24, which has been recently suggested as a new therapeutic

target for BC immunotherapy (140). Other potential myeloid

immunotherapeutic strategies may be the blockade of myeloid cell

recruitment to the TME, differentiation into TAMs or proliferation

within the TME. For example, CCR2-CCL2 axis contributes to

metastatic BC progression and early relapse through mechanisms

such as myeloid cell recruitment or TAM polarization (141).

Another example is the colony-stimulating factor 1 (CSF1)/

colony-stimulating factor 1 receptor (CSF-1R) axis, which is a key

regulator of myeloid cell differentiation and chemotaxis, and which

has been associated with BC progression and mortality (142).

However, several treatments targeting these signaling pathways

have been investigated in early phase clinical trials and have had

disappointing results in the clinic to date, in part due to

compensatory feedback mechanisms with no long-term benefit in

solid tumors or metastatic cancers. Depletion of TAM could also be

a valuable approach to facilitate the antitumor immune response in

BC. For example, trabectidin (Yondelis) is effective at killing TAMs

in addition to cancer cells (143). Therefore, its antitumor activity

should be investigated in some BC subtypes with a high proportion

of TAM, such as HR-positive BC (11), where TAM have been

associated with worse survival (144). Remarkably, trabectidin has

already shown a manageable safety profile and up to 56% of stable

disease in several clinical trials with advanced or metastatic BC

patients (145). In heavily pretreated metastatic HER2-positive or

TNBC patients, partial response occurred in 12% of HER2-positive

BC patients (146). In addition, zoledronic acid, which is commonly
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used in bone metastatic patients, showed extra-squeletal beneficial

effects such as the prevention of distant relapse in BC patients after

menopause (147), likely through TAMs depletion (148). One of the

limitations of such myeloid immunotherapeutic strategies is the

targeting of macrophages as a whole population, without taking into

consideration the functional properties of subpopulations of

macrophages. Indeed, some macrophage subtypes have for

example been correlated with less advanced stages, less aggressive

tumors (149) and better survival (150) in BC patients, while other

subtypes have been suggested to be an independent prognostic

marker for longer DFS and OS (151). In this context, another

strategy aims at targeting a specific so-called “M2-like”

subpopulation of macrophages or switching TAM polarization

toward an antitumor phenotype, rather than depleting

macrophages indiscriminately (152). Modulators of macrophage

phenotype are tested in clinical trials in patients with solid tumors

including BC patients, in combination with ICI (NCT02637531).
Radiotherapeutics

Radiotherapeutics is based on a theranostic strategy that

combines a whole-body non-invasive mapping of the cancer

disease (through a targeted radioactive drug) and the delivery of a

targeted therapy to the cancer cells (through a second radioactive

drug). Although evidence is still limited, radiotherapeutics is

emerging as a superior approach when compared to usual 18F-

FDG PET-CT approach in detecting primary and metastatic BC

disease. In addition, radiotherapeutics may help select patients who

will benefit from therapy, and can become a new efficient targeted
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therapeutic option in metastatic setting. For example, the

radiolabelling of trastuzumab with zirconium-89 or lutetium-177

has been suggested as specific radioimmunotherapy for HER2-

positive BC patients (153, 154). Clinical trials assessing Her2

expression detection and anti-HER2 radionuclide therapy are

cu r r en t l y ongo ing in BC pa t i en t s (NCT04674722 )

(NCT04467515). Prostate-specific membrane antigen (PSMA) is

specifically expressed in tumor-associated vasculature of solid

tumors such as BC, suggesting that it may be targeted as a new

anti-angiogenic therapy. Progressive TNBC patients are currently

being recruited to assess the concordance between lesions observed

on Ga-PSMA PET-CT and 18F-FDG PET-CT and evaluate the

feasibility of lutetium-177 PSMA therapy (NCT06059469). Another

example is the Fibroblast Activation Protein (FAP)-targeted

radionuclide therapy such as lutetium-177-FAPi which targets

FAP-expressing Cancer-Associated Fibroblasts (CAFs), stroma

cells from the TME endowed mainly with protumoral and

immunosuppressive properties. Several studies suggested

feasibility, safety, detection of metastases in specific areas (such as

in the brain), and reduction of pain in metastatic BC (155, 156).

