
Journal of Physics A:
Mathematical and Theoretical

     

PAPER • OPEN ACCESS

The BMS group in D = 6 spacetime dimensions
To cite this article: Oscar Fuentealba and Marc Henneaux 2024 J. Phys. A: Math. Theor. 57 135402

 

View the article online for updates and enhancements.

You may also like
Asymptotic symmetries and charges at
spatial infinity in general relativity
Kartik Prabhu and Ibrahim Shehzad

-

Asymptotically flat spacetimes with BMS3
symmetry
Geoffrey Compère and Adrien Fiorucci

-

Asymptotic structure of the Pauli–Fierz
theory in four spacetime dimensions
Oscar Fuentealba, Marc Henneaux,
Sucheta Majumdar et al.

-

This content was downloaded from IP address 164.15.1.2 on 14/04/2024 at 16:37

https://doi.org/10.1088/1751-8121/ad30ce
https://iopscience.iop.org/article/10.1088/1361-6382/ab954a
https://iopscience.iop.org/article/10.1088/1361-6382/ab954a
https://iopscience.iop.org/article/10.1088/1361-6382/aa8aad
https://iopscience.iop.org/article/10.1088/1361-6382/aa8aad
https://iopscience.iop.org/article/10.1088/1361-6382/abbe6e
https://iopscience.iop.org/article/10.1088/1361-6382/abbe6e


Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 57 (2024) 135402 (21pp) https://doi.org/10.1088/1751-8121/ad30ce

The BMS group in D=6 spacetime
dimensions

Oscar Fuentealba1,∗ and Marc Henneaux1,2

1 Université Libre de Bruxelles and International Solvay Institutes, ULB-Campus
Plaine CP231, B-1050 Brussels, Belgium
2 Collège de France, Université PSL, 11 place Marcelin Berthelot, 75005 Paris,
France

E-mail: oscar.fuentealba@ulb.be and marc.henneaux@ulb.be

Received 2 January 2024
Accepted for publication 6 March 2024
Published 21 March 2024

Abstract
The asymptotic structure of gravity inD= 6 spacetime dimensions is described
at spatial infinity in the asymptotically flat context throughHamiltonian (ADM)
methods. Special focus is given on the Bondi–Metzner–Sachs (BMS) super-
translation subgroup. It is known from previous studies that the BMS group
contains more supertranslations as one goes from D= 4 to D= 5. Indeed,
while the supertranslations are described by one single function of the angles
inD= 4, four such functions are neeeded in D= 5. We consider the case D= 6
with the aim of determining whether the number of supertranslations keeps
increasing with the dimension or remains equal to the number found in D= 5.
We show that even though there is apparent room for more supertranslations,
their number remains equal to theD= 5 value (four): the potentially new super-
translations turn out to define proper gauge transformations corresponding to
a redundancy in the description of the system. Critical in the analysis are the
boundary conditions chosen to yield a well-defined canonical formalism. Given
the computational (but not conceptual) complexity as one increases the dimen-
sion, we explicitly discuss the linearized theory and argue that asymptotically,
this analysis provides the correct picture. We conclude by considering higher
spacetime dimensions where we indicate that the number of physically relevant
supertranslations remains equal to four independently of the dimension ⩾5.
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Contribution to Stanley Deser memorial volume ‘Gravity, Strings and
Beyond’
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1. Introduction

Stanley Deser made remarkable contributions to the dynamical understanding of Einstein the-
ory of gravity [1] (see also [2, 3]). He also providedmajor insight on the role of surface integrals
at infinity (energy, angular momentum) in the Hamiltonian formulation [1]. The current paper
is an extension of the ideas developed in [1] to higher dimensions—another subject dear to
Stanley’s heart—and directly relies on his pioneering advances.

The asymptotic symmetry group of Einstein gravity in four spacetime dimensions is the
Bondi–Metzner–Sachs (BMS) group [4–6]. This was established first at null infinity in the late
1950s—early 1960s. It is only recently that the very same symmetry was shown to be present
at spatial infinity. This was achieved by insisting that a symmetry of a theory should be in par-
ticular a symmetry of the action (exactly and not just up to boundary terms at spatial infinity),
and by providing boundary conditions that yielded a consistent variational formulation (finite
action, invariance under at least the Poincaré group) without imposing gauge conditions that
would freeze ‘improper’ gauge symmetries [7, 8] (see [9] for the crucial concepts of ‘proper’
versus ‘improper’ gauge symmetries and [10] for a BMS invariant Hamiltonian formulation
with different asymptotic conditions). We compare in appendix A our approach to asymptotic
symmetries at spatial infinity with other approaches yieding symmetry groups different from
the BMS group.

Not only can one formulate boundary conditions at spatial infinity leading to the BMS
algebra as asymptotic symmetry algebra, but one can also make the explicit asymptotic integ-
ration of the equations along the lines pursued in [11–14] to make the connection with null
infinity at the ‘critical surfaces’. By so doing, one can prove that the boundary conditions of [7],
which implements parity-restrictions in a supertranslation-invariant manner on the initial data,
eliminate the potential leading logarithmic singularity that might otherwise appear (subleading
logarithmic terms will of course generically be unavoidable)3. In that analysis, the matching
conditions of [17, 18] are consequences of the parity conditions (up to a diffeomorphism)
imposed on the initial data [7]4.

The connection with null infinity has been used recently [20] to show the equivalence of
the supertranslation-invariant redefinitions of the angular momentum proposed at null infinity
[21–31] and spatial infinity [32]. In particular, which coefficients of the metric encode the
information about the memory effect in the asymptotic 1/r-expansion as one goes to infinity
along spacelike directions (and why this is physically meaningful) was also clarified in [20].

3 The existence of null infinity with given smoothness properties should be viewed as a dynamical question in
Einstein’s theory of gravity. With generic Cauchy data, logarithmic terms will generally develop at leading orders
at null infinity [15, 16].
4 This result derived in 2018 in [7] by Hamiltonian methods has been confirmed by different methods, see e.g. [19]
for a recent paper on the subject arriving at similar conclusions.
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The asymptotic structure of Einstein gravity in five spacetime dimensions was analysed
at spatial infinity in [33, 34], also along Hamiltonian lines. The main new feature was the
enlargement of the supertranslation subgroup: while it depends on one function of the angles
in 4 dimensions, it depends on four such functions in 5 dimensions. This is because parity con-
ditions do not need to be imposed to get a consistent Hamiltonian formulation and furthermore
subleading supertranslations become ‘improper’ and hence physically relevant. The generat-
ors of the subleading supertranslations are canonically conjugate to the generators of ordinary
supertranslations, permitting a supertranslation-invariant redefinition of the Lorentz generators
[35]. An interesting feature is that the Hamiltonian analysis in five spacetime dimensions at
spatial infinity is a direct conceptual extension of the four-dimensional one, while null infinity
seems to raise new subtleties.