Many other therapeutic isotopes and immunosuppressive targets

within the TME might provide new radiotherapeutic and palliative

tools for metastatic BC patients.
Oncolytic viruses

Oncolytic viruses have been produced within the last decade.

They are engineered to (or they preferentially) target tumor cells.

Then, viruses replicate specifically in tumor cells, and stimulate
FIGURE 9

Antitumor strategies targeting tumor-associated macrophages.
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antitumor immunity, ultimately killing tumor cells. This is mediated

by the release of damage-associated molecular patterns and

pathogen-associated molecular patterns, along with tumor-specific

or tumor-associated antigens presentation. Furthermore, the

oncolytic viruses induce immunogenic tumor cell death.

Talimogene laherparepvec, a genetically modified herpes simplex

oncolytic virus, has been approved by the FDA for the local

treatment of metastatic melanoma with unresectable cutaneous

lesions. In BC, many preclinical studies suggest antitumor effects of

oncolytic virotherapy and its synergistic effects with chemotherapy.

The oncolytic herpes virus HF10 has been injected in BC patients

with recurrent BC and suggested higher tumor-infiltrating CD8+ T

cells, although the number of patients involved in the study was limited

(157). Given the limited efficacy observed in single virotherapy to date,

combination drug approaches including virotherapy are being further

evaluated in BC patients. For example, a phase 2 randomized study of

paclitaxel alone or in combination with oncolytic reovirus

demonstrated, in 74 previously treated metastatic BC patients, a

significantly longer OS when the combination treatment was

administered (158). In another study, SD were observed in

metastatic TNBC patients treated by virotherapy associated with low-

dose cyclophosphamide (159). Oncolytic virotherapy is currently being

investigated in advanced andmetastatic BC patients in association with

chemotherapy (NCT01656538)(NCT02630368), chemotherapy and

ICI (NCT02630368)(NCT02977156) (NCT04215146). The sequence

of the therapies over time might also be important in the efficacy of

combinatorial therapeutic strategies. For example, preliminary

oncolytic virotherapy has been suggested to sensitize BC to following

chemo- or immunotherapy, since it induces a preexisting non-

exhausted antitumor immunity (160). In this way, clinical trials are

now recruiting BC patients for oncolytic virotherapy in association

with neoadjuvant chemotherapy (NCT02779855)(NCT03564782), or

with radiation therapy followed by pembrolizumab (NCT03004183).

In addition, new immunotherapeutic strategies, such as oncolytic

virotherapy coding for localized trastuzumab monoclonal antibody

production (161), may provide synergistic antitumor effects. Non-

replicating virus strategies have also been investigated. One strategy

consists of the delivery of a gene that converts a drug into a cytotoxic

drug. For example, a phase 1 trial used a local injection of a retrovirus

encoding the human cytochrome P450 gene in BC metastatic

cutaneous nodules in association with oral administration of the

prodrug cyclophosphamide. The trial suggested safety and antitumor

efficacy (162).
Cytokine-based immunotherapy

Cytokines are major and pleiotropic regulators of the immune

response. In the era of cancer immunotherapy, a renewed interest in

the properties of cytokines has led to an increased number of

clinical trials assessing their safety and efficacy. In BC, since

cytokine-based immunotherapy has shown limited efficacy up to

now, cytokines in association with other immunotherapies are

currently being investigated to increase their efficacy. For

example, it has been hypothesized that interferon-a (IFN-a),
which upregulates tumor antigen presentation on tumor cells,
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might synergize with a cancer vaccine. Therefore, IFN-a has been

administered in association with the CEA vaccine in thirty-three

CEA-expressing cancer patients including BC. The administration

of IFN-a induced a significantly increased OS compared to the

vaccine alone (163). Interferon-g (IFN-g) is another cytokine which
plays a crucial role in tumor cell cytotoxicity, and has also been