The question then arises as to how this extends to higher dimensions, in particular, what
is the description of the relevant BMS group in D= 6 spacetime dimensions? Does it keep
increasing with the dimensions? Or do the supertranslations remain parametrized by four func-
tions of the angles as in 5 spacetime dimensions? This is the question explored in this paper.
We show that while more functions of the angles parametrize the asymptotic behaviour of the
fields at spatial infinity, only four are physically relevant, i.e. define improper gauge symmet-
ries with non-vanishing charges. The other functions of the angles appearing in the asymptotic
expansion correspond to proper gauge symmetries. So, once the proper gauge symmetries are
factored out, one gets physically relevant BMS supertranslations parametrized by four func-
tions of the angles, as in 5 spacetime dimensions.

Given the technical intricacies of the theory, which grow with the number of spacetime
dimensions, we consider the linearized (Pauli-Fierz) theory—which has been the starting point
ofmany decisiveworks of Stanley. As shown in [36] forD= 4, this theory keeps all the relevant
asymptotic symmetry features of the full theory. One can easily verify that this is also the case
in D= 5 and there is no reason to expect the pattern to be altered for higher D’s. The analysis
of the linearized theory sheds furthermore new light on the origin of the supertranslations:
the pure supertranslations originate from the improper gauge symmetries of the Pauli-Fierz
theory, while the standard translations originate from global symmetries of the Pauli-Fierz
theory, which become improper gauge symmetries upon ‘gauging’.

The linearized approach was also followed by the authors of [37] in the investigation of the
asymptotic properties of gravity in six and higher even spacetime dimensions at null infinity.
It was also argued there that linearization preserved the relevant asymptotic features.

Our paper is organized as follows. In section 2, we briefly present the theory: its action, the
gauge transformations and a preliminary form of the asymptotic conditions on the canonical
variables. We then show in section 3 that finiteness of the symplectic structure imposes con-
straints on the fields appearing in the asymptotic expansion. The same constraints are shown in
section 4 to arise also from the requirement of finiteness of the generators of gauge transform-
ations. The final form of the asymptotic conditions that takes into account all the restrictions
is given in section 5. The improper gauge transformations are discussed next in section 6 and,
taking into account the results of section 4, shown to depend on four functions of the angles
(minus the l= 0 spherical harmonics for two of them and the l= 1 harmonics for the other
two). The Poisson bracket algebra of the canonical generators is also displayed and import-
antly involves a non-trivial central extension. A concluding section (section 7) discusses the
generalization to higher dimensions and points out which supertranslations at spatial infin-
ity have been discussed at null infinity. Two appendices closes our paper. In appendix A we
briefly compare our approach to asymptotic symmetries with other approaches carried also at
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spatial infinity. In appendix B, we indicate how Poincaré invariance (with our set of boundary
conditions) is proved and discuss the algebra of the asymptotic symmetries.

2. Linearized gravity in 6 spacetime dimensions

2.1. Action and gauge symmetries

The Hamiltonian action of linearized gravity on Minkowski spacetime read

I=
ˆ
dt

[ˆ
d5x

(
πijḣij−E − nG − niGi

)
−B∞

]
, (2.1)

Here, the dynamical fields are the canonically conjugate pairs (πij,hij), while n and ni are the
Lagrange multipliers associated with the following constraints

G =
√
g
(
△h−∇i∇jhij

)
, (2.2)

Gi =−2∇jπij . (2.3)

The covariant derivatives are the flat space ones, i.e.∇i = ∂i in cartesian coordinates. The term
B∞ is a surface term at infinity that might be needed to supplement the bulk time generator´
d5x

(
E + nG+ niGi

)
. Its explicit form depends on the asymptotic behaviour of the Lagrange

multipliers and will be discussed below.
The constraints are first class and generate the infinitesimal gauge transformations

δϵhij =∇iϵj+∇jϵi , (2.4)

δϵπ
ij =

√
g
(
∇i∇jϵ− gij△ϵ

)
. (2.5)

Under which the Hamiltonian action (2.1) is invariant. The gauge transformations (2.4)
and (2.5) are just the standard diffeomorphisms linearized around the Minkowski background.
For that reason, they will also be called ‘(linearized) diffeomorphisms’. They are obtained by
taking the Poisson brackets of the dynamical variables with the integral

´
d5x

(
ϵG+ ϵiGi

)
+

Q[ϵ,ϵi], where Q[ϵ,ϵi] is a surface term at infinity which will also be given below, but which
does not contribute to the local variations (2.4) and (2.5) of the canonical variables.

Because (2.4) and (2.5) are the diffeomorphisms linearized around the Minkowski back-
ground, they vanish identically for the Minkowski isometries, in particular when ϵi = constant
and ϵ= constant.

The energy and momentum densities of the theory are given by

E =
1
√
g

(
πijπij−

π2

4

)
+
√
g

(
1
4
∇khij∇khij− 1

2
∇jh

ij∇khik+
1
4
∇ih∇ih

)
+
√
g∇l

(
−hij∇lhij− hil∇ih+

3
2
hlj∇ihij+

1
2
hij∇ihjl

)
+

1
2
hG , (2.6)

Pi = − 2∂j
(
πjkhik

)
+πjk∂ihjk , (2.7)

respectively.
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The action (2.1) is also invariant under Poincaré transformations (see appendix B), which
takes the Hamiltonian form

δξhij =
2ξ
√
g

(
πij−

1
4
gijπ

)
+Lξhij , (2.8)

δξπ
ij =

1
2
√
gξ

(
△hij+∇i∇jh− 2∇(i∇kh

j)k
)

+
1
2
√
g∇kξ

[
∇khij− 2∇(ihj)k+ gij

(
2∇lh

kl−∇kh
)]

+
√
g△ξ hij+

√
ggij∇k∇lξ h

kl− 2
√
g∇k∇(iξ hj)k

− 1
2
√
g
(
∇i∇jξ− gij△ξ

)
h− 1

2
gijξG+Lξπ

ij , (2.9)

where the spatial Lie derivatives of hij and πij read respectively as

Lξhij = 2hk(i∂j)ξ
k+ ξk∂khij , (2.10)

Lξπ
ij =−2∂kξ(

iπj)k+ ∂k
(
ξkπij

)
. (2.11)

Here ξ and ξi are the normal and tangential components of the vector fields defining the
Poincaré transformations,

ξ = bi x
i + a0 , ξi = bijx

j+ aj , bij =−bji . (2.12)

2.2. Asymptotic conditions—preliminary form

The natural fall-off of the dynamical fields in 5+ 1 dimensions is, in asymptotically cartesian
coordinates, hij ∼ r−3, πij ∼ r−4. These conditions are fulfilled by the Myers-Perry solutions
[38]. It might therefore be tempting to impose these conditions at infinity, namely,

hij =O
(
r−3

)
, πij =O

(
r−4

)
for r→∞. However, these conditions, being expressed in terms of non-diffeomorphism invari-
ant fields, also implicitly fix the coordinate system at infinity. This gauge fixing might be
‘improper’, i.e. might gauge away a freedomwith physical content, which does not corrrespond
to a mere redundancy in the description of the system. This was found to be the case in 3+ 1
[7, 8] and 4+ 1 [33, 34] dimensions.

More precisely, the boundary conditions hij =O(r−3), πij =O(r−4) leave as only coordin-
ate freedom O(r−2) gauge transformations. In particular angle-dependent O(1) gauge trans-
formations are not permitted. But these precisely correspond to supertranslations.

We should therefore formulate the boundary conditions in a way that does not freeze the
possibility to perform non-trivialO(1) gauge transformations. The simplest way to implement
this requirement is to act with such gauge transformations on solutions with the behaviour hij =
O(r−3), πij =O(r−4), and analyse what new terms are generated. The boundary conditions
should allow these new terms.

Now, it was found both in 3+ 1 dimensions [7, 8] and in 4+ 1 dimensions [33, 34] that not
all O(1) gauge transformations could be incorporated into the formalism, but only a subclass
of them—sufficient to contain the standard supertranslations in 3+ 1 dimensions. Non trivial
constraints arise from Lorentz invariance, which might be violated by surface terms, as well
as from the finiteness of the symplectic form and of the charges, which are not expressed in
terms of gauge invariant curvatures only and so ‘see’ the improper gauge transformations.
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There might be many ways to consistently restrict the class of allowed diffeomorphisms at
infinity, leading to different asymptotic descriptions. Indeed, in 3+ 1 dimensions, there are the
boundary conditions of [7, 8], the extended boundary conditions of [32] allowing logarithmic
supertranslations, and the inequivalent boundary conditions of [10] leading to a null infinity
with more serious logarithmic singularities (although perfectly fine on Cauchy hypersurfaces).
And one might perhaps suspect that there are even more possibilities.

We shall consider here general gauge transformations of order O(1), without a priori
restrictions, and exhibit as we proceed the extra conditions that must be imposed for finite-
ness. We thus adopt tentatively the following boundary conditions on hij (in polar coordinates)

hrr =
1
r2
λ(0) +

1
r3
h̄rr+

1
r4
h(2)rr + o

(
r−4

)
,

hrA = λ
(0)
A +

1
r
λ
(1)
A +

1
r2
h̄rA+

1
r3
h(2)rA + o

(
r−3

)
,

hAB = rθ(0)AB + θ
(1)
AB +

1
r
h̄AB+

1
r2
h(2)AB + o

(
r−2

)
,

while the asymptotic conditions of its conjugate momentum πij are taken to be (recalling that
πij carries density weight one),

πrr = r2κrr(0) + rκrr(1) + π̄rr+
1
r
πrr(2) + o

(
r−1

)
,

πrA = rκrA(0) +κrA(1) +
1
r
π̄rA+

1
r2
πrA(2) + o

(
r−2

)
,

πAB = κAB(0) +
1
r
κAB(1) +

1
r2
π̄AB+

1
r3
πAB(2) + o

(
r−3

)
.

Here, we have set

λ(0) =−2F(0) ,

λ
(0)
A =

1
2
D̄AU−GA ,

λ
(1)
A = D̄AF

(0) − 2M(0)
A ,

θ
(0)
AB = D̄AGB+ D̄BGA+ ḡABU ,

θ
(1)
AB = D̄AM

(0)
B + D̄BM

(0)
A + 2ḡABF

(0) ,

κrr(0) =
√
ḡ△̄V ,

κrr(1) =
√
ḡ
(
△̄N(0) − 4N(0)

)
,

κrA(0) =
√
ḡD̄AV ,

κrA(1) = 2
√
ḡD̄AN(0) ,

κAB(0) =
√
ḡ
(
ḡAB△̄V− D̄AD̄BV

)
,

κAB(1) =
√
ḡ
(
ḡAB△̄N(0) − ḡABN(0) − D̄AD̄BN(0)

)
,

where the functions F(0), GA, M
(0)
A , U, V and N(0) are at this stage arbitrary functions on the

4-sphere at spatial infinity.
The terms with an overbar, such as 1

r3 h̄rr in hrr or π̄
rr in πrr are the terms corresponding to

hij =O(r−3), πij =O(r−4) when expressed in polar coordinates. These terms are not subject
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to the parity conditions present in 3+ 1 dimensions, where they are the leading terms. Indeed,
as shown below, they do not lead to divergences in the symplectic structure in 5+ 1 dimen-
sions even in the absence of definite parity conditions, which should thus not be assumed. In
particular, their quadratic contribution to the kinetic term, which is the dangerous one in 3+ 1
dimensions, is now ∼ r4drr−4r−3 ∼ drr−3 and just converges as such, as it happens already
in 4+ 1 dimensions (no logarithmic divergence that must be cancelled).

The terms occuring at a lower power of r−1 in the asymptotic expansion are generated by
gauge transformations (2.4) and (2.5) of order O(1). They take the form

ϵ=−V− 1
r
N(0) +O

(
r−2

)
, (2.13)

ϵr =
1
2
U+

1
r
F(0) +O

(
r−2

)
, (2.14)

ϵA =
1
r
GA+

1
r2
MA

(0) +O
(
r−3

)
. (2.15)

The minus signs in the first line and the factor of 1
2 in the second line have no particular signi-

ficance and are chosen for the sole purpose of simplifying some of the subsequent formulas.
We note that the zero mode of V and the l= 1-component of U in an expansion in terms

of spherical harmonics drop out from the asymptotic expansion of the metric components and
their conjugate momenta. This is as it should since they correspond to ϵi = constant and ϵ=
constant. A useful check below will be that the charges of the gauge transformations vanish
for such choices of V and U.

As we shall now show, these boundary conditions will have to be strengthened for consist-
ency. The final form of the boundary conditions is given in section 5.

2.3. Asymptotic form of the constraints

The asymptotic expansion of the constraint (2.2) reads

G = rG(−1) +G(0) +
1
r
G(1) + o

(
r−1

)
, (2.16)

where

G(−1) =
√
ḡ
(
△̄θ(0) − D̄AD̄Bθ

(0)AB
)
, (2.17)

G(0) =
√
ḡ
(
△̄θ(1) − D̄AD̄Bθ

(1)AB− θ(1) − 4D̄Aλ
(1)A+ △̄λ(0) − 4λ(0)

)
, (2.18)

G(1) =
√
ḡ
(
△̄ h̄+ △̄ h̄rr− D̄AD̄Bh̄

AB− 2D̄Ah̄
A
r

)
. (2.19)

G(−1) and G(0) are identically zero because of the definitions of θ(0)AB , θ
(1)
AB , λ

(1)
A and λ(0).