suggested to be used as an adjuvant for immunotherapy. Hence,

clinical trials are for example currently studying the association of

IFN-g with paclitaxel, trastuzumab and pertuzumab in HER-2-

positive BC patients (NCT03112590), or with ICI in TNBC

(NCT02614456). TGF-b is a cytokine which contributes to the

immune suppression of the TME and has been associated with

resistance to cancer immunotherapy. Its blockade during

radiotherapy in metastatic BC patients has shown a higher

median OS (164). Other major pro-inflammatory cytokines, such

as IL-12 or IL-15, stimulate among others the production of IFN-g
from CD8+ T cells and induce the differentiation of CD4+ T cells

into Th1. IL-12 or IFNg, in combination with ICI and

chemotherapy, may synergize efficiently. Indeed, these cytokines

play key roles in the crosstalk between myeloid and lymphoid cells

and in cellular cytotoxicity. This is currently under clinical

investigation (NCT03567720)(NCT03112590). However, the

severe IL-12-mediated toxicity restricted its use in clinical trials.

IL-15 is currently investigated in association with ICI in patients

with refractory cancers such as BC (NCT03388632). Finally, IL-2

plays a crucial role by stimulating, among others, the proliferation

and the cytotoxicity of CD8+ T cells, but also the proliferation of

regulatory T cells, which are major suppressors of the antitumor

immune response. To overcome these limitations, engineered IL-2

and new inhibitors of regulatory T cell activity are under

investigation. ICI have been suggested to inhibit regulatory T cell

activity, and are therefore investigated in association with IL-2 in

advanced cancers including BC (NCT05086692). The properties of

cytokines make them a promising additional tool in cancer

immunotherapy and will probably help facilitate the antitumor

immune response, once they will be better understood

and exploited.
Immunometabolic targets

Accumulating evidence indicate a metabolic competition for

consumption of glucose, amino acids and fatty acids between the

tumor cells and the tumor-infiltrating immune cells. These

molecules are essential for immune cell survival and activity,

modulating in this way the antitumor immune response. This led

to the concept of metabolic reprogramming. For example, enzymes

such as arginase-1 (Arg-1) or indoleamine 2,3-dioxygenase (IDO-

1), which catabolize arginine and tryptophan respectively, seem to

be mainly involved in immunosuppressive pathways. Therefore,

they have been targeted in BC preclinical models, demonstrating

synergistic antitumor effects in association with chemotherapy (165,

166) and ICI (167). There are still a few immunometabolic targets

investigated in BC clinical trials to date. A randomized clinical trial

with HER2-negative metastatic BC patients failed to show improved

PFS when IDO-1 inhibitor was added to chemotherapy (168). In
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contrast, IDO-1 inhibitor in association with p53-DC vaccine has

been shown to increase the IFN ℽ-producing CD8 and the IL-2-

producing CD4 T cell response in phase 1/2 study of metastatic BC

patients, although it did not increase the objective response rate

(169). Arginase inhibition, alone or in combination with ICI, is

currently being evaluated in phase 1 study in advanced or metastatic

cancer patients (NCT02903914). Accumulating evidence suggests

that metabolic changes in adipose tissue are also associated with

immunological dysregulations in BC (170). Fasting, or anti-

hyperglycemic agents such as metformin, may modulate the

antitumor immune response, improve the response to chemo-

and immunotherapies, and reduce side effects (171). While fasting

has been suggested to reduce the risk of BC recurrence (172), fasting

(NCT05023967) and other metabol ic health patterns

(NCT05432856) are currently being clinically investigated. In

addition, in most preclinical studies, hypoxia within the TME,

and its associated VEGF induction, also contributes to tumor

immune escape mechanisms and tumor progression. Moreover,

hypoxia generally increases along with tumor progression, further

promoting its deleterious effects (173). Furthermore, hypoxia

increases extracellular levels of adenosine in the TME. Adenosine

binds to its receptors on immune cells and further contributes to the

establishment of an immunosuppressive TME (174). Rapidly

proliferating malignant cells generate also high amount of lactate,

a by-product of tumoral aerobic glycolysis. Lactate contributes to

acidosis, stimulates angiogenesis, acts as cancer cell metabolic fuel,

exerts deleterious effects on tumor-infiltrating immune cells and has

been suggested to predict response to immunotherapy (175).