The ‘momentum’ constraint (2.3) goes asymptotically as

Gr = 2r
(
−2κrr(0) +κ(0) − D̄Aκ

rA
(0)

)
− 2

(
κrr(1) −κ(1) + D̄Aκ

rA
(1)

)
+

2
r

(
π̄− D̄Aπ̄

rA
)
+O

(
r−2

)
, (2.20)

GA =−2r2
(
3κr(0)A+ D̄Bκ

B
(0)A

)
− 2r

(
2κr(1)A+ D̄Bκ

B
(1)A

)
− 2

(
π̄rA+ D̄Bπ̄

B
A

)
+O

(
r−1

)
. (2.21)
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The leading and subleading terms of Gr vanish identically on account of the special form of the
first terms in the expansion of the fields. The same happens with the leading and subleading
terms of GA.

3. Finiteness of the symplectic structure

Replacing the asymptotic expansions of the canonical variables into the kinetic term, we get

K=

ˆ
dt
ˆ
dr
˛
d4x

[
r
(
κAB(0)θ̇

(0)
AB + 2κrA(0)λ̇

(0)
A

)
+κrr(0)λ̇

(0) + 2κrA(0)λ̇
(1)
A +κAB(0)θ̇

(1)
AB +κAB(1)θ̇

(0)
AB + 2κrA(1)λ̇

(0)
A

+
1
r

(
κrr(1)λ̇

(0) + 2κrA(1)λ̇
(1)
A +κAB(1)θ̇

(1)
AB +κrr(0)

˙̄hrr

+2κrA(0)
˙̄hrA+κAB(0)

˙̄hAB+ π̄ABθ̇
(0)
AB + 2π̄rAλ̇(0)

A

)
+O

(
r−2

)]
, (3.1)

an expression that can be used to investigate the behaviour of the integral
´ R

dr as r→∞.

Using the definition of κij(0), the coefficient of the quadratic divergence (
´ R

drr∼ R2) can
be written, after an integration by parts, as˛

d4x
√
ḡV

(
−2D̄Aλ̇

(0)A+ △̄θ(0) − D̄AD̄Bθ
(0)AB

)
, (3.2)

The identity G(1) = 0 can then be used to reduce this expression to

4
˛
d4x

√
ḡVD̄Aλ̇

(0)A , (3.3)

which vanishes provided one imposes the condition

D̄Aλ
(0)A = 0 ⇔ D̄AG

A =
1
2
△̄U . (3.4)

For the linear divergence, we make use of the definitions of κij(0) and κ
ij
(1). After integration

by parts, the associated term becomes˛
d4x

√
ḡ
[
V
(
△̄θ̇(1) − D̄AD̄Bθ̇

(1)AB− 2D̄Aλ̇
(1)A+ △̄λ̇(0)

)
+N(0)

(
△̄θ̇(0) − D̄AD̄Bθ̇

(0)AB− 2D̄Aλ̇
(0)A− θ̇(0)

)]
. (3.5)

We now make use of the identities G(1) = 0= G(0) and find that the above integral reduces to

˛
d4x

√
ḡ
[
V
(
θ̇(1) + 2D̄Aλ̇

(1)A+ 4λ̇(0)
)
−N(0)θ̇(0)

]
. (3.6)

Using the definition of the functions, we get, after integration by parts in the second term, the
final expression˛

d4x
√
ḡ
[
2V

(
△̄ Ḟ(0) − D̄AṀ

(0)A
)
− U̇

(
△̄N(0) + 4N(0)

)]
. (3.7)

Since U and V are required to be arbitrary, this integral is zero provided

△̄F(0) = D̄AM
(0)A ,

(
△̄+ 4

)
N(0) = 0 . (3.8)

8
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Note that the second condition expresses that N(0) can only have components along the l= 1
spherical harmonics.

Finally, for the logarithmic divergence we make use of the definitions of κij(0), κ
ij
(1), θ

(0)
AB and

λ
(0)
A to obtain the following integral˛
d4x

√
ḡ
[
N(0)

(
△̄θ̇(1) − D̄AD̄Bθ̇

(1)AB− θ̇(1) − 4D̄Aλ̇
(1)A+ △̄λ̇(0) − 4λ̇(0)

)
+V

(
△̄ ˙̄h+ △̄ ˙̄hrr− D̄AD̄B

˙̄hAB− 2D̄A
˙̄hAr
)
−
(
π̄rA+ D̄Bπ̄

AB
)
DAU̇+

(
π̄− D̄Aπ̄

rA
)
U̇
]
. (3.9)

The first line vanishes because of the identity G(0) = 0, while the second and third lines are
zero if we impose, as in [7], the faster fall-off of the constraints

G =O
(
r−2

)
, Gr =O

(
r−2

)
, GA =O

(
r−1

)
. (3.10)

This completes the proof that the kinetic term is finite.

4. Canonical generator of the gauge symmetries

4.1. Conditions for finiteness

We now turn to the question of the finiteness of the canonical generators of the asymptotic
symmetries, which are given by

G
[
ϵ,ϵi

]
=

ˆ
d5x

(
ϵG+ ϵiGi

)
+Q

[
ϵ,ϵi

]
, (4.1)

where we adopt a general O(1) behaviour for the gauge parameters,

ϵ= T+
1
r
T(1) +

1
r2
T(2) + o

(
r−2

)
, (4.2)

ϵr =W+
1
r
W(1) +

1
r2
W(2) + o

(
r−2

)
, (4.3)

ϵA =
1
r
IA+

1
r2
IA(1) +

1
r3
IA(2) + o

(
r−3

)
, (4.4)

with T, T(1), T(2),W,W(1),W(2), IA, IA(1) and I
A
(2) at this stage arbitrary functions on the sphere.

Recall that O(1) terms in ϵi appear at order O(r−1) in the angular components ϵA.
We will find that finiteness of G[ϵ,ϵi] imposes the same restrictions on these functions as

the ones found in the previous section. We have explicitly written the T(2),W(2) and IA(2) terms
because these can define improper gauge symmetries with non-vanishing charges, even though
they affect only the subleading terms in the asymptotic expansion of the canonical fields (those
with an overbar).

The surface integral Q[ϵ,ϵi] that accompanies the weakly vanishing bulk term´
d5x

(
ϵG+ ϵiGi

)
is determined through the central equation ιXΩ=−dVG (see [39] for nota-

tions and more information), which reduces in the present case to the criterion of [40], namely,
that G[ϵ,ϵi] should have well-defined functional derivatives. This yields the condition

δQ
[
ϵ,ϵi

]
=

˛
d4si

[√
gϵ∇j

(
δhij− gijδh

)
−√

g∇jϵ
(
δhij− gijδh

)
+ 2ϵjδπ

ij
]
, (4.5)

where δhij and δπij are the variations of the fields under the gauge transformations (2.4)
and (2.5).
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Replacing the explicit form of the asymptotic expansions of the fields in the above surface
integral for δQ[ϵ,ϵi]≡ δQ, we get the expression

δQ= r2
˛
d4x

(
−2

√
ḡTD̄Aδλ

(0)A+ 2Wδκrr(0) + 2IAδκ
rA
(0)

)
+ r
˛
d4x

[√
ḡT

(
4δλ(0) + δθ(1) + 2D̄Aδλ

(1)A
)
+
√
ḡT(1)

(
−δθ(0) + 2D̄Aδλ

(0)A
)

+2Wδκrr(1) + 2IAδκ
rA
(1) + 2W(1)δκrr(0) + 2I(1)A δκrA(0)

]
+

˛
d4x

[√
ḡT

(
4δh̄rr+ 2δh̄+ 2D̄Aδh̄

A
r

)
+
√
ḡT(1)

(
4δλ(0) + 2D̄Aδλ

(1)A
)

+
√
ḡT(2)

(
−2δθ(0) + 2D̄Aδλ

(0)A
)
+ 2Wδπ̄rr+ 2IAδπ̄

rA

+2W(1)δκrr(1) + 2I(1)A δκrA(1) + 2W(2)δκrr(0) + 2I(2)A δκrA(0)

]
.