Unfortunately, hypoxia-inducible factor 1-a (HIF-1a) and lactate

metabolism inhibitors have mainly been investigated at a basic

research level up to now or have only occasionally been clinically

assessed. Adenosine has emerged as a key negative regulator of

antitumor immunity through the CD39-CD73-A2AR pathway

(176). Several inhibitors of this pathway are currently being

evaluated in early phase clinical trials alone or in combination

with ICI or chemotherapy in patients with advanced solid tumors

including BC patients (NCT02740985)(NCT02503774)

(NCT02754141), with trastuzumab (NCT05143970) or in

combination with radiotherapy (NCT03875573). Nevertheless,

metabolic reprogramming is emerging and require further

preclinical and clinical investigations before leading to safe and

efficient immunotherapeutic adjuvants for BC immunotherapies.
Discussion

It is well established that the TME plays a crucial role in cancer

outcomes and response to therapy. Indeed, it provides a supportive

but also active protumoral and immunosuppressive framework for

tumor progression and dissemination. On the other hand, evidence

demonstrating how to harness the immune system in favor of

strong antitumor immunity is overflowing. To improve research

and development in BC immunotherapy, clinical trials must be

critically designed, considering both molecular and cellular

mechanisms at play and its clinical pitfalls.
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The next generation of cancer immunotherapy will probably

involve combination immunotherapies. Indeed, the current

approach of cancer immunotherapy mainly focuses on the T-cell

compartment, allowing one to speculate that additional

complementary immunotherapeutic strategies targeting different

immune compartments could lead to synergistic therapeutic

approaches. More specifically, numerous clinical trials assess

immunotherapeutic combinations that mechanistically regulate

redundant pathways (such as the combination of two different ICI

for example). Instead, targeting different complementary pathways

could trigger a stronger antitumor immune response. Specifically, the

combination of myeloid and lymphoid ‘‘immune checkpoints’’ should

be investigated further. Lymphoid immune checkpoints on T cells are

widely studied. In contrast, myeloid cells (such as macrophages and

dendritic cells) and their potential associated therapeutic targets are

clinically less well-known. However, the myeloid cells are still key

modulators of the adaptive immune system. Indeed, they can

cooperate with TILs to develop a strong and long-lasting antitumor

immune response together. Unfortunately, the tumor modulates its

TME. Instead of promoting an inflammatory response, many

preclinical studies demonstrated that most tumor-associated

myeloid cells strongly suppress TILs. Therefore, there has been an

explosive growth of clinical trials targeting tumor-infiltrating myeloid

cells worldwide, most of them still at an early phase (177, 178).

However, targeting only the lymphoid or the myeloid compartment of

the TMEmay not adequately restore the antitumor immune response.

We believe that restoring a positive crosstalk between tumor-

infiltrating myeloid and lymphoid immune cells may optimize

BC immunotherapy.

Distinct macrophages and dendritic cells have been suggested to

predict the response to ICI immunotherapy in human BC (179,

180) and other solid tumors (181, 182). An antitumor vaccine has

demonstrated long-term tumor control in a HER2-positive BC

model but only when combined with anti-PD-1 treatment. This

has led to the investigation of this therapeutic combination in a

phase 2 clinical trial (NCT03632941). Furthermore, a first-in-

human phase 1 trial supports further clinical investigation of

evorpacept, a protein that promotes tumor phagocytosis by

dendritic cells and macrophages, combined with pembrolizumab,

in patients with solid tumors (139). Lastly, eganelisib, a potential

first-in-class tumor macrophage-targeting agent (NCT02637531), is

already showing PFS benefit in metastatic TNBC patients in

addition to atezolizumab and nab-paclitaxel in an ongoing phase

2 MARIO-3 trial (NCT03961698).

Moreover, compensatory mechanisms are very often at play in

the TME, further suggesting the need for combination

immunotherapies. For example, several studies suggested an

increased immunosuppressive microenvironment after CAR T cell

therapy (102). CAR T-cells infusion without targeting the TME in

parallel, which suppresses TILs, might seem senseless. New

complementary strategies aiming at improving T-cell trafficking

into/proliferation within the TME, such as myeloid cell depletion,

may improve CAR T-cell efficacy. In addition, tumor PD-L1

upregulation occurs in response to IFNg release by effector immune

cells, leading to subsequent immune suppression, a process known as
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adaptive immune resistance, where tumor cells protect themselves