In order to establish finiteness of the variation of the charge we examine each contribution
in turn:

• In the quadratic divergence, the term proportional to T vanishes if we impose the condition
D̄Aλ

(0)A = 0, which is the same condition found to be necessary for eliminating the quadratic
divergence in the kinetic term. Consistency with gauge transformations δϵλ

(0)
A = D̄AW− IA

implies that the gauge parameters should be restricted as D̄AIA = △̄W. This latter relation
kills the second and third terms after using that κrr(0) =

√
ḡ△̄V and κrA(0) =

√
ḡD̄AV, as well

as integration by parts.
• The stronger condition λ(0)A = 0, which clearly implies D̄Aλ

(0)A = 0, turns out to be needed
in the proof of Lorentz invariance (see appendix B). We shall thus impose from now that
condition,

λ
(0)
A = 0 ⇔ GA =

1
2
D̄AU . (4.6)

This restricts the gauge transformations to

IA = D̄AW . (4.7)

• In the linear divergence, the term proportional to T vanishes if we impose the condi-
tion △̄F(0) = D̄AM(0)A, again found necessary above for finiteness of the symplectic form.
Consistency of the latter condition with gauge transformations implies that the gauge para-
meters should be such that D̄AI(1)A = △̄W(1). This restriction automatically kills the terms
proportional to I(1)A and △̄W(1) (which are also those containing δV) as can be seen through
an integration by parts on the sphere. Similarly, the term proportional to W vanishes by
imposing the condition

(
△̄+ 4

)
N(0) = 0 found above. Again consistency of the latter con-

dition with the gauge transformations implies that
(
△̄+ 4

)
T(1) = 0, which is the condi-

tion needed to make zero the remaining term proportional to T(1) (using the condition
D̄Aλ

(0)A = 0, the definition of θ(0) and integrations by parts).

Thus, all the divergent terms are actually zero and the variation of the charge is finite under
the same conditions that ensure finiteness of the kinetic term.

10
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Integrability is automatic for field-independent parameters (as here) since δQ is linear. One
finds that Q is given by

Q=

˛
d4x

[√
ḡT

(
4h̄rr+ 2h̄+ 2D̄Ah̄

A
r

)
− 2

√
ḡT(2)θ(0)

+2Wπ̄rr+ 2IAπ̄
rA+ 2W(2)κrr(0) + 2I(2)A κrA(0)

]
. (4.8)

This expression can can be re-written as

Q=

˛
d4x

[√
ḡT

(
4h̄rr+ 2h̄+ 2D̄Ah̄

A
r

)
+ 2W

(
π̄rr− D̄Aπ̄

rA
)

−2
√
ḡT̃(2)U− 2W̃(2)V

]
, (4.9)

where

T̃(2) =
(
△̄+ 4

)
T(2) , (4.10)

W̃(2) = D̄AI
(2)A−△̄W(2) . (4.11)

4.2. Discussion

Various important facts are manifest from (4.9):

• The zero mode of T and the l= 1 mode of W both give a zero charge. Indeed, as we have
observed, the first terms in the asymptotic expansion of the fields drop from the constraints.
If we denote by h ′

ij and π ′ij the fields obained by truncating the asymptotic expansions up
to the terms with an overbar (which are kept), one finds

G =
√
g
(
△h−∇i∇jhij

)
=
√
g
(
△h ′ −∇i∇jh ′

ij

)
Gi =−2∇jπij =−2∇jπ ′

ij .

Consequently, if we take ϵ= T= constant ≡ a and ϵi = constant ≡ ai, implyingW= aiY1
i ,

we get

G
[
ϵ,ϵi

]
=

ˆ
d5x

[
a
√
g
(
△h ′ −∇i∇jh ′

ij

)
+ ai

(
−2∇jπ ′

ij

)]
+

˛
d4x

[√
ḡa

(
4h̄rr+ 2h̄+ 2D̄Ah̄

A
r

)
+ 2aiY1

i π̄
rr
]
,

an expression that can be seen to identically vanish by converting the surface integral into a
bulk integral through the use of Stokes theorem.

• No O(r−1) coefficients T(1), W(1) or IA(1) of the gauge transformations appear in the
charges (4.9). Thismeans that these gauge transformations are proper gauge transformations.
They can be eliminated by imposing the proper gauge conditions N(0) = F(0) =MA

(0) = 0.

The only gauge transformations that preserve these conditions have T(1) =W(1) = IA(1) = 0.
A weaker gauge condition is

MA
(0) = D̄AF(0) (4.12)

preserved by gauge transformations such that IA(1) = D̄AW(1).

11
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• Finally, theO(r−2) coefficients do contribute to the charges and define accordingly improper
gauge symmetries. They correspond to theD= 4 logarithmic gauge transformations of [32].
Their charges are the functions U and V, that parametrize the O(1) gauge transformation
terms in the dynamical fields—terms that are related to the memory effect in the Hamiltonian
formulation [20]. Because of the projection operators appearing in T̃(2) and W̃(2), neither the
zero mode of V nor the l= 1 mode of U contribute to the charge. Furthermore, since only
the combination W̃(2) of the gauge parameters I(2)A andW(2) appears in the charge, O(r−2)
spatial gauge transformations that have zero W̃(2) are proper gauge transformations.

The conclusion of our analysis is that only theO(1) andO(r−2) terms in the asymptotic expan-
sion of the gauge parameters (with the restrictions on the spherical harmonic components and
on the angular components described above) define improper gauge transformations having a
non-trivial action on the system. The O(r−1) terms correspond to proper gauge symmetries
and can be gauged away. The improper gauge transformations are described by four independ-
ent functions on the sphere, just as in five spacetime dimensions [33, 34]. A similar situation
is encountered in electromagnetism [41, 42].