from immune attack (108). Therefore, the addition of ICI to other

types of immunotherapies, such as cancer vaccines for example, may

restrain induced immunosuppressive feedback. Moreover,

combinations of conventional therapies and immunotherapies

should be investigated. Indeed, although radiotherapy and

chemotherapy can result in immunogenic cell death (183), they can

also limit their own therapeutic effects. For example, conventional

cytotoxic drugs and vascular-targeting agents induce tumor cells to

produce macrophage recruitment factors (136), while macrophages

can also be recruited and polarized during radiotherapy treatment

(184). This promotes tumor tissue repair and early tumor recurrence,

which might be thwarted by myeloid-targeting immunotherapeutic

strategies. Other myeloid and lymphoid-based treatment

combinations involving, in addition to an ICI, a CD40 agonist

(NCT03424005) or an antitumor vaccine (NCT03632941), may

synergize by activating dendritic cells. An additional rational

combination might be the concomitant blockade of the CD47/

SIRPa axis (or other anti-phagocytic signal blockade) with

trastuzumab, which might provide a synergistic phagocytic

antitumor activity. In accordance with this hypothesis, CD47 gene

expression has been found to limit the therapeutic activity of

trastuzumab in HER2-positive BC patients (15). In addition, some

treatments such as corticosteroids, mainly used for symptomatic

purposes in oncology, should be administered carefully, since their

impact on the antitumor immune response is still not well

understood (185). The sequence of immunotherapies over time

might also impact their efficacy. Indeed, the TME involves a

complex dynamic network of immune cells interacting with each

other, displaying changes in their activation state over time, and in

this way affecting tumor progression and response to therapy. This

concept is underestimated in trials evaluating heavily pretreated

metastatic BC patients and excluding earlier settings. Furthermore,

the dose and schedule of therapies play an important role in their

activities. For example, Gonadotropin-Releasing Hormone (GnRH)

agonists achieve castration because of continuous pituitary

stimulation in contrast to the physiologic pulsatile fashion. Another

example is cyclophosphamide, which has cytotoxic and

immunosuppressive effects at high dosage, but displays

immunostimulatory and antiangiogenic effects at a daily lower

dose. New trial designs involving metronomic chemotherapies in

association with ICI should be done in search of the optimal

antitumor activity (NCT03971045). In a near future, new

technologies such as machine learning will probably be a tool of an

inestimable value to help us better understand immune cell

subpopulation activities and interactions under therapies, and

suggest efficient combinations of therapies.

Predictive biomarkers of response to immunotherapy are sorely

lacking today and must be developed. Indeed, PD-1 and PD-L1

expression as biomarkers are not reliable enough, probably because

the response to therapy is much more complex than that of those sole

molecules. While TILs are considered in clinical practice as a promise

of good prognosis (186, 187) and response to therapy, they consist of

many subpopulations of lymphocytes exerting various and

sometimes opposite immune functions (188). For example,

cytotoxic CD8+ T cells and CD4+ Th1 T cells are associated with
Frontiers in Immunology 21
BC survival. On the other hand, potent immunosuppressive TILs

such as regulatory T cells are associated with poor BC clinical

outcome. As seen previously, different tumor-infiltrating myeloid

cells can also exert critical opposite functions around the tumor cells

and in metastatic niches. Based on the characterization of various

tumor-infiltrating immune cell subpopulations and their correlations

with clinical outcomes, a cytotoxic/regulatory immunogenic ratio

might be conceived and used as a new predictive biomarker of

response to therapy in future biopsies.

To conclude, immunotherapy using ICI has shown

unprecedented and long-term efficacy in the treatment of cancer

patients with various advanced solid tumors in the last decade, and is

currently used in many oncology treatments and clinical trials (189).

It has become one of the pillars of cancer treatment, but its success is

currently still the visible tip of the iceberg. Indeed, countless efforts

have been made to develop cancer immunotherapies and multiple

new promising therapies are likely to emerge. Meanwhile, many

challenges are still to be overcome, and the next decade will see the

fruitfulness of BC immunotherapy investigations, including

appropriate synergistic combinations with standards of care.
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