5. Asymptotic conditions—final version

If we collect the restrictions on the gauge parameters derived above, including those on the
gauge parameters entering the expressions of the leading terms in the asymptotic expansions
of the fields, we get as asymptotic conditions

hrr =
1
r2
λ(0) +

1
r3
h̄rr+

1
r4
h(2)rr + o

(
r−4

)
, (5.1)

hrA =
1
r
λ
(1)
A +

1
r2
h̄rA+

1
r3
h(2)rA + o

(
r−3

)
, (5.2)

hAB = rθ(0)AB + θ
(1)
AB +

1
r
h̄AB+

1
r2
h(2)AB + o

(
r−2

)
, (5.3)

and

πrr = r2κrr(0) + rκrr(1) + π̄rr+
1
r
πrr(2) + o

(
r−1

)
, (5.4)

πrA = rκrA(0) +κrA(1) +
1
r
π̄rA+

1
r2
πrA(2) + o

(
r−2

)
, (5.5)

πAB = κAB(0) +
1
r
κAB(1) +

1
r2
π̄AB+

1
r3
πAB(2) + o

(
r−3

)
. (5.6)

where the coefficients of the leading terms are now given by

λ(0) =−2F(0) , (5.7)

λ
(1)
A =−D̄AF

(0) , (5.8)

θ
(0)
AB = D̄AD̄BU+ ḡABU , (5.9)

θ
(1)
AB = 2

(
D̄AD̄BF

(0) + ḡABF
(0)

)
, (5.10)

κrr(0) =
√
ḡ△̄V , κrA(0) =

√
ḡD̄AV , (5.11)

κrr(1) =−8
√
ḡN(0) , κrA(1) = 2

√
ḡD̄AN(0) , (5.12)
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and

κAB(0) =
√
ḡ
(
ḡAB△̄V− D̄AD̄BV

)
, (5.13)

κAB(1) =
√
ḡ

(
5
4
ḡAB△̄N(0) − D̄AD̄BN(0)

)
. (5.14)

The functions on the sphere appearing in these asymptotic expansions are restricted by the
conditions (

△̄+ 4
)
N(0) = 0 (5.15)

and

G =O
(
r−2

)
, Gr =O

(
r−2

)
, GA =O

(
r−1

)
. (5.16)

With these boundary conditions, the symplectic form is finite.

6. Gauge transformations

6.1. Action of the gauge transformations on the asymptotic fields

The gauge transformations that preserve these asymptotic conditions are

ϵ= T+
1
r
T(1) +

1
r2
T(2) + o

(
r−2

)
, (6.1)

ϵr =W+
1
r
W(1) +

1
r2
W(2) + o

(
r−2

)
, (6.2)

ϵA =
1
r
DAW+

1
r2
DAW(1) +

1
r3
IA(2) + o

(
r−3

)
, (6.3)

where the functions T, W, W(1), T(2), W(2) and IA(2) are arbitrary functions on the 4-

sphere at spatial infinity and
(
△̄+ 4

)
T(1) = 0. The generators of these transformations are

finite. They define proper gauge transformations when T=W= T̃(2) = W̃(2) = 0, with T̃(2) =(
△̄+ 4

)
T(2) and W̃(2) = D̄AI(2)A−△̄W(2).

We shall call the gauge transformations parametrized by T and W ‘leading gauge trans-
formations’ or even ‘leading supertranslations’. At the same time, the gauge transformations
parametrized by T̃(2) and W̃(2) will be called ‘subleading gauge transformations’ or ‘sublead-
ing supertranslations’.

One easily verifies that the leading orders in the fall-off of the fields transform as

δλ(0) =−2W(1) , δh̄rr =−4W(2) , (6.4)

δλ
(0)
A = 0 , δλ

(1)
A =−D̄AW

(1) , (6.5)

δh̄rA =−2D̄AW
(2) , (6.6)

δθ
(0)
AB = 2D̄AD̄BW+ 2ḡABW , (6.7)

δθ
(1)
AB = 2D̄AD̄BW

(1) + 2ḡABW
(1) , (6.8)

δh̄AB = D̄AI
(2)
B + D̄BI

(2)
A + 2ḡABW

(2) , (6.9)

δκrr(0) =−
√
ḡ△̄T , δκrr(1) = 8

√
ḡT(1) , (6.10)
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δπ̄rr =
√
ḡ
(
8T(2) −△̄T(2)

)
, (6.11)

δκrA(0) =−
√
ḡD̄AT , δκrA(1) =−2

√
ḡD̄AT(1) , (6.12)

δπ̄rA =−3
√
ḡD̄AT(2) , (6.13)

δκAB(0) =−
√
ḡ
(
ḡAB△̄T− D̄AD̄BT

)
, (6.14)

δκAB(1) =−
√
ḡ

(
5
4
ḡAB△̄T(1) − D̄AD̄BT(1)

)
, (6.15)

δπ̄AB =−
√
ḡ
(
ḡAB△̄T(2) − D̄AD̄BT(2)

)
. (6.16)

Hence, we have in particular the following transformation rules for U, V,

δU= 2W , δV=−T , (6.17)

as well as δF(0) =W(1) and δN(0) =−T(1).

6.2. Algebra of the gauge generators

As we have just shown, the variables U and V transform simply by shifts under leading super-
translations. Since U and V are the charges of the subleading supertranslations, it follows that
the abelian algebra of leading and subleading supertranslations is centrally extended in its
canonical realization.

One finds indeed{
G [T] ,G

[
W̃(2)

]}
=−2

˛
d4x

√
ḡW̃(2)T ,

{
G [W] ,G

[
T̃(2)

]}
= 4
˛
d4x

√
ḡT̃(2)W , (6.18)

where the l= 0 mode in the first term and the l= 1 mode in the second one are projected out
by definition of T̃(2) and W̃(2), respectively.

Because the leading and subleading supertranslations form conjugate pairs, they can be
decoupled from the Lorentz algebra by using the general argument of [32, 35] (see appendix B).

7. Conclusions and comments

In this paper, we have studied the asymptotic structure of linearized gravity in six spacetime
dimensions.We have paid a special attention on the supertranslations and have shown that these
are parametrized by four functions of the angles, as in five dimensions. The supertranslations
are O(1) and O(r−2) gauge transformations with gauge parameters taking a specific form
ensuring finiteness of the symplectic structure and of the charges. These parameters depend
on two functions of the angles at order O(1) and on two other functions of the angles at order
O(r−2). In each case, one of these functions parametrizes the temporal diffeomorphisms, the
other parametrizes the radial diffeomorphisms (the angular components of the supertransla-
tions are not independent).

The O(r−1) gauge transformations, which might have been anticipated to define also non
trivial supertranslations, turn out to be proper gauge transformations with vanishing charges.

Furthermore, we have shown that the supertranslation charges provide a central extension
of the abelian algebra of the supertranslations. Leading (O(1)) supertranslations and relevant
subleading (O(r−2)) ones form canonically conjugate pairs.
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7.1. Higher spacetime dimensions

The pattern in higher spacetime dimensions D is exactly the same: the non trivial supertrans-
lations remain parametrized by four functions of the angles: two functions describing O(1)
gauge transformations and two functions describing O(r−(D−4)) gauge transformations. The
intermediate orders O(r−k)) (k= 1, · · · ,D− 5) define proper gauge transformations.

Leading and relevant subleading supertranslations form canonically conjugate pairs. Note
that for D= 4, the two orders coincide since O(r−(D−4)) =O(1): leading and subleading
supertranslations are the same and are just the standard D= 4 supertranslations. This was one
of our motivations for introducing logarithmic supertranslations in [32], to bring in canonical
conjugates to the standard supertranslations5.

We have verified that this pattern holds in all spacetime dimensions ⩾ 5. We give here the
explicit formulas for the gauge parameters and the corresponding charge-generators.

The gauge transformations verifying all the finiteness requirements have the asymptotic
expansion

ϵ= T(0) +
D−5∑
m=1

T(m)

rm
+
T(D−4)

rD−4
+O

(
r−(D−3)

)
, (7.1)

ϵr =W(0) +
D−5∑
m=0

W(m)

rm
+
W(D−4)

rD−4
+O

(
r−(D−3)

)
, (7.2)

ϵA =
D̄AW(0)

r
+

D−5∑
m=1

IA(m)
rm+1

+
IA(D−4)

rD−3
+O

(
r−(D−2)

)
, (7.3)

with (
△̄+D− 2

)
T(m) = 0 , D̄AI

A
(m) −△̄W(m) = 0 (0< m< D− 4) . (7.4)

The asymptotic conditions for the fields hij and πij are obtained by acting with such gauge
transformations on the following configurations

hrr =
1

rD−3
h̄rr+

1
rD−2

h(2)rr + o
(
r−(D−2)

)
, (7.5)

hrA =
1

rD−4
h̄rA+

1
rD−3

h(2)rA + o
(
r−(D−3)

)
, (7.6)

hAB =
1

rD−5
h̄AB+

1
rD−4

h(2)AB + o
(
r−(D−4)

)
, (7.7)

and

πrr = π̄rr+
1
r
πrr(2) + o

(
r−1

)
, (7.8)

πrA =
1
r
π̄rA+

1
r2
πrA(2) + o

(
r−2

)
, (7.9)

πAB =
1
r2
π̄AB+

1
r3
πAB(2) + o

(
r−3

)
, (7.10)

5 In four spacetime dimensions, there is the additional need to impose parity conditions, which cuts the number of
functions describing the supertranslations in two. Taking this into account, standard supertranslations and logarithmic
supertranslations are described by two functions of the angles (and not four).

15



J. Phys. A: Math. Theor. 57 (2024) 135402 O Fuentealba and M Henneaux

This will generate terms of a specific form that generically start at (D− 4) powers of r higher
than the leading order in the above equations (except for hrr and hrA where it is (D− 5) powers
of r).

The canonical generator of the asymptotic symmetries is given by

G=

ˆ
dD−1x

(
ϵG+ ϵiGi

)
+Q

[
ϵ,ϵi

]
, (7.11)

where the surface integral Q[ϵ,ϵi]≡ Q reads

Q=

˛
dD−2x

[√
ḡT(0)

(
(D− 2) h̄rr+ 2D̄Ah̄rA+(D− 4) h̄

)
+W(0) (π̄rr− π̄)

−(D− 4)
√
ḡT̃(D−4)U− 2

√
ḡ W̃(D−4)V

]
, (7.12)

where

T̃(D−4) =
(
△̄+D− 2

)
T(D−4) , (7.13)

W̃(D−4) = D̄AI(D−4)
A −△̄W(D−4) , (7.14)

and where U and V are the parametersW(0) and T(0) entering the gauge transformation in the
asymptotic form of the fields. Note that on the (D− 2)-sphere, the operator △̄+D− 2 projects
out the l= 1 spherical harmonic component.

The expression for the charges shows that the intermediate orders T(m) andW(m) (1⩽ m⩽
D− 5) define proper gauge transformations, since they do not appear in the surface integ-
ral (7.12). The only relevant subleading supertranslations are those at order (D− 4) with
W̃(D−4) ̸= 0. We call them again for short ‘subleading supertranslations’.

It also follows that leading and subleading supertranslation charges form canonically con-
jugate pairs, since the charges V and U of the subleading supertranslations are shifted by the
leading supertranslations.

7.2. Comparing with null infinity

As we mentioned in the introduction, the study of the asymptotic symmetries of gravity at null
infinity has been performed in [37] in even spacetime dimensions, also within the linearized
context. This work explores the implications of one specific type of supertranslations for the
soft theorems, namely, in our language, the leading supertranslations with parity conditions
imposed (as can be read off from their matching conditions between past null infinity and
future null infinity). These supertranslations depend on one single function of the angles and
are the supertranslations that reduce to the ordinary supertranslations in D= 4. In terms of
the parametrization (6.1)–(6.3), the only non-zero functions are T and W, with T= Teven and
W=Wodd. It would be interesting to understand the implications of the other supertranslations.

This requires a careful matching of the asymptotic fields between spatial and null infinity,
extending to gravity what has been done in [41] for electromagnetism. Work along these lines
is in progress.
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Appendix A. Spatial infinity: other approaches (D=4)

Different definitions of symmetries lead to different symmetry groups. The definitions might
differ in the ‘object’ that the symmetry should preserve.

A (classical) theory is defined by an action principle and, in case the spatial sections have
a boundary, also by boundary conditions—which are asymptotic conditions if the ‘boundary’
is at infinity.

Our definition of a symmetry of a theory is that it should preserve this structure. More pre-
cisely, a transformation of the dynamical fields is a symmetry if (i) it preserves the boundary
conditions; and (ii) it leaves the action invariant up to surface contributions at the time bound-
aries (as in classical mechanics—but no contributions at the spatial boundaries). This second
condition implies in particular that the symplectic 2-form (encoded in the action) is strictly
invariant under the transformation, and not merely invariant up to a possibly non-vanishing
surface term. One can then construct the canonical generators of the symmetry (moment map).

A.1. Twisted parity conditions—BMS group

With the boundary conditions proposed in [7, 8], the above definition of a symmetry yields the
BMS group as asymptotic symmetry group at spatial infinity. The boundary conditions of [7,
8] differ from the strict parity conditions that the authors of [40] imposed on the leading orders
of the fields, by aO(1) diffeomorphism taking a specific form compatible with Lorentz invari-
ance. One says that the parity conditions are twisted by a diffeomorphism. [A different twist
in the parity conditions was considered in [10]. It also leads to the BMS symmetry. Although
perfectly fine from the Hamiltonian point of view developed on spacelike hypersurfaces, this
alternative set of boundary conditions does not eliminate the leading log-singularity at null
infinity. One might argue that this is a problem of null infinity, not of the theory.]

A.2. Strict parity conditions or reduction to Poincaré

At spatial infinity, the charges are strictly conserved. In particular, the BMS charges are con-
served. This means that the twist in the parity conditions is constant. By making a definite
diffeomorphism, one can thus undo the twist and assume that the strict parity conditions of
[40] hold. This reduces the BMS group to the Poincaré group. Although it was not formu-
lated in terms of a reduction of a larger group, the emergence of the Poincaré symmetry at
spatial infinity was exhibited long ago in value of the ADM energy, momentum and angular
momentum.

One could even argue that since all the Poincaré charges are conserved, one could go to
the rest frame of the system once and for all, where the group is further reduced to R× SO(3)
(which is not an invariant subgroup, in much the same way as the Poincaré group is not an
invariant subgroup of the BMS group).
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However, the strict conservation of the BMS charges only holds for a hypothetical observer
sitting at an infinite distance from the source in a non cosmological background. Even though
such observers do not exist, asymptotic methods are useful, but one must take into account
that they are approximate. In particular, there might be fluxes that change the charges (see e.g.
[43] chapter 19).

Imagine an observer sitting at a very large distance from a gravitational source, which
detects gravitational waves from the source. Before the waves hit the observer, the above
asymptotic expansion of the metric and conjugate momentum can be used. One can compute in
particular from the asymptotic values of the fields definite ‘initial’ values of the ADM energy,
momentum and angular momentum. The asymptotic expansion is also valid after the wave
has passed, leading to ‘final’ values of the ADM energy, momentum and angular momentum
which are in general different from the initial ones. The difference is what has been carried
away by the wave. If the momentum has changed, one ceases to be in the rest frame of the
observed system (although the hypothetical observer at infinity would remain of course in the
rest frame of the full system including the wave). This is one reason why it is not advisable
to reduce the Poincaré group to the little group defined by the initial values of the conserved
quantities. The situation is quite clear on physical grounds.

TheADMmass, momentum and linearmomentum are not the only BMSquantities changed
by the passage of the wave. Pure supertranslation charges will also change. Indeed, even if the
metric and its conjugate momentum obey initially the strict (leading order) parity conditions of
[40], they will generically not do so after the wave has passed, unless the wave is very carefully
parity-tuned. A non-trivial twist, i.e. non-trivial values of U and V will be generated. This will
be invisible to the non-existent (never hit) observer at infinity, but it corresponds to a real effect
for real observers at a non-infinite distance: it is the memory effect [20, 44]. For that reason,
it would be equally unadvisable to reduce the BMS group to the Poincaré group by imposing
strict parity conditions on the grounds that the wave never reaches spatial infinity.

The problem of digging a Poincaré subalgebra within the BMS algebra in order to extract
a supertranslation-free angular momentum has actually been bypassed in recent studies,
which have shown that non-linear redefinitions effectively achivieve this task. The proper
Hamiltonian context where all the relevant quantities have a well-defined action through the
Poisson bracket is given in [32].

A.3. Spiapproach [45–47]

In a very insightful work [45] (see also [46, 47]), which has inspired many developments,
a rich geometrical structure is attached to spatial infinity. An asymptotic symmetry is then
defined as a transformation preserving this structure. This leads to the Spi group [45], which
is similar but different from the BMS group: it is also the semi-direct product of the Poincaré
groupwith an abelian group of ‘supertranslations’, but the Spi supertranslations do not coincide
with the BMS ones. The difference in the resulting symmetry groups is not contradictory but
is a consequence of the difference in what is required to be preserved in the definition of a
symmetry.

Since the role of the gravitational action is not as central in [45] as it is in our approach, the
construction of a well-defined moment map (with ‘integrable’, finite generators) for the Spi
group is less direct. To our knowledge the moment map has in fact not been built for all the
Spi generators. Interesting considerations on the construction of the Spi charges for some of
the Spi supertranslations can be found in [14, 48].

18



J. Phys. A: Math. Theor. 57 (2024) 135402 O Fuentealba and M Henneaux

Appendix B. Poincaré transformations

We have carefully checked Poincaré invariance of the theory, which amounts to verify that the
Poincaré transformations leave the action invariant (up to boundary terms on the initial and
final slices but without surface contributions at spatial infinity). To achieve invariance, it is
necessary to supplement the original form of the Poincaré transformations (2.8) and (2.9) by
‘correcting gauge transformations’, which we have explicitly worked out.

We also found it necessary to impose the condition λ(0)A = 0. This is as in four spacetime
dimensions, where this condition is imposed to ensure invariance of the kinetic term under
boosts, i.e. integrability of the boost charges (more information on this point in [8]).

Because the improved Poincaré transformations preserve the action, they preserve in par-
ticular the symplectic form and define therefore canonical transformations. Their charge-
generators Pξ,ξi , where (ξ,ξi) are the components of the spacetime vector fields defining the
infinitesimal Poincaré transformations (rotations, boosts and translations), can be determined
by the standard methods and are the sum of a bulk term involving the energy-momentum tensor
of the linearized theory and surface terms.

The computations are rather long and cumbersome and will not be reproduced here since
they are not very illuminating (and in direct line of what can be found in the literature [34,
36]). The brackets of the Poincaré generators give the expected result, namely,{

Pξ1,ξi1
,Pξ2,ξi2

}
= Pξ̂,ξ̂i , (B.1)

where

ξ̂i = ξj1∂jξ
i
2 + gijξ1∂jξ2 − (1↔ 2) , (B.2)

ξ̂ = ξi1∂iξ2 − (1↔ 2) . (B.3)

The Poisson brackets of the canonical generators of the gauge symmetries with the Poincaré
generators are given by{

Gϵ,Pξ,ξi
}
= Gϵ̂ , (B.4)

with

T̂=−YA∂AT+ 5bW+ ∂AbD̄
AW+ b△̄W , (B.5)

Ŵ=−YA∂AW+ bT , (B.6)

T̃(2) =−YA∂AT̃(2) +
5
2
bW̃(2) +

1
2
∂AbD̄

AW̃(2) +
1
2
b△̄W̃(2) , (B.7)

W̃(2) =−YA∂AW̃(2) + 2bT̃(2) . (B.8)

(The factors of 2 appearing in the expression of ˆ̃T(2) and ˆ̃W(2) as compared with the expres-
sion of T̂ and Ŵ come from a different normalization and can be absorbed through the redefin-

ition T̃(2) → T̃ ′(2) = 2T̃(2) so that ˆ̃T ′(2) =−YA∂AT̃ ′(2) + 5bW̃(2) + ∂AbD̄AW̃(2) + b△̄W̃(2) and
ˆ̃W(2) =−YA∂AW̃(2) + bT̃ ′(2)). The algebra does not contain non-linear terms as in [34] (D= 5)
but this is of course because we are dealing with linearized gravity.

The non-vanishing brackets {Gϵ,Pξ,ξi} show that the generators Gϵ transform in a non-
trivial representation of the Poincaré group. We recall that as one goes to the full Einstein
theory, the Poincaré transformations become improper gauge symmetries with generators
given on-shell by surface integrals. The translations combine with the (leading) supertrans-
lations by ‘filling the holes l= 0 (time translations) and l= 1 (space translations)’ [36]. The
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brackets {Gϵ,Pξ,ξi} encode also the transformation rule of the translations under Lorentz
transformations.

Finally, because the pure supertranslations (leading and subleading) form canonically con-
jugate pairs, one can decouple them (and only them, not the ordinary translations of course)
from the Poincaré algebra by non-linearly redefining the Lorentz generators [35].
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